
Efficient Query Evaluation on Probabilistic Databases

Nilesh Dalvi Dan Suciu

{nilesh,suciu}@cs.washington.edu
University of Washington, Seattle, WA, USA

Abstract

We describe a system that supports arbi-
trarily complex SQL queries on probabilis-
tic databases. The query semantics is based
on a probabilistic model and the results are
ranked, much like in Information Retrieval.
Our main focus is efficient query evaluation, a
problem that has not received attention in the
past. We describe an optimization algorithm
that can compute efficiently most queries. We
show, however, that the data complexity of
some queries is #P -complete, which implies
that these queries do not admit any efficient
evaluation methods. For these queries we de-
scribe both an approximation algorithm and
a Monte-Carlo simulation algorithm.

1 Introduction

Databases and Information Retrieval [5] have taken
two philosophically different approaches to queries. In
databases SQL queries have a rich structure and a pre-
cise semantics. This makes it possible for users to for-
mulate complex queries and for systems to apply com-
plex optimizations, but users need to have a pretty de-
tailed knowledge of the database in order to formulate
queries. For example, a single misspelling of a constant
in the WHERE clause leads to an empty set of answers,
frustrating casual users. By contrast, a query in In-
formation Retrieval (IR) is just a set of keywords and
is easy for casual users to formulate. IR queries offer
two important features that are missing in databases:
the results are ranked and the matches may be uncer-
tain, i.e. the answer may include documents that do

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the VLDB copyright notice and
the title of the publication and its date appear, and notice is
given that copying is by permission of the Very Large Data Base
Endowment. To copy otherwise, or to republish, requires a fee
and/or special permission from the Endowment.

Proceedings of the 30th VLDB Conference,
Toronto, Canada, 2004

not match all the keywords in the query1. While sev-
eral proposals exist for extending SQL with uncertain
matches and ranked results [3, 19, 16], they are either
restricted to a single table, or, when they handle join
queries, adopt an ad-hoc semantics.

To illustrate the point consider the following
structurally rich query, asking for an actor whose
name is like ‘Kevin’ and whose first ‘successful’ movie
appeared in 1995:

SELECT *
FROM Actor A
WHERE A.name ≈ ’Kevin’

and 1995 =
SELECT MIN(F.year)
FROM Film F, Casts C
WHERE C.filmid = F.filmid

and C.actorid = A.actorid
and F.rating ≈ "high"

The two ≈ operators indicate which predicates we
intend as uncertain matches. Techniques like edit dis-
tances, ontology-based distances [15], IDF-similarity
and QF-similarity [3] can be applied to a single table:
to rank all Actor tuples (according to how well they
match the first uncertain predicate), and to rank all
Film tuples. But it is unclear how to rank the en-
tire query. To date, no system combines structurally
rich SQL queries with uncertain predicates and ranked
results.

In this paper we propose such a system. We in-
troduce a new semantics for database queries that
supports uncertain matches and ranked results, by
combining the probabilistic relational algebra [13] and
models for belief [4]. Given a SQL query with uncer-
tain predicates, we start by assigning a probability to
each tuple in the input database according to how well
it matches the uncertain predicates. Then we derive
a probability for each tuple in the answer, and this
determines the output ranking.

An important characteristic of our approach is that
any query under set-semantics has a meaning, in-

1Some IR systems only return documents that contain all
keywords, but this is a feature specific to those systems, and
not of the underlying vector model used in IR.

864



cluding queries with joins, nested sub-queries, aggre-
gates, group-by, and existential/universal quantifiers2.
Queries have now a probabilistic semantics, which is
simple and easy to understand by both users and im-
plementors.

The main problem is query evaluation, and this is
the focus of our paper. Our approach is to represent
SQL queries in an algebra, and modify the operators to
compute the probabilities of each output tuple. This
is called extensional semantics in [13], and is quite effi-
cient. While this sounds simple, the problem is that it
doesn’t work: extensional evaluation ignores the com-
plex correlations present in the probabilities of the in-
termediate results and the probabilities computed this
way are wrong in most cases, and lead to incorrect
ranking. In [13], the workaround is to use an inten-
sional semantics 3, which is much more complex and,
as we show here, impractical. Our approach is dif-
ferent: we rewrite the query plans, searching for one
where the extensional evaluation is correct. We show
however that certain queries have a #P-complete data
complexity under probabilistic semantics, and hence
do not admit a correct extensional plan. However,
many queries that occur in practice do have a correct
extensional plan (8 out of the 10 TPC/H queries fall in
this category). For others, we describe two techniques
for evaluation: a heuristics to choose a plan that avoids
large errors, and a Monte-Carlo simulation algorithm,
which is more expensive but can guarantee arbitrarily
small errors.

Outline We give motivating examples in Sec. 2, de-
fine the problem in Sec. 3, and describe our techniques
in Sec. 4-8. Sec. 9 reports experiments and Sec. 10 de-
scribes related work. We conclude in Sec. 11.

2 Examples

We illustrate the main concepts and techniques of this
paper with two simple examples.

Probabilistic Database In a probabilistic
database each tuple has a certain probability of
belonging to the database. Figure 1 shows a proba-
bilistic database Dp with two tables, Sp and T p: the
tuples in Sp have probabilities 0.8 and 0.5, and the
unique tuple in T p has probability 0.6. We use the
superscript p to emphasize that a table or a database
is probabilistic. We assume in this example that the
tuples are independent probabilistic events, in which
case the database is called extensional [13].

The meaning of a probabilistic database is a proba-
bility distribution on all database instances, which we
call possible worlds, and denote pwd(Dp). Fig. 2 (a)
shows the eight possible instances with non-zero prob-
abilities, which are computed by simply multiplying

2In this paper we restrict our discussion to SQL queries whose
normal semantics is a set, not a bag or an ordered list.

3We define extensional and intensional semantics formally in
Sec. 4.

Sp =
A B

s1 ‘m’ 1 0.8
s2 ‘n’ 1 0.5

T p =
C D

t1 1 ‘p’ 0.6

Figure 1: A probabilistic database Dp

pwd(Dp) =

database instance probability
D1 = {s1, s2, t1} 0.24
D2 = {s1, t1} 0.24
D3 = {s2, t1} 0.06
D4 = {t1} 0.06
D5 = {s1, s2} 0.16
D6 = {s1} 0.16
D7 = {s2} 0.04
D8 = φ 0.04

(a)

q(u) : −Sp(x, y), T p(z, u), y = z

(b)

qpwd(Dp) =
answer probability
{′p′} 0.54
∅ 0.46

(c)

Figure 2: (a) The possible worlds for Dp in Figure 1,
(b) a query q, and (c) its possible answers.

the tuple probabilities, as we have assumed them to
be independent. For example, the probability of D2 is
0.8 ∗ (1− 0.5) ∗ 0.6 = 0.24, since the instance contains
the tuples s1 and t1 and does not contain s2.

