
A Relational Approach to Incrementally Extracting and Querying Structure in Unstructured Data

> Eric Chu, Akanksha Baid, Ting Chen, AnHai Doan, Jeffrey Naughton

University of Wisconsin-Madison

Querying Unstructured Data: Keyword Search + Browsing

Perhaps with predefined search options...

🤌 Google Advanced S	earch - Mozilla Firefox						
<u>File E</u> dit <u>V</u> iew <u>G</u> o	<u>B</u> ookmarks <u>T</u> ools <u>H</u> elp						
🍃 🔸 🎝 🧭 🛞 🏠 🖸 http://www.google.com/advanced_search?hl=en 🛛 💟 🚱 💽 💽 rr							
P Getting Started							
Googl	e Advanced Search		Advanced Search Tips About				
Find results	with all of the words with the exact phrase with at least one of the words without the words		10 results 💌 Google Search				
Language File Format Date	Return pages written in Only verify return results of the file format Return web pages first seen in the		any language any format				
Numeric Range Occurrences	Return web pages containing numbers between =	and	anywhere in the page 💌				

e.g. google.com, .org More info

Only 💌 return results from the site or domain

Domain

Usage Rights

SafeSearch

~

Structure in Text: Relationships

"Madison is also home to companies such as Broadcast Interactive Media, as well as the North American division of Spectrum Brands (formerly Rayovac), Alliant Energy, American Family Insurance, the Credit Union National Association, **CUNA Mutual Group.** Technology companies in the area include Netconcepts, TomoTherapy, Sonic Foundry, Raven Software, Human Head Studios, Renaissance Learning, Flame Front Software, Epic Systems Corporation, and Berbee Information Networks....."

Structure in Text: Sections and Tables

Contents [hide]

1 History
2 Geography and Climate
3 Demographics
4 Politics
5 Religion
6 Economy
6.1 Business
7 Education
8 Transportation
9 Media
10 Culture
10.1 Music
10.1.1 Popular bands and musicians
10.1.2 Music festivals
10.2 Art
10.3 Performing arts
10.4 Architecture
10.5 Sports
11 Famous Madisonians
12 Points of interest
12.1 Sister cities
13 References
13.1 Notes
13.2 Bibliography
14 External links

Madison and Wisconsin demographics				
Wisconsin	Madison	Ethnicity		
91%	83.96%	White		
6.48%	5.84%	Black		
1.3%	0.36%	Native American		
2.21%	5.80%	Asian		
0.09%	0.04%	Pacific Islander		
N/A	1.67%	Other race		
N/A	2.32%	Two or more races		
N/A	4.09%	Hispanic		

Note: Hispanics may be of any race.

Monthly Normal and Record High and Low Temperatures												
Month	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	0 ct	Nov	Dec
Rec High °F	56	64	82	94	93	101	104	102	99	90	76	64
Norm High °F	25.2	30.8	42.8	56.6	69.4	78.3	82.1	79.4	71.4	59.6	43.3	30.2
Norm Low °F	9.3	14.3	24.6	35.2	46	55.7	61	58.7	49.9	38.9	27.7	15.8
Rec Low °F	-37	-29	-29	0	19	31	36	35	25	13	-11	-25
Precip (in)	1.25	1.28	2.28	3.35	3.25	4.05	3.93	4.33	3.08	2.18	2.31	1.66
	Source: US Travel Weather ^[3]											

Goal: Exploit the Structure!

Improve keyword search and browsing

Structured queries

- "What companies have their headquarters in Wisconsin?"
- "Which universities are in places that are very cold in winter?"
- Queries that keyword search and browsing are not good at answering

Challenges beyond Information Extraction

Continual discovery and extraction of structure

- Manage this *evolving* structure *incrementally* Little consensus on what system to use
- How to enable users to query using as much structure as is currently known?

Our Proposal

A relational workbench that provides:

- A way to store an expanding set of documents and attributes
- Tools to incrementally process the data
- A way to exploit structure in queries

Advantages

- Data always available for querying
- Supports *incremental* data processing
- Can pose increasingly sophisticated queries over time
- Exploit strengths of a RDBMS

Relational Workbench

Data Storage

- Data Processing
- Case Study: Swikipedia

Extracting Structure from Text

Set of extracted attributes:

- Keeps evolving
- Heterogeneous

Some may refer to same real-world concept

No good schema!

Storage: Wide Table

A single table

One document per row

 Discovery of new attribute: create new column in the table

Example

Seattle and Madison pages in Wikipedia

DocTitle	DocContent	Official flower
Madison, Wisconsin	"Madison is the capital of the U.S. state of Wisconsin"	null
Seattle, Washingon	"Seattle is the largest city in the Pacific Northwest"	Dahlia

The Wide Table Grows

Longer when we insert new documents

- Wider when we create new columns for the new attributes we extract
- Also increasingly sparse
 No overhead for storing nulls if we use interpreted storage (Chu et al., SIGMOD '07) or a columnoriented database (Abadi, CIDR '07)

Problem with 1NF

A document can have set-valued attributes

- E.g., "Lake Mendota" and "Lake Monona" from Madison, and "Lake Washington" and "Lake Union" from Seattle
- Structure can be complex
 E.g., the weather wiki table

Madison	Jan	Feb
Avg High Temp ⁰F (° C)	23 (-5)	29 (-2)
Avg Low Temp °F (° C)	6 (-14)	12 (-11)
Mean Temp °F (°C)	15 (-9)	20 (-7)
Avg Precipitation in (cm)	1.14 (2.9)	1.14 (2.9)

