Online Outlier Detection In Sensor Data
Using Non-Parametric Models
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Introduction

e several emerging applications across industries are event-driven
consume streaming data produced by a variety of data sources
process those data, reason about them, take corresponding actions

e streaming data management desiderata
process data in real time
be able to scale in number of sources, data rates
perform intelligent data analysis

e some applications are only interested in special events that constitute
abnormal behavior

then, we can filter out of the streaming data the normal behavior
focus on the interesting (and infrequent) data values
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Applications:
Monitoring Production Control Systems

Themis Palpanas - VLDB'06 3



Applications:
Monitoring Vehicle Operation
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Problem Overview

e detect abnormal behavior (identify outliers)

e important for
e situation detection
o focusing on the interesting events in the data
e react only to the important readings

e focus of this study:
e streaming data
e sliding window model
e distributed processing (in network of sensors)
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Roadmap

e CQutliers
Distance-Based Outliers
Density-Based Oultliers

e Input Data Distribution Estimation
Kernel Density Estimators

e Proposed Solution for Online, Distributed Outlier Detection
e Experimental Evaluation
e Related Work

e Conclusions
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Abnormal Behavior

e deviations / outliers

e a value that deviates significantly from the rest of the values in the
dataset

e several definitions
e distance-based, density-based

e consider two definitions
o Ofr, K) (distance-based)
o MDEF (density-based)
Multi-granularity Deviation Factor
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O(r, K) Outliers

e oultlier
e a value that has few near neighbors
o setofoutliers O ={peD|D,,VvqeD, :dist(p,q)<ra|D, |£K}
e corresponds to statistical tests for outliers

for particular choices of (r, K), gives the same result as statistical tests, for
several probability distributions
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ldentifying O(r, K) Outliers

e problem
e for every data point in the stream:
count the number of near neighbors
if these neighbors are too few, declare the data point an outlier

e issues
e how can we count the number of neighbors?
e how can we do these computations in a distributed fashion?
e how can we do that fast, with an online algorithm?
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MDEF Outliers

e outlier

e a value whose near neighborhood is significantly less dense than its
extended neighborhood
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MDEF Outliers

e outlier

a value whose near neighborhood is significantly less dense than its
extended neighborhood

set of outliers O ={p € D | MDEF (p,r,a)>Kk_o e (P, r,a)}

MDEF at radius r for point p is relative deviation of its local neighborhood
density from the average local neighborhood density in its r-neighborhood

MDEF(p, r, a) = 1—n(p, ar) /n’(p, a, 1)
in uniformly distributed dataset (almost) all points have MDEF equal to 0

essentially parameter free: a and k; predetermined constants with robust
behavior across different datasets
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ldentifying MDEF Outliers

e problem
for every data point in the stream:
count the number of near neighbors

average the number of near neighbors for all the points in the extended
neighborhood

sum of number of neighbors for a grid decomposition of the data space

e issues
how can we compute all these counts for the number of neighbors?
how can we do these computations in a distributed fashion?
how can we do that fast, with an online algorithm?
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Input Data Distribution Estimation
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Input Data Distribution Estimation
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Our Approach

e kernel density estimation

model estimation technique

e benefits

effectively approximates an unknown data distribution
non-parametric

efficiently computed in streaming environment
adjusts to changes in the input

can operate in a distributed fashion
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Kernel Estimation

e kernel estimator
e generalized form of random sampling

e works as follows
e sample the data
e assign a weight to each sample

o distribute the weight of each sample in its neighborhood
according to a kernel function
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Kernel Function

e Epanechnikov kernel function
generalized form of random sampling

k(x) = 3/4B (1 — (x/B)?), if |x/B| < 1, 0 otherwise
B is the kernel function bandwidth

B = 512g|R| 15 (Scott’s rule)
o standard deviation of points in the dataset
|IR| sample size

easy to integrate
extends naturally to multiple dimensions
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Kernel Density Estimation: Example