We now illustrate query evaluation on probabilistic
databases. Consider the conjunctive query q in Fig. 2
(b). Its meaning on Dp is a set of possible answers,
shown in Fig. 2 (c). It is obtained by applying q to
each deterministic database in pwd(Dp), and adding
the probabilities of all instances that return the same
answer. In our example we have q(D1) = q(D2) =
q(D3) = {′p′}, and q(D4) = . . . = q(D8) = ∅. Thus,
the probability of the answer being {′p′} is 0.24+0.24+
0.06 = 0.54, while that of the answer ∅ is 0.46. This
defines the set of possible answers, denoted qpwd(Dp).
Notice that we have never used the structure of the
query explicitly, but only applied it to deterministic
databases taken from pwd(Dp). Thus, one can give
a similar semantics to any query q, no matter how
complex, because we only need to know its meaning
on deterministic databases.

The set of possible answers qpwd(Dp) may be very
large, and it is impractical to return it to the user.
Instead, we compute for each possible tuple t a prob-
ability rank that t belongs to any answer, and return
tuples sorted by this rank. We denote this qrank(Dp).
In our example this is:

qrank(Dp) =
D Rank
’p’ 0.54

865



A B C D prob
‘m’ 1 1 ’p’ 0.8*0.6 = 0.48
‘n’ 1 1 ’p’ 0.5*0.6 = 0.30

(a) Sp 1B=C T p

D prob
‘p’ (1 - (1 - 0.48)(1 - 0.3)) = 0.636

(b) ΠD(Sp 1B=C T p)

Figure 3: Evaluation of ΠD(Sp 1B=C T p)

In this simple example qrank(Dp) contains a single
tuple and the distinction between qpwd and qrank is
blurred. To see this distinction clearer, consider an-
other query, q1(x) : −Sp(x, y), T p(z, y), y = z. Here
qpwd
1 and qrank

1 are given by:

qpwd
1 (Dp) =

answer probability
{′m′,′ n′} 0.24
{′m′} 0.24
{′n′} 0.06
∅ 0.46

qrank
1 (Dp) =

D Rank
’m’ 0.48
’n’ 0.30

For example, the rank probability of ′m′ is obtained
as Pr({′m′,′ n′}) + Pr({′m′}). In general, qpwd(Dp)
may be exponentially large, while qrank(Dp) is sim-
ply a set of tuples, which are sorted by Rank. The
problem in this paper is now to compute qrank(Dp)
efficiently.

Extensional Query Semantics A natural at-
tempt to compute qrank(Dp) is to represent q as a
query plan then compute the probabilities of all tuples
in all intermediate results. For the query q in Fig. 2
(b), such a plan is p = ΠD(Sp 1B=C T p), and the cor-
responding probabilities are shown in Fig. 3. The for-
mulas for the probabilities assume tuple independence,
are taken from [13] and are rather straightforward (we
review them in Sec. 4). For example the probability
of a joined tuple s 1 t is the product of the probabil-
ities of s and t. Clearly, this approach is much more
efficient than computing the possible worlds qpwd(Dp)
and then computing qrank(Dp), but it is wrong ! It’s
answer is 0.636, while it should be 0.54. The reason is
that the two tuples in Sp 1B=C T p are not indepen-
dent events, hence the formula used in ΠD is wrong.

However, let us consider an alternative plan, p′ =
ΠD((ΠB(Sp)) 1B=D T p). The extensional evaluation
of this expression is shown in Figure 4, and this time
we do get the correct answer. As we will show later,
this plan will always compute the correct answer to
q, on any probabilistic tables Sp, T p. In this paper
we show how to find automatically a plan whose ex-
tensional evaluation returns the correct answer to a
query q. Finding such a plan requires pushing projec-

B prob
1 (1 - (1 - 0.8)(1 - 0.5)) = 0.9

(a) ΠB(Sp)

B C D prob
1 1 ‘p’ 0.9 * 0.6 = 0.54

(b) ΠB(Sp) 1B=C T p

D prob
‘p’ 0.54

(c) ΠD(ΠB(Sp) 1B=C T p)

Figure 4: Evaluation of ΠD(ΠB(Sp) 1B=C T p)

tions early (as shown in this example), join reordering,
and other kinds of rewritings.

Queries with uncertain matches While query
evaluation on probabilistic databases is an important
problem in itself, our motivation comes from answer-
ing SQL queries with uncertain matches, and ranking
their results. We illustrate here with a simple example
on the Stanford movie database[1].

SELECT DISTINCT F.title, F.year
FROM Director D, Films F
WHERE D.did = F.did

and D.name ≈ ’Copolla’
and F.title ≈ ’rain man’
and F.year ≈ 1995

The predicates on the director name and the movie
title and year are here uncertain.

Our approach is to translate the query into a regu-
lar query over a probabilistic databases. Each tuple in
the table Films is assigned a probability based on how
well it matches the predicates title ≈ ’rain man’
and year ≈ 1995. Several techniques for doing this
exist already, and in this paper we will adopt existing
ones: see Sec. 8. In all cases, the result is a probabilis-
tic table, denoted Filmsp. Similarly, the uncertain
predicate on Director generates a probabilistic ta-
ble Directorp. Then, we evaluate the following query:

SELECT DISTINCT F.title, F.year
FROM Directorp D, Filmsp F
WHERE D.did = F.did

This is similar to the query q considered earlier
(Figure 2 (b)), and the same extensional plan can be
used to evaluate it. Our system returns:

866



title year rank
The Rainmaker (by Coppola) 1997 0.110
The Rain People (by Coppola) 1969 0.089
Rain Man (by Levinson) 1988 0.077
Finian’s Rainbow (by Coppola) 1968 0.069
Tucker, Man and Dream (Coppola) 1989 0.061
Rain or Shine (by Capra) 1931 0.059
. . . . . . . . .

3 Problem Definition

We review here the basic definitions in probabilistic
databases, based on [13, 4], and state our problem.

Basic Notations We write R for a relation name,
Attr(R) for its attributes, and r ⊆ Uk for a relation
instance where k is arity(R) and U is a fixed, finite
universe. R̄ = R1, . . . , Rn is a database schema and D
denotes a database instance. We write Γ |= D when
D satisfies the functional dependencies in Γ.

Probabilistic Events Let AE be a set of symbols
and Pr : AE → [0, 1] a probability function. Each ele-
ment of AE is called a basic event, and we assume that
all basic events are independent. The event ⊥ ∈ AE
denotes the impossible event and Pr(⊥) = 0. A com-
plex event is an expression constructed from atomic
events using the operators ∧, ∨, ¬. E denotes the set
of all complex events. For each complex event e, let
Pr(e) be its probability.

Example 3.1 Consider e = (s1 ∧ t1) ∨ (s2 ∧ t1), and
assume Pr(s1) = 0.8, Pr(s2) = 0.5, Pr(t1) = 0.6.
To compute Pr(e) we construct the truth table for
e(s1, s2, t1) and identify the entries where e is true,
namely (1, 0, 1), (0, 1, 1), (1, 1, 1). The three entries
have probabilities Pr(s1)(1 − Pr(s2))Pr(t1) = 0.8 ×
0.5× 0.6 = 0.24, (1−Pr(s1))Pr(s2)Pr(t1) = 0.06 and
Pr(s1)Pr(s2)Pr(t1) = 0.24 respectively. Then Pr(e)
is their sum, 0.54.

