

VLDB 2007

33rd International Conference on Very Large Data Bases September 23-27 2007, University of Vienna, Austria

Why You Should Run TPC-DS: A Workload Analysis

Meikel Poess Oracle USA Raghunath Othayoth Nambiar Hewlett-Packard Company

Dave Walrath Sybase Inc (in absentia)

Agenda

Transaction Processing Performance Council (TPC)
Scope of TPC-DS benchmark
TPC-DS Design Considerations
TPC-DS Workload Analysis
TPC-DS Metric Analysis
Q&A

Transaction Processing Performance Council

TPC Transaction Processing Performance Council

- The TPC defines transaction processing and database benchmarks and delivers trusted results to the industry.
 - Most credible, system-level benchmark evaluation test for the server industry
 - Fulfilling the role of a "Consumer Reports" for the computing industry
 - Scores are the most requested server benchmarks in server RFPs
- Active benchmarks
 - TPC-C: Online transaction processing
 - TPC-H: Data Warehouse for ad hoc queries
 - TPC-App: Application server and web services
 - TPC-E: Online transaction processing (new)
- Benchmarks under development
 - TPC-DS: Decision Support

TPC Membership

TPC Transaction Processing Performance Council

Full Members					
	6 be ar	Bul	DØLL	EnterpriseDB	
EXASOL	FUĴÎTSU		HITACHI	IBM	
INGRES	(intel)	Microsoft	Teradata	NEC	
NETEZZA Tre Asser to Question Encrypting"	ORACLE		Sun microssistems	SYBASE ⁻	
UNISYS					
Associate Members					
Centro Centro Telecommunications International Co. Centro Telecommunications					

What makes the TPC unique

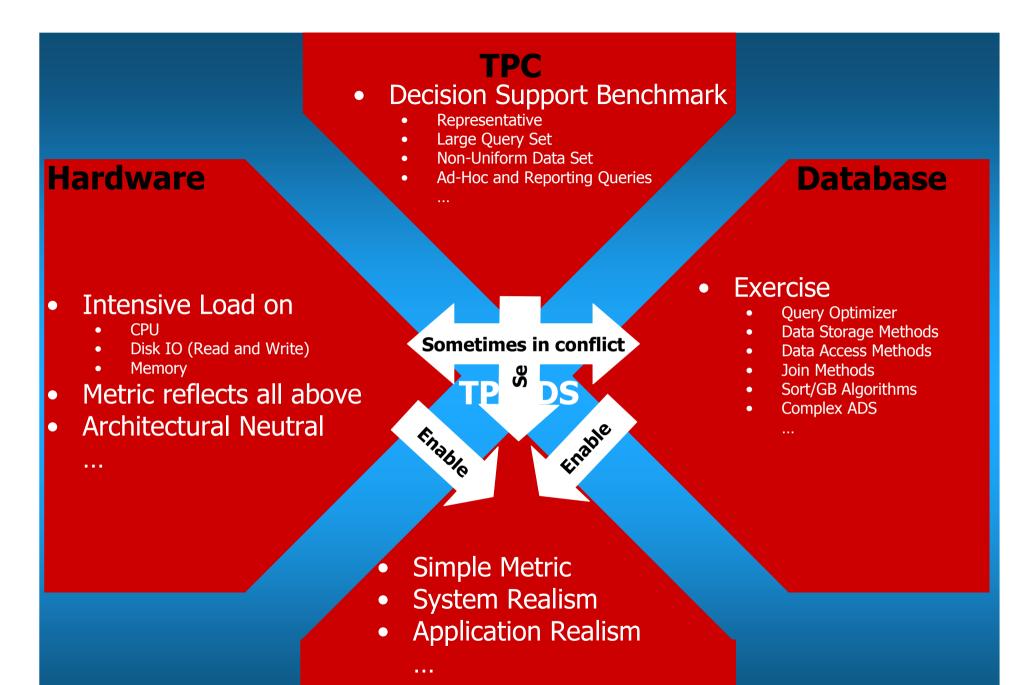
TPC Transaction Processing Performance Council

- TPC is the only benchmark organization that requires priceperformance scores across all of its benchmarks
- All tests require full documentation of the components and applications under test, so that the test can be replicated
- The TPC requires an independent audit of results prior to publication
- Extensive oversight via fair use policies
- TPC tests the whole system performance, not just a piece
- TPC is database agnostic: Oracle, IBM DB2, Sybase, Microsoft SQL Server, NonStop SQL/MX and other databases
- TPC provides cross-platform performance comparisons, a view of processor versus real performance, technology comparisons and actual cost of performance comparisons

Objectives of TPC Benchmarks

- System and database vendors
 - Competitive analysis
 - Release to release progress
 - Technology development
- Customers
 - Cross vendor/architecture performance comparison
 - Cross vendor/architecture TCO comparison
 - Evaluate new technologies
 - Eliminate investment in in-house characterization
- Research community
 - A standard yet customizable workload

