
Efficient Keyword Search over

Virtual XML Views

Feng Shao, Lin Guo, Chavdar Botev, Anand Bhaskar,

Muthiah Chettiar, Fan Yang

Cornell University

Jayavel Shanmugasundaram

Yahoo! Research

VLDB 2007

Applications - Personal Portal

Auto

Sports
News

Finances

“DOW

Index”

“NCAA

Rankings”

“Beetles

Record”

“Chevy

Malibu”

Overlap/Duplicate

Views

Applications – Information Integration

<project>

<title>…</title>

…

<project>

project.doc (in XML

format)�

Email with comments on

projects (in XML format)�

Projects/Feedback

XML View

Projects/Feedback

XML View

personalized

views, by

privilege

“Vista”

“budget”

“Vista”,

“budget”

<comment>

…

</comment>

<feedback>

…

</feedback>

<comment>

…

</comment>

Keyword Search over XML View

� Materialized XML Views?

• Similar to keyword search over XML documents

�Many well-studied algorithms

�Materialize views when loading documents

• Not applicable in emerging applications!

�Overlap/Duplicate/Update overhead

�View definitions not known a-priori

� �Keyword Search over Virtual XML Views

Related Work

� Scoring and Indexing in IR community

• DBXplorer [Agrawal02], Banks [Bhalotia02], ObjectRank

[Balmin04], XRank [Guo02], Discover [Hristidis 02]

• Work with materialized documents

� Integrating keyword search and structural queries

• GTP [Chen 03], TermJoin [Khalifa 03]

• Access base data to evaluate the view

� Projecting XML documents [Marian 03]

• Access base data; not leveraging indexes

Outline

� Motivation

� Problem Definition

� High-level Overview

� PDT Generation Algorithm

� Experimental Results

� Conclusion

Problem Definition

� Ranked Keyword Search over Virtual XML
Views

• Input: a set of keywords Q = {k1, k2, …, kn}, an
XML view definition V over an XML database D

• Output: k view elements with highest scores

• TF-IDF scores
�TF(k, e): # occurences of the keyword k in an element e

�IDF(k): the inverse of # of elements containing k

�Score(e, Q) = ΣiTF(ki,e) * IDF(ki)

�Score(e, Q) is further normalized by the length of the view
elements

Running Example

Virtual View “XML” & “Search”

books.xml reviews.xml

book

Design
Patterns

title isbn

111-11
-1111

year

1997

book

books

book
review

isbn rating content

review

reviews

review

111-11
-1111

5 This book
describes …

for $book in fn:doc(books.xml)/books//book
where $book/year > 1995
return <book> $book/title

for $review in fn:doc(reviews.xml)/reviews//review
where $review/isbn = $book/isbn
return <review> $review/content </review>

</book>

publisher

Princeton

Running Example

Materialized View “XML” & “Search”

books.xml reviews.xml

book

review

Design

Patterns

title review

contentcontent

This book

describes …

Excellent!

book

review

XML

Primer

title review

contentcontent

… search

and query …

Decent book

on XML…

book

Design

Patterns

title isbn

111-11

-1111

year

1997

book

books

book
review

isbn rating content

review

reviews

review

111-11

-1111

5 This book

describes …

publisher

Princeton

Outline

� Motivation

� Problem Definition

� High-level Overview

� PDT Generation Algorithm

� Experimental Results

� Conclusion

Our Approach

Traditional Approach View

PDT

Generator

Pruned View

Keyword

Processor

Results
“XML”

“Search”

Pruned

Document

Trees

(PDTs)�

Evaluator

Scoring

Pruned Results

View

Evaluator Materialized

View

Keyword

Processor

Results
“XML”

“Search”

book

books reviews books reviews

indexes

Materialization

Ranked Results

indexes

> 300s
5s

Our Approach

View

PDT

Generator

Pruned View

Keyword

Processor

Results
“XML”

“Search”

PDTs

Evaluator

books reviews

indexes

Pruned Results

Materialization

Ranked Results

Scoring

book

XML

Primer

title isbn

111-11

-1111

year

1997

book

Id=“1.2.1”

kwd1=“xml

”tf=“1”

length = “10”

title isbn

111-11

-1111 1997

books

books

book

year

Princeton

publisher

PDT (Pruned

Document

Tree)�

Orders of magnitude

smaller!

