
Security in Outsourcing of

Association Rule Mining

Wai Kit Wong, David Cheung, Ben Kao and
Nikos Mamoulis,

The University of Hong Kong

Edward Hung, The Hong Kong Polytechnic
University

VLDB 2007, Vienna, Austria

Agenda

� Introduction and motivation

� Item mapping and encryption

� The algorithm for valid and
complete transaction transformation

� Experiments

� Summary

Introduction and motivation

� Association rule mining

� complexity of exponential order

� Motivation on outsourcing of mining
task

� lower cost

� avoid hiring in-house specialists

� consolidate data from different sources

Security concerns in outsourcing

� The third party cannot be trusted

� Need to protect

� Protect the input – prevent the miner
(third party) to access the original
transaction records

� Protect the output – prevent the miner
to see the “true” association rules

Outsource model

DB DB’Transformer

Association
Rules (R’)

Association
Rules (R)

Data
Owner

Data
Miner

Outsourcing

Item mapping - encryption

Example item mapping (one-to-one)

� bread -> 54

� chocolate -> 165

� <bread, chocolate> -> <165, 54>

� <54, 165> is large to the miner

� <cheese, book> or <bread, chocolate>?

� Similar to substitution cipher used
in encryption of text

� Anything more secure ????

One-to-n item mapping

� A one-to-n item mapping
� B: a set of items

� m: I -> 2B

� Example, I = {a,b,c},

B = {1,2,3,4,5}
� m(a) = {1, 4, 5}

� m(b) = {2}

� m(c) = {3, 5}

� Is one-to-n more secure ?

Itemset mapping using one-to-n item
mapping

� m: I -> 2B : one-to-n item mapping
� M: 2I -> 2B : itemset mapping

� M(X) = Ux in X m(x) = Y
� M-1(Y) = X, if M(X) = Y
� Example:

� M(<a, c>) = <1, 3, 4, 5>
� M(<b, c>) = <2, 3, 5>

� M-1(<1, 3, 4, 5>) = <a, c>
� M-1(<1, 2, 3, 4, 5>) = <a, b, c>

� Note: m is an item mapping, M is the itemset
mapping

m:
a -> {1, 4, 5}
b -> {2}
c -> {3, 5}

Correctness – restrictions on one-

to-n mapping

� <a, b>=><1, 2, 3>

� <a, b, c>=><1, 2, 3>

Collisions!

Decryption failure!

� <a>=><1, 2>

...

� <a,b>=><1, 2, 3>

…

� <a, b, c>=><1, 2, 3,
4>

m:
a -> {1, 2}
b -> {2, 3}
c -> {1, 3}

m’:
a -> {1, 2}
b -> {2, 3}
c -> {2, 4}

Admissiable Mapping : mapping of each item contains a
unique item

Result : M-1(M(X)) = X (correct decryption) iff m is
admissible

Is one-to-n mapping more secure?

T =

� {a}

� {b}

� {c}

� {a, b}

� {a, c}

� {b, c}

� {a, b, c}

T’ =

� {1, 4, 5}

� {2}

� {3, 5}

� {1, 2, 4, 5}

� {1, 3, 4, 5}

� {2, 3, 5}

� {1, 2, 3, 4, 5}

m:
a -> {1, 4, 5}
b -> {2}
c -> {3, 5}

m’:
a -> {1}
b -> {2}
c -> {3}

To decrypt transactions encrypted by m, we can use m’!

(m is not more secure than m’) !!!!

Function coverage

� M1: 2
I -> 2D1

� M2: 2
I -> 2D2

� M1 covers M2 iff
� for all X ⊆ I, let Y = M2(X)

� M2
-1(Y) = M1

-1(Y ∩ D1)

� M1 covers M2

� If any transaction encrypted by M2 can be
decrypted by using the inverse of M1

One-to-n is not more secure than
one-to-one mapping

� Our results (proved)

� Any admissible one-to-n itemset
mapping is covered by (can be
decrypted by) some one-to-one itemset
mapping

� Bad news !!!

