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Introduction and motivation

� Association rule mining

� complexity of exponential order

� Motivation on outsourcing of mining 
task

� lower cost

� avoid hiring in-house specialists

� consolidate data from different sources



Security concerns in outsourcing

� The third party cannot be trusted

� Need to protect

� Protect the input – prevent the miner 
(third party) to access the original 
transaction records 

� Protect the output – prevent the miner 
to see the “true” association rules
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Item mapping - encryption



Example item mapping (one-to-one)

� bread -> 54

� chocolate -> 165

� <bread, chocolate> -> <165, 54>

� <54, 165> is large to the miner

� <cheese, book> or <bread, chocolate>?

� Similar to substitution cipher used 
in encryption of text

� Anything more secure ????



One-to-n item mapping

� A one-to-n item mapping
� B: a set of items

� m: I -> 2B

� Example, I = {a,b,c}, 

B = {1,2,3,4,5}
� m(a) = {1, 4, 5}

� m(b) = {2}

� m(c) = {3, 5}

� Is one-to-n more secure ?



Itemset mapping using one-to-n item 
mapping

� m: I -> 2B : one-to-n item mapping
� M: 2I -> 2B : itemset mapping

� M(X) = Ux in X m(x) = Y
� M-1(Y) =  X, if M(X) = Y
� Example:

� M(<a, c>) = <1, 3, 4, 5>
� M(<b, c>) = <2, 3, 5>

� M-1(<1, 3, 4, 5>) = <a, c>
� M-1(<1, 2, 3, 4, 5>) = <a, b, c>

� Note: m is an item mapping, M is the itemset
mapping 

m:
a -> {1, 4, 5}
b -> {2}
c -> {3, 5}



Correctness – restrictions on one-

to-n mapping

� <a, b>=><1, 2, 3>

� <a, b, c>=><1, 2, 3>

Collisions!

Decryption failure!

� <a>=><1, 2>

...

� <a,b>=><1, 2, 3>

…

� <a, b, c>=><1, 2, 3, 
4>

m:
a -> {1, 2}
b -> {2, 3}
c -> {1, 3}

m’:
a -> {1, 2}
b -> {2, 3}
c -> {2, 4}

Admissiable Mapping : mapping of each item contains a 
unique item

Result : M-1(M(X)) = X (correct decryption) iff m is 
admissible



Is one-to-n mapping more secure?

T = 

� {a}

� {b}

� {c}

� {a, b}

� {a, c}

� {b, c}

� {a, b, c}

T’ =

� {1, 4, 5}

� {2}

� {3, 5}

� {1, 2, 4, 5}

� {1, 3, 4, 5}

� {2, 3, 5}

� {1, 2, 3, 4, 5}

m:
a -> {1, 4, 5}
b -> {2}
c -> {3, 5}

m’:
a -> {1}
b -> {2}
c -> {3}

To decrypt transactions encrypted by m, we can use m’!

(m is not more secure than m’) !!!!



Function coverage

� M1: 2
I -> 2D1

� M2: 2
I -> 2D2

� M1 covers M2 iff
� for all X ⊆ I, let Y = M2(X)

� M2
-1(Y ) = M1

-1(Y ∩ D1)

� M1 covers M2

� If any transaction encrypted by M2 can be 
decrypted by using the inverse of M1



One-to-n is not more secure than 
one-to-one mapping

� Our results (proved)

� Any admissible  one-to-n itemset 
mapping is covered by (can be 
decrypted by) some one-to-one itemset 
mapping

� Bad news !!!