PDF of the Measurements

Measurements in Kernel Sample
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Kernel Density Estimation

e kernel estimation in a streaming environment
(assume sliding window model)
compute and maintain online

random sample of data
standard deviation of data

e random sample

chain-sample algorithm produces uniform random sample
e standard deviation

concise histogram technique

e both algorithms adapt to shifting input distributions
e Dboth algorithms can operate in a distributed fashion
models can be combined
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Online Outlier Detection:
Distance-Based Outliers

e Of(r, K) outliers
e count the number of points within a circle of radius r

e solution based on kernel density estimation

N(p.r)=| [ITl—IZDIED%(l‘(X;pi)DdX

[p-r.p+r]

e estimates the number of neighboring points

e space and time efficient for each sensor
(space: O(d(|R|+1/c2log|W))), time 1-d: O(log|R|+|R|), time m-d: O(d|R]) )
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Online Outlier Detection: 53:‘
Distance-Based Outliers .
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Detection of Region Outliers

e identify outliers wrt multiple data streams

e parent has to build a model for the combined
data distribution of its children

e possible solution: each sensor in hierarchy has
to compute its own sample

e expensive solution!
even if sampling only happens at leaf level
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Distributed Computation
of Estimators

e kernel estimator model composition

combine random sample and kernel bandwidth of children nodes
new random sample is union, possibly followed by downsampling

kernel bandwidth estimation based on: V,=V,+V,+N,N,/N.,(Y,-Y,)?
single model describing the behavior of all children nodes

e adapting to shifting data distributions
children propagate estimator updates to parent nodes according to:
changes in input distribution
= have to monitor changes, adapt update rate accordingly
monitor first moments of distribution, or apply specialized techniques

probability that depends on number of children and sample sizes
update probability =|R |/c|R]|
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000
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Online Distributed Outlier Detection: | e
Distance-Based Outliers
e theorem
Assume nodes n;, ..., n, children of node n,. Assume data streams S, ..., S,
referring to the | children nodes, and corresponding sliding windows W,, ..., W,
The sliding window of node n is defined as W,=U,_/W,. Let, at some point in
time, O,, ..., O, be the sets of distance based outliers corresponding to each one

of the | sliding windows. Then, for the set O, of outliers in W, it holds that O,
subset of U._,/O,.

e if a value is an outlier in the combination of two or more streams,
then it is an outlier in at least one of those streams

e as we combine streams we can ignore all points that are not outliers
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Online Distributed Outlier Detection:
Distance-Based Outliers
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Online Distributed Outlier Detection:
Density-Based Outliers

e MDEF outliers
count the number of near neighbors
compare to the average count across the extended neighborhood
an outlier at the parent node may not be an outlier at any child node!

leaf level nodes report outliers wrt to the values they observe, or wrt to
the values of the entire region they belong in

e when combining streams, the children nodes have to know the global
distribution

parents have to communicate their models to the children
e we apply the following scheme:
children update parent models about their changes with probability f

when the global model changes, the changes are propagated to all the
leaf nodes

may reduce communication by propagating only if change is significant
( by computing the distance of the models )
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Experimental Evaluation

e technique implemented on top of TAG sensor network simulator
5,000 lines of java code

e synthetic datasets
mixtures of Gaussians
35,000 observations
values normalized to [0,1]
e real datasets
sensor readings from Pacific Northwest region (35,000 observations)
engine operation measurements (50,000 observations)

e measured precision and recall (compared to offline algorithm)
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Experimental Results:
Accuracy — O(r, K) Outliers
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Precision

Experimental Results:
Accuracy — O(r, K) Outliers

e varying the sample size, 2-d real data
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Experimental Results:
Accuracy — MDEF Outliers

e varying the sample size (available memory), 1-d synthetic data
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Accuracy — MDEF Outliers
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Experimental Results:
Accuracy — MDEF Outliers
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Experimental Results:
Communication Costs

cost comparison of outlier detection algorithms
e distance-based D3, density-based MGDD, centralized approach
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Related Work

e statistical outliers

suppose knowledge of input distribution, offline
[Barnet,Lewis’94]

e outliers in databases

offline algorithms
[Arning et al’96][Knorr,Ng’98][Papadimitriou et al’'03][Breunig et al’00]
[Ramaswamy et al’00]

e outliers in time series

temporal ordering is key
[Puttagunta,Kalpakis’02][Muthukrishnan et al’04][Yamanishi et al’04]

e sensor data processing systems
query processing
[Madden et al’'02][Yao,Gehrke’03][Bonfils,Bonnet’03]
approximate query answering

[Deshpande et al’05][Guestrin et al’04][Cormode,Garofalakis’05][Olston et
al’'03][Jain et al'04]
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Conclusions

e studied the problem of online outlier detection in sensor networks

e proposed general and flexible data distribution approximation
framework

does not require a priori knowledge of the input data distribution
based on non-parametric model

e described technique for efficient distributed deviation detection
focus on the interesting, unexpected events

e validated the proposed approach experimentally
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thank you!

Themis Palpanas
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