This method generalizes to any complex event
e(s1, . . . , sk), but it is important to notice that this
algorithm is exponential in k. This cannot be avoided:
it is known that computing Pr(e) is #P-complete [26]
even for complex events without negation.

Probabilistic Databases A probabilistic relation
is a relation with a distinguished event attribute
E, whose value is a complex event. We add the
superscript p to mean “probabilistic”, i.e. write
Rp, rp, R̄p,Γp. Given Rp, we write R for its “determin-
istic” part, obtained by removing the event attribute:
Attr(R) = Attr(Rp) − {E}. Users “see” only R, but
the system needs to access the event attribute Rp.E.
The set of functional dependencies Γp always contains

Attr(R) → Rp.E

for every relation Rp, i.e. Attr(R) functionally deter-
mines Rp ·E. This ensures that we don’t associate two

different events e1 and e2 to the same tuple t (instead,
we may want to associate e1 ∨ e2 to t).

In addition to this tabular representation of a prob-
abilistic relation, we consider a functional represen-
tation, where a probabilistic instance rp, of type Rp,
is described by the following function eR : Uk → E,
where k = arity(R). When t occurs in rp together
with some event e, then eR(t) = e, otherwise eR(t) =
⊥. Conversely, one can recover rp from the function
eR by collecting all tuples for which eR(t) 6= ⊥.

The input probabilistic databases we consider have
only atomic events: complex events are introduced
only by query evaluation. A probabilistic relation with
atomic events which satisfies the FD Rp.E → Attr(R)
is called extensional. Otherwise, it is called inten-
sional. For example, the database in Fig. 1 is an exten-
sional probabilistic database, where the atomic events
are s1, s2, t1 respectively.

Semantics of a probabilistic database We give
a simple and intuitive meaning to a probabilistic re-
lation based on possible worlds. The meaning of a
probabilistic relation rp of type Rp is a probability
distribution on deterministic relations r of type R,
which we call the possible worlds, and denote pwd(rp).
Let eR : Uk → E be the functional representa-
tion of rp. Given r ⊆ Uk, Pr(r) is defined to be
Pr(

∧
t∈r eR(t)) ∧ (

∧
t6∈r ¬eR(t)). Intuitively, this is

the probability that exactly the tuples in r are “in”
and all the others are “out”. One can check that∑

r⊆Uk Pr(r) = 1.
Similarly, the meaning of a probabilistic database

Dp is a probability distribution on all deterministic
databases D, denoted pwd(Dp).

Query semantics Let q be a query of arity k over
a deterministic schema R̄. We define a very simple
and intuitive semantics for the query. Users think of q
as normal query on a deterministic database, but the
database is given by a probability distribution rather
than being fixed. As a result, the query’s answer is also
a probability distribution. Formally, given a query q
and a probabilistic database Dp: qpwd(Dp) is the fol-
lowing probability distribution on all possible answers,
Prq : P(Uk) → [0, 1]:

∀S ⊆ Uk, P rq(S) =
∑

D|q(D)=S

Pr(D)

We call this the possible worlds semantics. This def-
inition makes sense for every query q that has a well
defined semantics on all deterministic databases.

It is impossible to return qpwd(Dp) to the user. In-
stead, we compute a probabilistic ranking on all tu-
ples t ∈ Uk, defined by the function: rankq(t) =∑

S{Prq(S) | S ⊆ Uk, t ∈ S}, for every tuple t ∈ Uk.
We denote with qrank(Dp) a tabular representation of
the function rankq: this is a table with k+1 attributes,
where the first k represent a tuple in the query’s an-
swer while the last attribute, called Rank is a real

867



number in [0, 1] representing its probability.
The Query Evaluation Problem This paper ad-

dresses the following problem: given schema R̄p,Γp, a
probabilistic database Dp and a query q over schema
R̄, compute the probabilistic rankings qrank(Dp).

Application to queries with uncertain pred-
icates Consider now a deterministic database D and
a query q≈ that explicitly mentions some uncertain
predicates over base tables. We convert this problem
into evaluating a deterministic query q, obtained by
removing all uncertain predicates from q≈, on a prob-
abilistic database, obtained by associating a probabil-
ity Pr(t) to each tuple t based on how well t satisfies
the uncertain predicates in the query.

4 Query Evaluation

We turn now to the central problem, evaluating
qrank(Dp) for a query q, and a probabilistic database
Dp. Applying the definition directly is infeasible, since
it involves iterating over a large set of database in-
stances. Instead, we will first review the intensional
evaluation of [13] then describe our approach.

We restrict our discussion first to conjunctive
queries, which alternatively can be expressed as
select(distinct)-project-join queries. This helps us bet-
ter understand the query evaluation problem and its
complexity, and will consider more complex query ex-
pressions in Sec. 7. We use either datalog notation for
our queries q, or plans p in the select/project/product
algebra4: σ,Π,×.

4.1 Intensional Query Evaluation

One method for evaluating queries on probabilistic
databases is to use complex events, and was intro-
duced in [13]. We review it here and discuss its limi-
tations. Start by expressing q as a query plan, using
the operators σ,Π,×. Then modify each operator to
compute the event attribute E in each intermediate
result: denote σi,Πi,×i the modified operators. It is
more convenient to introduce them in the functional
representation, by defining the complex event ep(t) for
each tuple t, inductively on the query plan p:

eσi
c(p)(t) =

{
ep(t) if c(t) is true
⊥ if c(t) is false

eΠi
Ā

(p)(t) =
∨

t′:ΠĀ(t′)=t

ep(t′) (1)

ep×ip′(t, t′) = ep(t) ∧ ep′(t′)

The tabular definitions for σi,Πi,×i follow easily:
σi acts like σ then copies the complex events from the
input tuples to the output tuples; Πi associates to a
tuple t the complex event e1 ∨ . . . ∨ en obtained from

4Notice that Π also does duplicate elimination

A B C D E
‘m’ 1 1 ’p’ s1 ∧ t1
‘n’ 1 1 ’p’ s2 ∧ t1

(a) Sp 1i
B=C T p

D E
‘p’ (s1 ∧ t1) ∨ (s2 ∧ t1)

(b) Πi
D(Sp 1i

B=C T p)

D Rank
‘p′ Pr((s1 ∧ t1) ∨ (s2 ∧ t1)) = 0.54

(c) qrank(Dp) = Pr(Πi
D(Sp 1i

B=C T p))

Figure 5: Intensional Evaluation of ΠD(Sp 1B=C T p)

the complex events of all input tuples t1, . . . , tn that
project into t; and ×i simply associates to a product
tuple (t, t′) the complex event e ∧ e′.

Example 4.1 Let us consider the database Dp de-
scribed in Figure 1. Consider the query plan, p =
ΠD(Sp 1B=C T p). Figure 5 shows the intensional
evaluation of the query (we used the tuple names as
atomic events). pi(Dp) contains a single tuple ′p′ with
the event (s1 ∧ t1) ∨ (s2 ∧ t1).

Thus, pi(Dp) denotes an intensional probabilistic
relation. It can be shown that this is independent on
the particular choice of plan p, and we denote qi(Dp)
the value pi(Dp) for any plan p for q, and call it the in-
tensional semantics5 of q on the probabilistic database
Dp. We prove now that it is equivalent to the possible
worlds semantics, qpwd(Dp).