� One-to-n item mapping is NOT more 
secure than a one-to-one item mapping



One-to-n vs one-to-one

� one-to-n vs one-to-one?
� Intuitively, one-to-n should be more secure

Unfortunate Scenario:
� one-to-n + item mapping

= one-to-one + item mapping
Our solution :

� Add a random component to transaction 
transformation

� It will make one-to-n always better (more 
secure) than one-to-one



One-to-n Transformation

� one-to-one mapping
� a -> { 1 }, b -> { 2 }, …

� t = { a, b }  � t’ = { 1, 2 }

� one-to-n mapping
� a -> { 1, 3 }, b -> { 2, 3 }, …

� t = { a, b }  � t’ = { 1, 2, 3 }

� one-to-n transformation
� a -> { 1, 3 }, b -> { 2, 3 }, …

� t = { a, b }  � t’ = { 1, 2, 3, 4, 6 }

Randomly
generated



Transaction transformation

� M: 2I -> 2B , based on a one-to-n 
itemset mapping m

� N: transaction transformation

� Maps from 2I to 2BUF

� t’ = N(t) = M(t) U E  

� E is a random subset of B U F; F is a 
set of items not in B

� N-1(t’) = {x | m(x) in t’}



Example transformation

T = 

� {a}

� {b}

� {c}

� {a, b}

� {a, c}

� {b, c}

� {a, b, c}

T’ =

� {1, 4, 5}

� {2, 1, 3}

� {3, 5, 4}

� {1, 2, 4, 5}

� {1, 3, 4, 5}

� {2, 3, 5, 1}

� {1, 2, 3, 4, 5}

m:
a -> {1, 4, 5}
b -> {2}
c -> {3, 5}

m’:
a -> {1}
b -> {2}
c -> {3}

N(t) = M(t) U E

- The randomly inserted values does not affect the 
correctness of the decryption
- m’ can no longer be used to decrypt m !!



Necessary properties of 

transformation N

� Valid

� The decryption is correct

� N-1(N(t)) = t

� Complete (based on valid)

� For every transaction t, N(t) generates every 
possible t’ (= M(t) U E) such that N-1(t’) = t

� Positive result : No one-to-one itemset 
mapping can cover a valid and complete 
transaction transformation from a one-to-n 
itemset mapping



Generating E for valid and complete 
transformation N

N(<c>) = <3, 5> U E

� For m: a -> {1, 4, 5}

E = {1} or {4}, but not {1, 4}

� For m: b -> {2}

E = Φ

� The transformation N is valid if E is either {1} or 
{4} or Φ ;

� N is complete if it is possible to generate all of the 
three cases, i.e., E = {1} or {4} or Φ.

m:
a -> {1, 4, 5}
b -> {2}
c -> {3, 5}

E = ?



Algorithm – valid and complete 

transaction transformation



Algorithm to perform valid and 

complete transformation

t = <…>

Start

Meet 
quota?

a->…
b->…

…
�->…

Mappings

No

N(t)

Pick one

x->x1, …,xn

History

Stores items we 
must not add

xi, …,xj

Filter

E

E = Ø at start 

Some add 
to E

Others to 
history

Next

Add E to 
result



Important Property 

� The transaction transformation 
produced by the Algorithm is  valid 
and complete.



Experiments



Design

� Purpose

� Study security and efficiency of the model

� Security

� Assume the attacker gets the relative 
frequencies

� Implemented genetic algorithm for frequency 
analysis

� Efficiency

� Transformation time vs mining time

� Overhead at the miner side



Background knowledge

� Purpose: simulate a real attacker in practice

� Where does the attacker get knowledge? 
(Assumption)

� In many cases, the statistics of the global 
industry is public (background knowledge)

� Background Knowledge (with two parameters)

� alpha: knows alpha% of large itemsets in 
original database

� beta: the support in the knowledge is in the 
range

� real support * (1    beta)
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Mapping accuracy

� Measure how many mapping is correct

� Only measure those in background knowledge 
since there is no info for other mappings



Efficiency
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Summary

� The idea of substitution cipher is 
used in the problem of encryption of 
transaction database

� One-to-n item mapping cannot be 
directly applied since it is effectively 
a one-to-one item mapping

� Transaction transformation is 
proposed and shown to be valid and 
complete

� Experiments show that it is suitable 
for outsourcing



End


