A General Framework for Modeling and Processing Optimization Queries

> Michael Gibas, Ning Zheng, Hakan Ferhatosmanoglu Ohio State University

Optimization Queries – Examples without Constraints

- What is the closest restaurant to my current location?
- What is the highest ranked school according to my scoring criteria?
- Which patients have the highest AST/ALT ratio?
- Which coastal locations are most sensitive to environmental changes?

Optimization Queries – Examples with Constraints

- What is the closest restaurant to my current location which is inside "the ring"?
- What is the highest ranked school in Europe my scoring criteria?
- Which females, age 45-55 patients have the highest AST/ALT ratio?
- Which coastal locations on the Great Lakes are most sensitive to environmental changes?

Model Based Queries

DEFINITION 1 (MODEL-BASED OPTIMIZATION QUERY). Given a relation $Re(a_1, a_2, \ldots, a_n)$, a model-based optimization query Q is given by (i) an objective function $F(\vec{\theta}, A)$, with optimization objective o (min or max), (ii) a set of constraints (possibly empty) specified by inequality constraints $g_i(\vec{\alpha}, A) \leq 0, 1 \leq i \leq u$ (if not empty) and equality constraints $h_j(\vec{\beta}, A) = 0, 1 \leq j \leq v$ (if not empty), and (iii) user/query adjustable objective parameters $\vec{\theta}$, constraint parameters $\vec{\alpha}$ and $\vec{\beta}$, and answer set size integer k.

Sample Model Based Query

Model Based Queries - Summary

- Objective Function
- Optimization Objective (minimize or maximize)
- Constraints
- Adjustable parameters on functions and constraints
- k number of objects to return

Convex Optimization Queries

DEFINITION 2 (CONVEX OPTIMIZATION (CP) QUERY). A model-based optimization query Q is a Convex Optimization (CP) query if (i) $F(\vec{\theta}, A)$ is convex, (ii) $g_i(\vec{\alpha}, A), 1 \leq i \leq u$ (if not empty) are convex, and (iii) $h_j(\vec{\beta}, A), 1 \leq j \leq v$ (if not empty) are linear or affine.

Convex Optimization Queries - Summary

- Significant subset of Model Based Optimization Queries
- Objective function is convex
- Constraints are convex
- Can be I/O-optimally processed

Query Types under Model

- (Un)Constrained-Weighted k Nearest Neighbor
- (Un)Constrained k Linear Optimization
- Range over Irregular Regions
- (Un)Constrained Arbitrary Convex Functions

Example – Euclidean Weighted Nearest Neighbor

- Objective function is to minimize weighted distance to the query point
- WNN $(a_1, a_2, \dots, a_n) = (w_1(a_1 a0_1)^2 + w_2(a_2 a0_2)^2 + \dots + w_n(a_n a0_n)^2)^{0.5}$
- Can be over arbitrary convex constraints for arbitrary k

Example – Linear Optimization Queries

- Objective function is to maximize a linear score
- $L(a_1, a_2, ..., a_n) = w_1^* a_1 + w_2^* a_2 + ..., w_n^* a_n$
- Can be over arbitrary convex constraints for arbitrary k

Example – Range Queries

Objective function is any constant

Set k to n

Use constraints to define ranges

• Can be used to model irregular ranges \bigcirc e.g. $I \le a_1 + a_2 \le u$

Goal

Develop query processing framework to I/O-optimally solve:

- OArbitrary convex function
- Over arbitrary convex problem constraints
- Using arbitrary access structure built over convex partitions

Approach

- Borrow Convex Optimization (CP) from Operations Research domain
- Find best possible answer in continuous space
- Begin searching in this partition, ordered by how promising the partitions are

I/O Optimal Query Processing

- Solve CP problems as access structure is traversed
- Incorporate problem constraints and partition constraints to find optimal functional objective value for candidate partition
- Keep partitions ordered according to how promising they are
- Stop when partitions can not yield an optimal point

Proof of I/O Optimality

Example – Nearest Neighbor

Hierarchical Access Structure Only access partitions that intersect Optimal Contour

Example – Constrained Linear Optimization

Maximize f=-6x+5y Within constrained area

Example - Non-Hierarchical Constrained

Experimental Results

k-NN and Weighted k-NN Queries

100k points, 8-D Color Histogram Data

Incorporating Constraints During Search

NN-Query, Color Histogram
Prune MBR's as they are discovered to be infeasible

Random Functions, Different Access Structures

Access Structure

5-D Uniform Random, 50k

Conclusions

Handle Any Convex Function

- Incorporate Constraints During Access
 Structure Traversal
- A unified tool/algorithm for any type of optimization query
- Allows use of existing index types

Questions?