Theorem 4.2. The intensional semantics and the
possible worlds semantics on probabilistic databases
coincide for conjunctive queries. More precisely,
pwd(qi(Dp)) = qpwd(Dp) for every intensional prob-
abilistic database Dp and conjunctive query q.

(All proofs in this paper are available in our techni-
cal report [10].) Theorem 4.2 allows us to compute
qrank(Dp), as follows. First compute qi(Dp), then
compute the probability Pr(e) for each complex event.
Then qrank(Dp) = Pr(qi(Dp)).

Example 4.3 Fig. 5(c) shows prank(Dp) for Ex. 4.1.
Pr((s1 ∧ t1) ∨ (s2 ∧ t1)) was shown in Ex. 3.1.

It is very impractical to use the intensional seman-
tics to compute the rank probabilities, for two reasons.
First, the event expressions in qi(Dp) can become very
large. In the worst case the size of such an expres-
sion can become of the same order of magnitude as
the database. For instance, if a projection on a table

5In [13] this is the only query semantics considered.

868



produces a single output tuple, its event expression
is the disjunction of all the events in the table. This
increases the complexity of the query operators sig-
nificantly, and makes the task of an optimizer much
harder, because now the cost per tuple is no longer a
constant. Second, for each tuple t one has to compute
Pr(e) for its event e, which is a #P-complete problem.

4.2 Extensional Query Evaluation

We now modify the query operators to compute
probabilities rather than complex events: we denote
σe,Πe,×e the modified operators. This is much more
efficient, since it involves manipulating real numbers
rather than event expressions. We define a number
Prp(t) ∈ [0, 1] for each tuple t, by induction on the
structure of the query plan p. The inductive defini-
tions below should be compared with those in Equa-
tions (1).

Prσe
c(p)(t) =

{
Prp(t) if c(t) is true
0 if c(t) is false

PrΠe
Ā

(p)(t) = 1−
∏

t′:ΠĀ(t′)=t

(1− Prp(t′))

Prp ×e p′(t, t′) = Prp(t)× Prp′(t′)

Again, the tabular definitions of σe,Πe,×e follow
easily: σe acts like σ then propagates the tuples’ prob-
abilities from the input to the output, Πe computes the
probability of a tuples t as 1−(1−p1)(1−p2) . . . (1−pn)
where p1, . . . , pn are the probabilities of all input tu-
ples that project to t, while× computes the probability
of each tuple (t, t′) as p× p′.

Thus, pe(Dp) is an extensional probabilistic rela-
tion, which we call the extensional semantics of the
plan p. If we know pe(Dp) = qrank(Dp), then we sim-
ply execute the plan under the extensional semantics.
But, unfortunately, this is not always the case, as we
saw in Sec. 2. Moreover, pe(Dp) depends on the par-
ticular plan p chosen for q. Our goal is to find a plan
for which the extensional semantics is correct.

Definition 4.4. Given a schema R̄p,Γp, a plan p for
a query q is safe if pe(Dp) = qrank(Dp) for all Dp of
that schema.

We show next how to find a safe plan.

4.3 The Safe-Plan Optimization Algorithm

We use the following notations for conjunctive queries:

• Rels(q) = {R1, . . . , Rk} all relation names occur-
ring in q. We assume that each relation name
occurs at most once in the query (more on this in
Sec. 7).

• PRels(q) = the probabilistic relation names in q,
PRels(q) ⊆ Rels(q).

• Attr(q) = all attributes in all relations in q. To
disambiguate, we denote attributes as Ri.A.

• Head(q) = attributes in the result of q,
Head(q) ⊆ Attr(q).

Let q be a conjunctive query. We define the induced
functional dependencies Γp(q) on Attr(q):

• Every FD in Γp is also in Γp(q).

• For every join predicate Ri.A = Rj .B, both
Ri.A → Rj .B and Rj .B → Ri.A are in Γp(q).

• For every selection predicate Ri.A = c, ∅ → Ri.A
is in Γp(q).

We seek a safe plan p, i.e. one that computes the
probabilities correctly. For that each operator in p
must be safe, i.e. compute correct probabilities: we
define this formally next.

Let q1, q2 be two queries, and let op ∈ {σ,Π,×}
be a relational operator. Consider the new query
op(q1, q2) (or just op(q1) when op is unary). We
say that ope is safe if ope(Pr(qi

1(D
p)), P r(qi

2(D
p))) =

Pr(opi(qi
1(D

p)), qi
2(D

p)) (and similarly for unary op-
erators), ∀Dp s.t. Γp |= Dp. In other words, op is safe
if, when given correct probabilities for its inputs ope

computes correct probabilities for the output tuples.

Theorem 4.5. Let q, q′ be conjunctive queries.

1. σe
c is always safe in σc(q).

2. ×e is always safe in q × q′.

3. Πe
A1,...,Ak

is safe in ΠA1,...,Ak
(q) iff for every Rp ∈

PRels(q) the following can be inferred from Γp(q):

A1, . . . , Ak, Rp.E → Head(q) (2)

A plan p is safe iff all operators are safe.

We explain the Theorem with an example below. A
formal proof can be found in our technical report [10].

Example 4.6 Continuing the example in Sec. 2, as-
sume that both Sp and T p are extensional probabilistic
relations, hence Γp is:

Sp.A, Sp.B → Sp.E

T p.C, T p.D → T p.E

Sp.E → Sp.A, Sp.B

T p.E → T p.C, T p.D

The last two dependencies hold because the relations
are extensional. Consider the plan ΠD(Sp 1B=C T p).
We have shown in Fig. 3 that, when evaluated exten-
sionally, this plan is incorrect. We explain here the
reason: the operator Πe

D is not safe. An intuitive jus-
tification can be seen immediately by inspecting the

869



intensional relation Sp 1i
B=C T p in Fig. 5 (a). The

two complex events share the common atomic event
t1, hence they are correlated probabilistic events. But
the formula for Πe

D only works when these events are
independent. We show how to detect formally that
Πe

D is unsafe. We need to check:

T p.D, Sp.E → Sp.A, Sp.B, T p.C, T p.D

T p.D, T p.E → Sp.A, Sp.B, T p.C, T p.D

The first follows from Γp and from the join condition
B = C, which adds Sp.B → T p.C and T p.C → Sp.B.
But the second fails: T p.D, T p.E 6→ Sp.A.

Example 4.7 Continuing the example, consider now
the plan ΠD(ΠB(Sp) 1B=C T p). We will prove that
Πe

D is safe. For that we have to check:

T p.D, Sp.E → Sp.B, T p.C, T p.D

T p.D, T p.E → Sp.B, T p.C, T p.D

Both hold, hence Πe
D is safe. Similarly, Πe

B is safe in
ΠB(Sp), which means that the entire plan is safe.

Algorithm 1 is our optimization algorithm for find-
ing a safe plan. It proceeds top-down, as follows. First,
it tries to do all safe projections late in the query plan.
When no more late safe projections are possible for a
query q, then it tries to perform a join 1c instead, by
splitting q into q1 1c q2. Since 1c is the last opera-
tion in the query plan, all attributes in c must be in
Head(q).