Our Approach -- Challenges

View

PDT

Generator

Pruned View

Keyword

Processor

Results
“XML”

“Search”

PDTs

Evaluator

1. Joining books & reviews

requires isbn (data value)�

-- how to get data values

without accessing the

base data?

2. Scoring view elements

requires aggregate

statistical data (e.g., tf

from book and review)?

-- How to collect them

without materializing the

view elements?

books reviews

indexes

Pruned Results

Materialization

Ranked Results

Scoring

Dewey ID and Index

book

isbn authoryear

title
“Database
Concepts”

“111-
11-
1111”

… 1994

books1

1.1

1.1.1

1.1.2 1.1.3 1.1.4

Dewey ID
Path Index – [Chen05], [Yoshikawa01]

………

1.2.1“222-222-2222”/books/book/isbn

/books/book/author
/fn

…

/books/book/isbn

PathID

……

1.2.3, 1.7.3“Jane”

1.1.1,1.2.1“111-111-1111”

IDListValue

B+-Tree

…

XQFT

Jane 11.2.3 11.7.3

21.1.2

…

…

(ID, TF)�

B+ tree index

Inverted Index: [Guo03],[Botev05]

Outline

� Motivation

� Problem Definition

� High-level Overview

� PDT Generation Algorithm

� Experimental Results

� Conclusion

XML View � Query Pattern Tree (QPT)

� Similar to GTP, proposed
by Chen 2003 for normal
query evaluation
• Captures the structural

parts required by queries

• Mandatory/Optional edges

� New features
• Node annotations

�V: value required to evaluate
the view

�C: content used in the view
mandatory

optional

books

book

year>1995
title

c

isbn

v

for $book in fn:doc(books.xml)/books//book

where $book/year > 1995

return

<book> $book/title

for $review infn:doc(reviews.xml)/reviews//review

where $review/isbn = $book/isbn

return

<review> $review/content </review>

</book>

PDT Intuition

• Restrictions enforced by QPT
books

book

isbn title year
[.>1995]v c

doc(books.xml)

books

book

year title isbn

publisher

author

1994 Database

Concepts

111-11

1112

book

title isbn

publisher

author

1997
121-32-

8663

year

Predicate Restriction

Descendant Restriction

Ancestor Restriction

XML Primer

id:1.2.1

kwd1=“xml”tf=1

length = 10

PDT Generation

1. Get ID lists for

paths in the QPT

2. Merge IDs in the

lists to create the PDT

View

PDT

Generator

Pruned View

Keyword

Processor

“XML”

“Search”

PDTs

Evaluator

books reviews

indexes

Results

Scoring

Pruned Results

Materialization

Ranked Results

Step 1: Get List of IDs

books

book

year>1995title

c

isbn

v

QPT

books//book/isbn: (1.1.1:”111-11-111”),(1.2.1,”121-23-1321”)�

………

1.2.1“121-23-1321”/books/book/isbn

/books/book/author/fn

…

/books/book/isbn

PathID

……

1.2.3, 1.7.3“Jane”

1.1.1“111-11-111”

IDListValue

B+-Tree

books//book/title: 1.1.4, 1.2.3, 1.9.3

books//book/year: (1.2.6, 1.5.1:”1996”), (1.6.1:”1997”)�

Key idea: for each node without mandatory child edges, obtain

the corresponding list of ids

Step 2: Merging IDs -- Challenges

� Makes a single pass over relevant id lists

• Flat indices � nested structure

• Enforce ancestor/descendant restrictions

book

isbn title year

publisher

author

book

title year

publisher

authorisbn

books

1.1

1.1.1

1

1.1.2 1.1.3

1.1.4
1.1.5

1.2

1.2.1 1.2.3 1.2.6

1.2.7

1.2.8

books

book

title

QPT

isbn
year>1995

PDT Generator – Merging IDs

(books//book/isbn, (1.1.1: “111-11-1111”), (1.2.1: “121-23-1321”),...)