� One-to-n item mapping is NOT more
secure than a one-to-one item mapping

One-to-n vs one-to-one

� one-to-n vs one-to-one?
� Intuitively, one-to-n should be more secure

Unfortunate Scenario:
� one-to-n + item mapping

= one-to-one + item mapping
Our solution :

� Add a random component to transaction
transformation

� It will make one-to-n always better (more
secure) than one-to-one

One-to-n Transformation

� one-to-one mapping
� a -> { 1 }, b -> { 2 }, …

� t = { a, b } � t’ = { 1, 2 }

� one-to-n mapping
� a -> { 1, 3 }, b -> { 2, 3 }, …

� t = { a, b } � t’ = { 1, 2, 3 }

� one-to-n transformation
� a -> { 1, 3 }, b -> { 2, 3 }, …

� t = { a, b } � t’ = { 1, 2, 3, 4, 6 }

Randomly
generated

Transaction transformation

� M: 2I -> 2B , based on a one-to-n
itemset mapping m

� N: transaction transformation

� Maps from 2I to 2BUF

� t’ = N(t) = M(t) U E

� E is a random subset of B U F; F is a
set of items not in B

� N-1(t’) = {x | m(x) in t’}

Example transformation

T =

� {a}

� {b}

� {c}

� {a, b}

� {a, c}

� {b, c}

� {a, b, c}

T’ =

� {1, 4, 5}

� {2, 1, 3}

� {3, 5, 4}

� {1, 2, 4, 5}

� {1, 3, 4, 5}

� {2, 3, 5, 1}

� {1, 2, 3, 4, 5}

m:
a -> {1, 4, 5}
b -> {2}
c -> {3, 5}

m’:
a -> {1}
b -> {2}
c -> {3}

N(t) = M(t) U E

- The randomly inserted values does not affect the
correctness of the decryption
- m’ can no longer be used to decrypt m !!

Necessary properties of

transformation N

� Valid

� The decryption is correct

� N-1(N(t)) = t

� Complete (based on valid)

� For every transaction t, N(t) generates every
possible t’ (= M(t) U E) such that N-1(t’) = t

� Positive result : No one-to-one itemset
mapping can cover a valid and complete
transaction transformation from a one-to-n
itemset mapping

Generating E for valid and complete
transformation N

N(<c>) = <3, 5> U E

� For m: a -> {1, 4, 5}

E = {1} or {4}, but not {1, 4}

� For m: b -> {2}

E = Φ

� The transformation N is valid if E is either {1} or
{4} or Φ ;

� N is complete if it is possible to generate all of the
three cases, i.e., E = {1} or {4} or Φ.

m:
a -> {1, 4, 5}
b -> {2}
c -> {3, 5}

E = ?

Algorithm – valid and complete

transaction transformation

Algorithm to perform valid and

complete transformation

t = <…>

Start

Meet
quota?

a->…
b->…

…
�->…

Mappings

No

N(t)

Pick one

x->x1, …,xn

History

Stores items we
must not add

xi, …,xj

Filter

E

E = Ø at start

Some add
to E

Others to
history

Next

Add E to
result

Important Property

� The transaction transformation
produced by the Algorithm is valid
and complete.

Experiments

Design

� Purpose

� Study security and efficiency of the model

� Security

� Assume the attacker gets the relative
frequencies

� Implemented genetic algorithm for frequency
analysis

� Efficiency

� Transformation time vs mining time

� Overhead at the miner side

Background knowledge

� Purpose: simulate a real attacker in practice

� Where does the attacker get knowledge?
(Assumption)

� In many cases, the statistics of the global
industry is public (background knowledge)

� Background Knowledge (with two parameters)

� alpha: knows alpha% of large itemsets in
original database

� beta: the support in the knowledge is in the
range

� real support * (1 beta)

0

20

40

60

80

100

100% 90% 80% 70% 60% 50%

M
a

p
p

in
g

 a
c

c
u

ra
c

y
 (

%
)

0%

10%

20%

30%

40%

50%

alpha

beta

Mapping accuracy

� Measure how many mapping is correct

� Only measure those in background knowledge
since there is no info for other mappings

Efficiency

465s383s293s204s80sOriginal mining
cost

1122s945s738s488s195sCost at miner side

11.2s

400k

12.5s9.5s5.5s2.8sCost at owner side

(transformation
and recovery)

500k300k200k100k

Summary

� The idea of substitution cipher is
used in the problem of encryption of
transaction database

� One-to-n item mapping cannot be
directly applied since it is effectively
a one-to-one item mapping

� Transaction transformation is
proposed and shown to be valid and
complete

� Experiments show that it is suitable
for outsourcing

End