Splitting q into q1 1c q2 is done as follows. Con-
struct a graph G whose nodes are Rels(q) and whose
edges are all pairs (Ri, Rj) s.t. q contains some join
condition Ri.A = Rj .B with both6 Ri.A and Rj .B
in Head(q). Find the connected components of G,
and choose q1 and q2 to be any partition of these con-
nected components: this defines Rels(qi) and Attr(qi)
for i = 1, 2. Define Head(qi) = Head(q)∩Attr(qi), for
i = 1, 2. If G is a connected graph, then the query has
no safe plans (more on this below). If G has multiple
connected components, then we have several choices
for splitting q, and we can deploy any standard cost
based optimizations algorithm that works in top-down
fashion7.

Finally, the algorithm terminates when no more
projections are needed. The remaining join and/or
selection operators can be done in any order.

6One can show that, if Ri.A is in Head(q), then so is Rj .B.
Indeed, assume Rj .B 6∈ Head(q). Then ΠHead(q)(qRj .B) is safe,

so we should have performed it first. Then, both Ri.A and Rj .B
are in Head(qRj .B).

7It is also possible to adapt our algorithm to work with a
bottom-up optimizer.

Algorithm 1 Safe-Plan(q)
if Head(q) = Attr(q) then

return any plan p for q
(p is projection-free, hence safe)

end if
for A ∈ (Attr(q)−Head(q)) do

let qA be the query obtained from q
by adding A to the head variables

if ΠHead(q)(qA) is a safe operator then
return ΠHead(q)(Safe-Plan(qA))

end if
end for
Split q into q1 1c q2 (see text)
if no such split exists then

return error(“No safe plans exist”)
end if
return Safe-Plan(q1) 1c Safe-Plan(q2)

Example 4.8 Continuing the example in Sec. 2, con-
sider the original query in Fig. 2 (b), which we rewrite
now as:

q(D) : −Sp(A,B), T p(C,D), B = C

Here Attr(q) = {A,B,C, D} and Head(q) = {D} (we
write D instead of T p.D, etc, since all attributes are
distinct). The algorithm first considers the three at-
tributes A,B, C in Attr(q)−Head(q), trying to see if
they can be projected out late in the plan. A cannot
be projected out. Indeed, the corresponding qA is:

qA(A,D) : −Sp(A,B), T p(C,D), B = C

and Πe
D is unsafe in ΠD(qA) because T p.D, T p.E 6→

Sp.A, as we saw in Example 4.6. However, the other
two attributes can be projected out, hence the plan for
q is ΠD(qBC), where:

qBC(B,C,D) : −Sp(A,B), T p(C,D), B = C

Now we optimize qBC , where Attr(qBC) =
{A,B,C, D}, Head(qBC) = {B,C,D}. No projection
is possible, but we can split the query into q1 1B=C q2

where q1, q2 are:

q1(B) : − Sp(A,B)
q2(C,D) : − T p(C,D)

The split qBC = q1 1B=C q2 is indeed possible since
both B and C belong to Head(qBC). Continuing with
q1, q2, we are done in q2, while in q1 we still need
to project out A, q1 = ΠB(Sp), which is safe since
B,Sp.E → A. Putting everything together gives us
the following safe plan: p′ = ΠD(ΠB(Sp) 1B=C T p).

We state now the soundness of our algorithm: the
proof follows easily from the fact that all projection
operators are safe. We prove in the next section that
the algorithm is also complete.

Proposition 4.9. The safe-plan optimization algo-
rithm is sound, i.e. any plan it returns is safe.

870



5 Theoretical Analysis

We show here a fundamental result on the complex-
ity of query evaluation on probabilistic databases. It
forms a sharp separation of conjunctive queries into
queries with low and high data complexity, and shows
that our optimization algorithm is complete.

The data complexity of a query q is the complex-
ity of evaluating qrank(Dp) as a function of the size of
Dp. If q has a safe plan p, then its data complexity
is in PTIME, because all extensional operators are in
PTIME. We start by showing that, for certain queries,
the data complexity is #P -complete. #P is the com-
plexity class of some hard counting problems. Given
a boolean formula ϕ, counting the number of satisfy-
ing assignments, denote it #ϕ, is #P -complete [26].
(Checking satisfiability, #ϕ > 0, is NP-complete.)
The data complexity of any conjunctive query is #P ,
since qrank(Dp) = Pr(qi(Dp)). The following is a vari-
ant of a result on query reliability by Gradel et al. [14].
The proof is novel and is of independent interest in our
setting.

Theorem 5.1. Consider the following conjunctive
query on three probabilistic tables:

q() := Lp(x), J(x, y), Rp(y)

Here Lp, Rp are extensional probabilistic tables and J
is deterministic8. The data complexity for q is #P -
hard.

Proof. (Sketch) Provan and Ball [22] showed that com-
puting #ϕ is #P -complete even for bipartite monotone
2-DNF boolean formulas ϕ, i.e. when the propositional
variables can be partitioned into X = {x1, . . . , xm}
and Y = {y1, . . . , yn} s.t. ϕ = C1 ∨ . . . ∨ Ck where
each clause Ci has the form xj ∧ yk, xj ∈ X, yk ∈ Y .
(The satisfiability problem, #ϕ > 0, is trivially true.).
Given ϕ, construct the instance Dp where Lp is X,
Rp is Y and J is the set of pairs (xj , yk) that oc-
cur in some clause Ci. Assign independent probabil-
ity events to tuples in Lp, Rp, with probabilities 1/2.
Then qrank(Dp) returns a single tuple, with probabil-
ity #ϕ/2m+n. Thus, computing qrank(Dp) is at least
as hard as computing #ϕ.

We state now the main theoretical result in this
paper. We consider it to be a fundamental property
of query evaluation on probabilistic databases.

Theorem 5.2 (Fundamental Theorem of Queries
on Probabilistic DBs). Consider a schema R̄p,Γp

where all relations are probabilistic and Γp has only the
trivial FDs9 Attrs(R) → Rp.E, Rp.E → Attrs(R),
for every Rp. Let q be a conjunctive query s.t. each
relation occurs at most once. Assuming #P6=PTIME
the following statements are equivalent:

8Allowing J to be deterministic strengthens the result. The
theorem remains true if J is probabilistic.

9Hence, the probabilistic instances are extensional.

1. The query q contains three subgoals of the form:

Lp(x, . . .), JP (x, y, . . .), Rp(y, . . .)

where x, y 6∈ Head(q).

2. The data complexity of q is #P -complete.

3. The Safe-Plan optimization algorithm fails to
return a plan.

Proof. (Sketch) (1) ⇒ (2) is a simple extension of
Th. 5.1. (2) ⇒ (3) is obvious, since any safe plan has
data complexity in PTIME. The proof of (3) ⇒ (1)
is based on a detailed analysis of what happens when
Safe-Plan fails: the details are in [10].

Theorem 5.2 provides a sharp separation of feasible
and infeasible queries on probabilistic databases. It
can be extended to mixed probabilistic/deterministic
databases and richer functional dependencies [10].

6 Unsafe Plans

When a query’s data complexity is #P -complete, then
Safe-Plan fails to return a plan. Since this can in-
deed happen in practice, we address it and propose
two solutions.