Proposal: Complex Attributes

Allow attributes to have internal structure

DocTitle	DocContent	official flower	headquarter(city, company)
Madison, Wisconsin	"Madison is the capital of the U.S. state of Wisconsin"		[(Madison, Raven Software), (Madison, Human Head Studios),]
Seattle, Washingon	"Seattle is the largest city in the Pacific Northwest"	dahlia	[(Seattle, Starbucks), (Seattle, Amazon.com),]

Summary of Wide Table

- Each document corresponds to a row
- Each attribute corresponds to a column
- Table can get very wide and sparse
- Attributes can have internal structure

Implementing Results of Integration: Mapping Table

 Store mappings for different attributes that correspond to the same real-world concept

host id	host name	mappings
a6	temp (°F)	$\{a6 = a7 * 9/5 + 32\}$
a7	temperature (°C)	{a7 = 5/9 * (a6 - 32)}

- Query evaluation:
 - Look up mapping table
 - Rewrite query to include matching attributes

Relational Workbench

Data Storage

- Data Processing
- Case Study: Swikipedia

Processing Data with the Workbench

- Workbench does not decide how to process data
- Provides three basic operators:
 - Extract
 - □ Integrate
 - Cluster
- DBAs decide what operators to use and set the parameters

Operators VS User Defined Functions

Advantages of defining operators:

- Ease of use
- Performance optimization
- Synergistic interaction among operators

Whole is greater than the sum of parts (1)

An operator often improves the performance of its following operators

Example: finding new input for extraction

- Extract: "address" => "city," "state," and "zip code"
- Integrate: "address" = "sent-to"
- Extract: "sent-to" => "city," "state," and "zip code"

Whole is greater than the sum of parts (2)

Example: improving clustering via iteration

- Extract section names from wikipedia pages
- Cluster pages based on section names
 Problem: short pages have no sections
- Extract and cluster pages based on other attributes

Case Study: Swikipedia

- Simulated a workbench for Wikipedia
- Core dump of ~4 million pages (XML)
- Toy data set (882 files)
 3 domains: cities (254), universities (255), tennis players (373)

Stage 1: Initial Loading

Parsed and loaded XML files to wide table

- 5 columns: PageId, PageText, RevisionId, ContributorName, LastModificationDate
- Can do keyword search over PageText immediately

Stage 2: Extracting Sections

Doc Title	Doc Content	History	Demo- graphics	Religion	Cityscape	Points of Interest
Madison, Wisconsin	"Madison is the capital of the U.S. state of Wisconsin "	"Madison was created in"	"As of the census"	""	""	null
Seattle, Washingon	"Seattle is the largest city in the Pacific Northwest "	"What is now Seattle has been…"	"As of the census"	""	null	" "

Why extract sections?

For doing future extraction more efficiently

For "focused" keyword search Example: "world no. 1 player"

- Over PageText column: return 83 pages, 23 correct
- Over Introduction column: return 67 pages, 21 correct

Explosion of New Columns

- Wide table now had 1,253 new columns!
 Each row had only 13 non-null attributes
- Integrate found many aliases
 - 350 of all attributes belonged to 1 of 14 attribute groups
 - E.g., campus, famous people, tournament titles, etc.

Handling Aliases with the Mapping Table

Wide table

DocTitle	DocContent	History	Cityscape	Points of Interest
Madison, Wisconsin			"Madison"	null
Seattle, Washingon	" "	" "	null	"Seattle"

Mapping table

host id	host name	mappings
a8	Cityscape	a9
a9	Points of interest	a8

Handling Aliases: An Alternative

Collapse aliases into one column in the wide table.

DocTitle	DocContent	History	Cityscape, Points of Interest
Madison, Wisconsin	" »» •••••		"Madison"
Seattle, Washingon			"Seattle"

Stage 3: Attribute Clustering

- Grouped together attributes (i.e., section names) that were either both null or both nonnull in a row
- Found three clusters
 - Used a column to store cluster IDs
- Views on clusters
 - ~25 ms for each cluster
 - □ Wide table: 44 sec

Stage 4: Extracting Wiki Tables

temperature_wiki

City	Month	Low_F	Low_C	High_F	
Madison, Wisconsin	1	6	-14	23	
Madison, Wisconsin	2	12	-11	29	
Madison, Wisconsin	12	13	-11	29	
Seattle, Washington	1	36	2	46	

Examples

"Find average temperature of Madison during winter."

SELECT AVG(Low_F)
FROM temperature_wiki as T
WHERE T.city = 'Madison, Wisconsin' AND
T.Month = 1 OR T.Month = 2 OR T.Month = 12;

"Which universities are in places that can be very cold?"

- SELECT T1.ID
- FROM WideTable T1, temperature_wiki T2
- WHERE T1.location = T2.city AND T2.month = 1 AND Low_F < 32

Summary of Case Study

- Only done basic data processing
- Incremental approach promising
 Pay (and get rewarded) as you go
 Flexible
- Set of attributes could evolve in size and complexity very quickly
- Multiple ways to process the data

Current and Future Work

Prototype for Swikipedia

- Query construction, evaluation, and optimization
- Changes to data and operators

Conclusion

- Relational workbench to incrementally extract and query structure from unstructured data
 - Wide table
 - Mapping table
 - Operators
- Swikipedia
- Many problems ahead!