(books//book/title,1.1.4, 1.2.3, 1.9.3, …)

(books//book/year, (1.2.6, 1.5.1: “1996”), (1.6.1:”1997"), …)

Candidate

Tree

PDT

PDT IDs

Idea: a loop that merges ids in the lists, and creates the CT nodes in

dewey id order

At each step, we check the min id in the CT

if satisfies all restrictions � PDT

if satisfies descendant restriction and not ancestor � PDT Cache

if not satisfies descendant restriction and does not have child node

in the CT � Discard

Adding CT Nodes from Top Down

books

book

isbn title year
[.>1995]v c

doc(books.xml)
ID lists

QNode: books

ID: 1

DM: (book, 0)

QNode: book

ID: 1.1

DM: (year, 0)

QNode: isbn

ID: 1.1.1

DM: null

:

1.1

1

1.1.1

QNode: title

ID: 1.1.4

DM: null

QNode: book

ID: 1.2

DM: (year, 0)

QNode: year

ID: 1.2.6

DM: null

1

1

Check descendant
and predicate
restrictions

Removing CT Nodes from Bottom Up

� Try to determine if a node should be in the PDT: check ancestor
constraints

• Remove IDs known to be non-PDT nodes

• Nodes in the PDT cache – defer checking ancestor restrictions

QNode: books

ID: 1

DM: (book, 1)

QNode: book

ID: 1.1

DM: (year, 0)

QNode: title

ID: 1.1.4

QNode: book

ID: 1.2

DM: (year, 1)

QNode: year

ID: 1.2.6

DM: null

:

QNode: isbn

ID: 1.2.1

DM: null

QNode: isbn

ID: 1.1.1

DM: null

QNode: isbn

ID: 1.1.1

PDT Cache

QNode: title

ID: 1.1.4

DM: null

QNode: isbn

ID: 1.2.1

QNode: year

ID: 1.2.6

QNode: book

ID: 1.2

PDT Cache

PDT Cache

QNode: isbn

ID: 1.2.1

Correctness and Complexity

� Theorem (Informal)�

• Given a set of keywords, an XQuery view and a

database,

�The result sequence, after being materialized, are identical

to as if the view was materialized

�The byte lengths of each element are identical

�The TFs of each keyword in each element are identical

• Formal proof in the technical report

� Complexity: polynomial with respect to the

number of IDs, the length of paths, the depth of

the documents, and the number of keywords

Outline

� Motivation

� Problem Definition

� High-level Overview

� Evaluation Algorithm

� Experimental Results

� Conclusion

Experiments

� Real-world INEX data
• 500MB

• Publications with author information and others

• View: nested articles under authors.
�Only require author names when evaluating the view

�Article content (huge) only required after the top k results are
identified

article

author author

journal

article

Experiments

� Setup

• 3.4Ghz CPU, 2GB Mem

• Windows XP

• Implemented in C++

� Alternatives

• Baseline: materialize all view results on the fly

• Timber (GTP [Chen 03] + TermJoin [Khalifa 03]) �
� not tokenized but still access base data to evaluate the view

• Proj [Marian 03] : access base data to produce PDT

Varying size of data

Varying size of data

3 100 200 300 400 500

Size of Data(MB)

PDT Evaluator Post-processing

Outline

� Motivation

� Problem Definition

� High-level Overview

� Evaluation Algorithm

� Experimental Results

� Conclusion

Conclusion

� A system architecture for keyword search over virtual XML views

� Novel algorithms to generate pruned data relevant to XML view

� Implemented, and experimentally evaluated

• 10 times faster than other alternatives

� Future work

• Top-K keyword search queries

�Our approach returns pruned version of “all” elements, which is

unnecessary

�Returns most relevant results only

• QPT/PDT may be adapted for normal query evaluations

Optimizations and Extensions

� Extensions

• One ID corresponds to more than one QPT nodes

�//a//a � /a/a/a

�QNode � QNodeSet

� Optimizations

• Currently lazy checking of ancestor restrictions
�Can check in top down phase, and save memory usage of

pdt cache

• PDT nodes are output not in document order
�Can enforce document order

Complexity

� O(Nqdf+Nqd2+Nd3+Ndkc)�

• N: # of IDs in the lists

• q: the depth of the paths

• d: the depth of the documents

• k: the number of keywords

• c: unit cost of inverted list access

• Nqdf+Nqd2: cost of top down processing

• Nd3: cost of bottom up processing

• Ndkc: cost of inverted list access