6.1 Least Unsafe Plans

Here we attempt to pick a plan that is less unsafe
than others, i.e. minimizes the error in computing
the probabilities. Recall from Eq.(2) that Πe

A1,...,Ak
is

safe in Πe
A1,...,Ak

(q) iff A1, . . . , Ak, Rp.E → Head(q)
for every Rp. Let B̄ = {A1, . . . , Ak, Rp.E} ∩Attr(Rp)
(hence Rp.E ∈ B̄) and C̄ = Head(q) ∩ Attr(Rp).
Define Rp

fanout to be the expected number of dis-
tinct values of C̄ for a fixed value of the attributes
B̄. In a relational database system, it is possible
to estimate this value using statistics on the table
Rp. Define the degree of unsafety of Πe

A1,...,Ak
to be

maxRp∈PREL(Q)(R
p
fanout − 1). Thus, a safe project

has degree of unsafety 0. Also, the higher the degree of
unsafety, the higher is the expected error that would
result from using the extensional semantics for that
project operator.

We modify Algorithm 1 to cope with unsafe queries.
Recall that the algorithm tries to split a query q into
two subqueries q1, q2 s.t. all their join attributes are in
Head(q). Now we relax this: we allow joins between
q1 and q2 on attributes not in Head(q), then project
out these attributes. These projections will be unsafe,
hence we want to minimize their degree of unsafety.
To do that, we pick q1, q2 to be a minimum cut of the
graph, where each edge representing a join condition
is labeled with the degree of unsafety of the corre-
sponding project operation10. The problem of finding

10The estimator of Rp
fanout should make sure that the esti-

mated value is 0 only when the FD holds, otherwise the algo-
rithm may favor ‘expected’ safe plans over truly safe plans.

871



minimum cut is polynomial time solvable as a series of
network flow problems or using the algorithm of Stoer
and Wagner [23].

6.2 Monte-Carlo Approximations

As an alternative, we present an algorithm based on
Monte-Carlo simulation, which can guarantee arbitrar-
ily low errors in the probabilities of output tuples.

Given a conjunctive query q over probabilistic rela-
tions Rp

1, R
p
2 · · ·R

p
k, let q′ be its body, i.e. Head(q′) =

Attr(q′) = Attr(q) and q = ΠHead(q)(q′). Modify q′ to
also return all event attributes Ē = Rp

1.E, . . . , Rp
k.E.

Evaluate q′ over the probabilistic database, and group
of tuples in the answer based on the values of their
attributes Head(q). Consider one such group, and as-
sume it has n tuples t1, . . . , tn. The group defines the
following complex event expression:

∨n
i=1 Ci, where

each Ci has the form e1 ∧ . . . ∧ ek. We need to com-
pute its probability, since this will be the probability
of one tuple in qrank(Dp). For that we use the Monte
Carlo algorithm described by Karp [17]: when run for
N ≥ 4n

ε2 ln 2
δ iterations, the algorithm guarantees that

the probability of the error being greater that ε is less
than δ.

7 Extensions

Additional operators So far, we have limited our
discussion to conjunctive queries, or, equivalently to
the algebra consisting of σ,Π,×. We show now how
to extend these techniques to ∪,−, γ (union, differ-
ence, groupby-aggregate 11. A large fragment of SQL,
including queries with nested sub-queries, aggregates,
group-by and existential/universal quantifiers can be
expressed in this logical algebra [25]. (We omit δ (du-
plicate elimination) since we only consider queries with
set semantics, i.e. δ is implicit after every projection
and union.) We define the extensional semantics for
these operators, using the functional notation.

Prp∪ep′(t) = 1− (1− Prp(t))× (1− Prp′(t))

Prp−ep′(t) = Prp(t)× (1− Prp′(t))

Prγe
Ā,min(B)

(t) = Prp(t)
∏

s : s.Ā = t.Ā
∧s.B < t.B

(1− Prp(s))

Prγe
Ā,max(B)

(t) = Prp(t)
∏

s : s.Ā = t.Ā
∧s.B > t.B

(1− Prp(s))

For example, to compute the groupby-min operator
γA,min(B)(R

p) one considers each tuple (a, b) in Rp: the

11Following discussion assumes that a groupby-aggregate op-
erator does not perform any projections, i.e. every attribute in
the input to the operator belongs to either the groupby or the
aggregate clause.

probability that (a, b) is in the output relation is p(1 −
p1) . . . (1−pn) where p is the probability of the tuple (a, b),
while p1, . . . , pn are the probabilities of all other tuples
(a, b′) s.t. b′ < b. In the case of sum, the aggregated
attribute may take values that are not in the input table.
To compute the probabilities correctly one needs to iterate
over exponentially many possible sums. Instead, we simply
compute the expected value of the sum (details omitted).
This is meaningful to the user if sum appears in the SE-
LECT clause, less so if it occurs in a HAVING clause. We
treat count similarly.

We now give sufficient conditions for these operators to
be safe.

Theorem 7.1. Let q, q′ be conjunctive queries.

1. ∪e is safe in q ∪e q′ if PRels(q) ∩ PRels(q′) = φ.

2. −e is safe in q ∩e q′ if PRels(q) ∩ PRels(q′) = φ.

3. γĀ,agg(B) is safe in γĀ,agg(B)(q) if ΠĀ(q) is safe, where
agg is min or max.

Self-joins Self-joins on probabilistic relations may be
a cause of #P -complete data complexity [14]. However,
a query q≈ with uncertain predicate rarely results in self-
join. Even if the same table R occurs twice in q≈, the dif-
ferent uncertain predicates on the two occurrences generate
distinct events, hence the system makes two probabilistic
“copies”: Rp

1, Rp
2. Of course, the Monte-Carlo algorithm

works fine even in the presence of self-joins.
Extending the optimization algorithm Safe-

Plan is extended to handle each block of conjunctive
queries separately. As an example, the query in Section 1,
asking for an actor whose name is like ‘Kevin’ and whose
first ‘successful’ movie appeared in 1995, has a safe plan
as shown below:

Πname(A 1actorid

(σyear=1995(γactorid,min(year)(Πactorid,yearC)))

8 Atomic Predicates

Our main motivation is executing a query with uncertain
predicates q≈ on a deterministic database D. As we saw,
our approach is to apply the uncertain predicates first,
and generate a probabilistic database Dp, then evaluate q
(without the uncertain predicates). We discuss here briefly
some choices for the uncertain predicates proposed in the
literature. All proposals depend on a notion of closeness
between two data values. This is domain dependent and
can be classified into three categories:

Syntactic closeness This applies to domains with
proper nouns, like people’s names. Edit distances, q-
grams and phonetic similarity can be employed. The
excellent surveys on string matching techniques by
Zobel and Dart [27] and Navarro [20] describe more
than 40 techniques and compare them experimen-
tally. Navarro also has a discussion on the probability
of string matching. In our system, we used the 3-
gram distance between words, which is the number of
triplets of consecutive words common to both words.

Semantic closeness This applies to domains that have a
semantic meaning, like film categories. A user query

872



for the category ‘musical’ should match films of cat-
egory ’opera’. Semantic distance can be calculated
by using TF/IDF or with ontologies like Wordnet [2].
We do not have semantic distances in our system cur-
rently.

Numeric closeness This applies to domains like price
and age. A distance can be just the difference of the
values.

Once distances are defined between attributes, using
any of the above methods, they need to be meaningfully
converted into probabilities. We fitted a Gaussian curve
on the distances as follows: the curve was centered around
the distance 0 where it took value 1. The variance of the
Gaussian curve is an indication of the importance of match
on that attribute. Its correct value depends on the domain
and user preferences. In our experiments, we used fixed,
query independent values, for the variances.

Finally, one issue is when to generate new probabil-
ity events. For example consider the uncertain predicate
Product.category ≈ . . . and assume there are two prod-
ucts with the same category. Should they result in two
independent probabilistic events with the same probabili-
ties, or in the same probabilistic events? Both choices are
possible in our system. In the first case the functional de-
pendency is Productp.key→ Productp.E while in the sec-
ond the FD is Productp.category → Productp.E. In the
latter case, Πcategory becomes unsafe. This can be taken
care of by normalizing the resulting database to 3NF, i.e.
creating a separate category table that contains the events
for categories.

9 Experiments

We performed some preliminary evaluation of our proba-
bilistic query evaluation framework, addressing four ques-
tions. How often does the Safe-Plan optimization algo-
rithm fail to find a plan? What is the performance of safe
plans, when they exists? Are naive approaches to query
evaluation perhaps almost as good as a safe plan? And
how effectively can we handle queries that do not have safe
plans?

We did not modify the relational engine, but instead
implemented a middleware. SQL queries with approxi-
mate predicates were reformulated into “extensional” SQL
queries, using the techniques described in this paper, and
calls to a TSQL function computing 3-gram distances.
These queries were then executed by the relational engine
and returned both tuples and probabilities. We used Mi-
crosoft SQL Server.

We used the TPC-H benchmark, with a database of
0.1GB. We modified all queries by replacing all the predi-
cates in the WHERE clause with uncertain matches. The
constants in the queries were either misspelled or made
vague. For instance, a condition like part.container =
’PROMO PLATED GREEN’ was replace with part.container
≈ ’GREEN PLATE’. When executed exactly, all modified
queries returned empty answers.

1. Frequency of unsafe queries In our first experi-
ment, we wanted to see how many queries do not have safe
plans. Out of the 10 TPC-H queries, 8 turned out to have
safe plans. Q7 and Q8 were the only query that were un-
safe. These also become safe if not all of their predicates

0

5000

10000

15000

20000

25000

30000

Q1 Q2 Q3 Q4 Q5 Q6 Q9 Q10

R
un

ni
ng

 T
im

e(
m

s)

Queries

Running Times of Safe TPC-H Queries

Safe Plan
Optimized Query

Bare Query

Figure 6: TPC-H Query Running Times

0
20
40
60
80

100
120
140
160

Q2 Q3 Q5 Q9 Q10

A
ve

ra
ge

 E
rr

or
(%

)

Queries

Errors on Safe Queries

Figure 7: Errors on Safe TPC Queries

are uncertain.

2. Performance Next, we measured the running times
for the eight queries that have safe plans, shown in Figure
6. All times are wall-clock. The first column is the running
time of the safe plan. The second column represents an
optimization where at each intermediate stage, tuples with
zero probability are discarded. This optimization does not
affect the final answer and as we can see from the graph,
it brings about considerable savings for some queries. This
also suggests the use of other optimizations like an early
removal of tuples with low probabilities if the user is only
interested in tuples with high probability. The third col-
umn in the graph shows the time for running safe queries
without taking into account the computation time for the
uncertain predicate, which, in our case, is the 3-gram dis-
tance. The graphs show that most of the time is spent in
computing the uncertain predicates. (For Q3 the the run-
ning time was almost negligible.) This graph suggests that
important improvements would be achieved if the predi-
cates were implemented in the engine.

3. Naive Approaches In the next experiment we cal-
culated the error produced by a naive extensional plan.
We considered the naive plan that leaves all project opera-
tors (and the associated duplicate elimination) at the end
of the plan, which are typical plans produced by database
optimizers. Figure 7 shows the percentage relative error of
naive plans. We only considered the 8 queries that have
safe plans. The naive plans for Q1, Q4, Q6 were already
safe, hence had no errors (and Safe-Plan indeed returned
the same plan): these queries are not shown. Queries Q3,
Q5 and Q10 had large errors with Q5 showing an average
error of 150% in the tuple probabilities. Queries Q2 and Q9

had negligible errors. Thus, while some naive plans were
bad, others were reasonable. But, in general, naive plans

873



0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

0 100 200 300 400 500 600 700 800 9001000

R
ec

al
l

Number of Answers

Clever Plan versus Naive Plan for Q3

Figure 8: Recall Plot for Q3

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

0 100 200 300 400 500 600 700 800 9001000

R
ec

al
l

Number of Answers

Clever Plan versus Naive Plan for Q10

Figure 9: Recall Plot for Q10

can be arbitrarily bad. However, we argue that the low ex-
tra complexity of searching for a safe plan is a price worth
paying in order to avoid the (admittedly rare) possibility
of arbitrarily large errors.

However, since we are only interested in ranking the
results, not in the actual probabilities, it is worth asking
whether high errors in the probabilities translate into high
ranking results. We plotted the recall graphs for queries Q3

and Q10 (for which the naive plan produced only medium
errors). We defined recall as the fraction of answers ranked
among top N by the naive plan that should actually have
been in top N . We plotted this as a function of N . Figures
8 and 9 show the recall graphs. By definition, the recall
approaches to 1 when N approaches the total number of
possible tuples in the answer. However, as the graphs show,
the recall was bad for small values of N . A user looking
for top 50 or 100 answers to Q3 would miss half of the
relevant tuples. For smaller values of N (say, 10) the naive
approach misses 80% of the relevant tuples.

4. Unsafe Queries Finally, we tested our approach
to handle queries with no safe plans on Q7 and Q8. We
ran the Monte Carlo simulation to compute their answer
probabilities and used them as baseline. Figure 10 shows
the errors in evaluating them with a naive plan and the
least unsafe plan (using min-cut, Sec. 6). The graphs show
that the plan chosen by the optimizer was better, or signif-
icantly better than a naive one. Still, from two data points
it is hard to judge the improvement over a naive plan.
To see a third data point we wrote a new unsafe query,
QQ, where the relation lineitem is joined with orders
and suppliers. Here the fanout is larger, and the differ-
ence between the naive plan and the optimal break is more
pronounced.

0

5

10

15

20

25

30

Q7 Q8 QQ

A
ve

ra
ge

 E
rr

or
(%

)

Queries

Errors on Unsafe Queries

Naive Plan
Optimal Break

Figure 10: Errors on Unsafe Queries

10 Related Work

The possible worlds semantics, originally put forward by
Kripke for modal logics, is commonly used for representing
knowledge with uncertainties. Halpern, Baccus et al [11, 4]
have showed the use of possible worlds semantics to assign
degrees of beliefs to statements based of the probabilities
in the knowledge base.

Though there has been extensive work on probabilities
in AI, relatively little work has been done on probabilistic
databases. There are probabilistic frameworks [7, 6, 13, 18]
proposed for databases, but each makes simplifying as-
sumptions for getting around the problem of high query
evaluation complexity that lessens their applicability.

Fuhr and Rolleke [13] define probabilistic NF2 relations
and introduce the intensional semantics for query evalua-
tion. As we saw, this is correct, but impractical.

Many of these works specialize on logic programming in
deductive databases. Ng and Subrahmaniam [21] extend
deductive databases with probabilities and give fixed point
semantics to logic programs annotated with probabilities,
but they use absolute ignorance to combine event proba-
bilities.

Non-probabilistic approaches to imprecise queries have
also been considered. Keyword searches in databases are
discussed in [16, 8, 15]. Fagin [12] gives an algorithm to
rank objects based on its scores from multiple sources: this
applies only to a single table. The VAGUE system [19] sup-
ports queries with vague predicates, but the query seman-
tics are ad hoc, and apply only to a limited SQL fragments.
Surajit et al. [3] consider ranking query results automat-
ically: this also applies to a single table. The WHIRL
system [9] computes ranked results of queries with similar-
ity joins, but uses an extensional semantics. Theobald and
Weikum [24] describe a query language for XML that sup-
ports approximate matches with relevance ranking based
on ontologies and semantic similarity.

11 Conclusions

In this paper, we introduce a query semantics on prob-
abilistic databases based on possible worlds. Under this
semantics, every query that is well defined over a determin-
istic databases has a meaning on a probabilistic database.
We describe how to evaluate queries efficiently under this
new semantics. Our theoretical results capture fundamen-
tal properties of queries on probabilistic databases, and
lead to efficient evaluation techniques. We showed how
this approach can be used to evaluate arbitrarily complex

874



SQL queries with uncertain predicates.

References

[1] Movie database: Uci kdd archive.
http://kdd.ics.uci.edu/databases/movies/movies.html.

[2] Wordnet 2.0: A lexical database for the english lan-
guage: http://www.cogsci.princeton.edu/ wn/, Jul.
2003.

[3] S. Agrawal, S. Chaudhuri, G. Das, and A. Gionis. Au-
tomated ranking of database query results. In Proceed-
ings of the First Biennial Conf. on Innovative Data
Systems Research, 2003.

[4] Fahiem Bacchus, Adam J. Grove, Joseph Y. Halpern,
and Daphne Koller. From statistical knowledge bases
to degrees of belief. Artificial Intelligence, 87(1-2):75–
143, 1996.

[5] R. Baeza-Yates and B. Ribeiro-Neto. Modern Infor-
mation Retrieval. Addison-Wesley, 1999.

[6] Daniel Barbará, Hector Garcia-Molina, and Daryl
Porter. The management of probabilistic data. IEEE
Trans. Knowl. Data Eng., 4(5):487–502, 1992.

[7] Roger Cavallo and Michael Pittarelli. The theory of
probabilistic databases. In VLDB’87, Proceedings of
13th Int. Conf. on Very Large Data Bases, September
1-4, 1987, Brighton, England, pages 71–81, 1987.

[8] S. Chaudhuri, G. Das, and V. Narasayya. Dbexplorer:
A system for keyword search over relational databases.
In Proceedings of the 18th Int. Conf. on Data Engi-
neering, San Jose, USA, 2002.

[9] William W. Cohen. Integration of heterogeneous
databases without common domains using queries
based on textual similarity. In Proceedings of the 1998
ACM SIGMOD Int. Conf. on Management of data,
pages 201–212. ACM Press, 1998.

[10] Nilesh Dalvi and Dan Suciu. Efficient query eval-
uation on probabilistic databases. University of
Washington Technical Report (TR 04-03-04), January
2004. http://www.cs.washington.edu/research/tr/
techreports.html.

[11] Ronald Fagin and Joseph Y. Halpern. Reasoning
about knowledge and probability. In Proceedings of
the Second Conf. on Theoretical Aspects of Reasoning
about Knowledge, pages 277–293, San Francisco, 1988.

[12] Ronald Fagin, Amnon Lotem, and Moni Naor. Opti-
mal aggregation algorithms for middleware. In Pro-
ceedings of the twentieth ACM SIGMOD-SIGACT-
SIGART symposium on Principles of database sys-
tems, pages 102–113, 2001.

[13] Norbert Fuhr and Thomas Rolleke. A probabilistic re-
lational algebra for the integration of information re-
trieval and database systems. ACM Trans. Inf. Syst.,
15(1):32–66, 1997.

[14] Erich Gradel, Yuri Gurevich, and Colin Hirch. The
complexity of query reliability. In Symposium on Prin-
ciples of Database Systems, pages 227–234, 1998.

[15] Lin Guo, Feng Shao, Chavdar Botev, and Jayavel
Shanmugasundaram. Xrank: Ranked keyword search
over xml documents. In Proceedings of the 2003 ACM
SIGMOD Int. Conf. on Management of Data, San
Diego, California, USA, June 9-12, 2003, pages 16–
27, 2003.

[16] V. Hristidis and Y. Papakonstantinou. Discover: Key-
word search in relational databases. In Proc. 28th Int.
Conf. Very Large Data Bases, VLDB, 2002.

[17] Richard Karp and Michael Luby. Monte-carlo algo-
rithms for enumeration and reliability problems. In
Proceedings of the annual ACM symposium on The-
ory of computing, 1983.

[18] Laks V. S. Lakshmanan, Nicola Leone, Robert Ross,
and V. S. Subrahmanian. Probview: a flexible proba-
bilistic database system. ACM Trans. Database Syst.,
22(3):419–469, 1997.

[19] Amihai Motro. Vague: a user interface to relational
databases that permits vague queries. ACM Trans.
Inf. Syst., 6(3):187–214, 1988.

[20] Gonzalo Navarro. A guided tour to approximate string
matching. ACM Computing Surveys, 33(1):31–88,
2001.

[21] Raymond T. Ng and V. S. Subrahmanian. Probabilis-
tic logic programming. Information and Computation,
101(2):150–201, 1992.

[22] J. S. Provan and M. O. Ball. The complexity of count-
ing cuts and of computing the probability that a graph
is connected. SIAM J. Comput., 12(4):777–788, 1983.

[23] M. Stoer and F. Wagner. A simple min cut algorithm.
Algorithms–ESA ’94, pages 141–147, 1994.

[24] Anja Theobald and Gerhard Weikum. The xxl search
engine: ranked retrieval of xml data using indexes and
ontologies. In Proceedings of the 2002 ACM SIGMOD
Int. Conf. on Management of data, pages 615–615,
2002.

[25] Jeffrey D. Ullman and Jennifer Widom. First Course
in Database Systems, 2nd ed. Prentice Hall, 1997.

[26] L. Valiant. The complexity of enumeration and relia-
bility problems. SIAM J. Comput., 8:410–421, 1979.

[27] J. Zobel and P. W. Dart. Phonetic string match-
ing: Lessons from information retrieval. In Proceed-
ings of the 19th Int. Conf. on Research and Develop-
ment in Information Retrieval, pages 166–172, Zurich,
Switzerland, 1996. ACM Press.

875