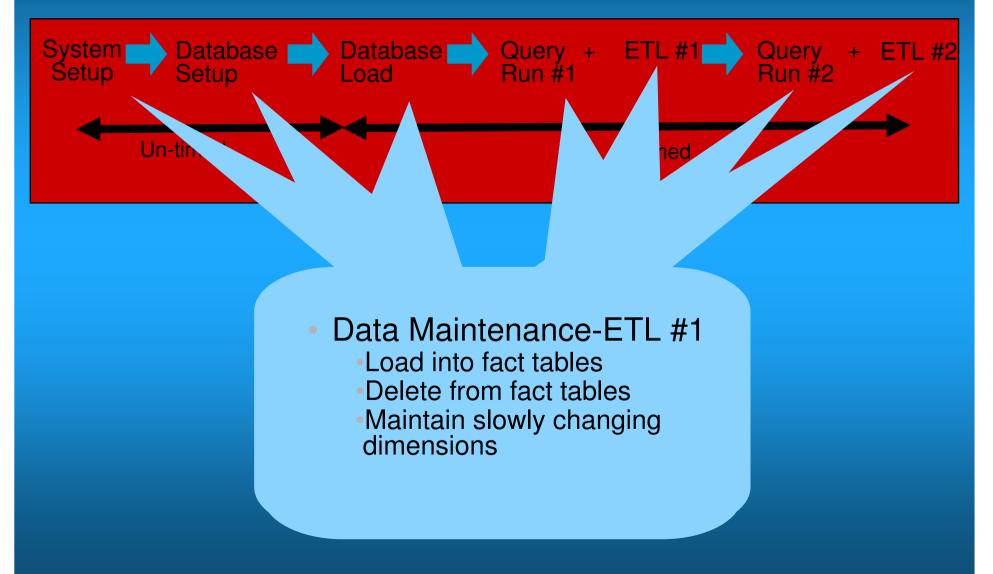
TPC's DW/DSS Benchmark History


- TPC-D Data Warehouse (1995-1999)
- TPC-R Data Warehouse for reporting queries (99-04)
- TPC-H Data Warehouse for ad hoc queries (99current)
- TPC-DS Decision Support (target 2008)
 - Latest status and specification
 - http://www.tpc.org/tpcds/default.asp
 - Series of Presentations
 - TPC-DS, Taking Decision Support Benchmarking to the Next Level, SIGMOD 2002
 - The Making of TPC-DS, VLDB 2006
 - Why You Should Run TPC-DS: Workload Analysis, VLDB 2007

Performance Council

Scope of TPC DS Benchmark

- Measures generally applicable aspects of a Decision Support System
 - Examine large volume of data
 - Give answers to real-world business questions
 - Execute queries of various operational requirements
 - Generate intense activity against the database server component of a system (IO, memory, CPU, Interconnect)
 - Remain closely synchronized with source OLTP database through a periodic database maintenance function
- Provides the industry
 - An objective means of comparing
 - the performance of decision support systems
 - the price-performance of decision support systems
 - A standard yet customizable workload


Gartner Inc. showed business intelligence (BI) as a top priority for CIOs. http://www.gartner.com/2 events/conferences/bie7i.jsp

Benchmark Consumer

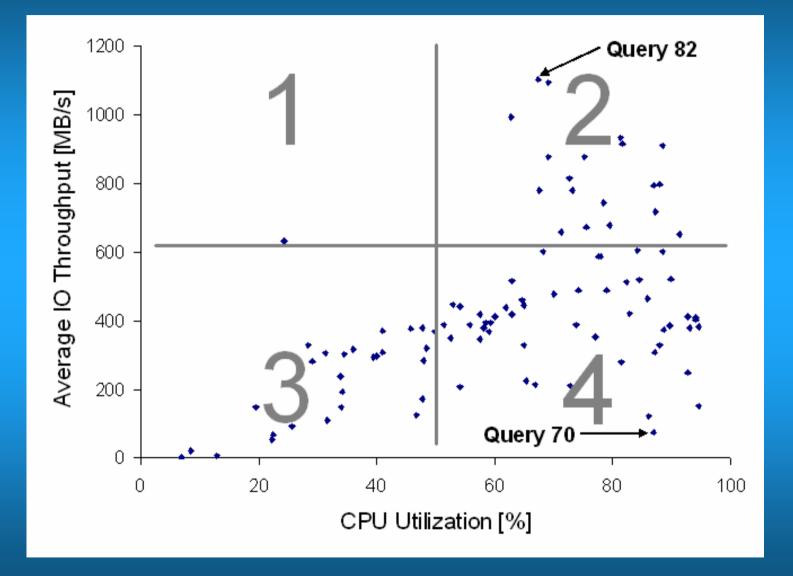
33nd International Conference on Very Large Data Bases, September 23-27 2007, University of Vienna, Austria

Benchmark Execution: Bird's Eye View

Hardware Vendor

RequirementsCPUDisk IORead and Write IOBalanced Query MixMemory AccessArchitectural Neutral

Metric reflects all of the above


Implementation **CPU** bound queries IO bound queries ETL Large query set/concurrent user Large hash/joins, sorts, GB ANSI SQL, wide industrial representation in TPC Metric includes Load, Query and ETL performance

Database Vendor Requirements Implementation			
Query Optimizer	Rich Query Set: - star transformation and traditional large join operations		
Join Operations	 Rich Data Set: NULLs +non-uniform distributions Multiple Snowflake Schemas: Nested Loops Hash Joins Bitmap Joins 		
Sort/GB Operations Complex ADS	 Sort/GB on large data sets ADS are allowed on a subset of the schema 		
Data Storage Techniques – Data Access Patterns –	 Physical Partitioning /Clustering/Compression Query Set allows for large sequential scans and random IOs 		

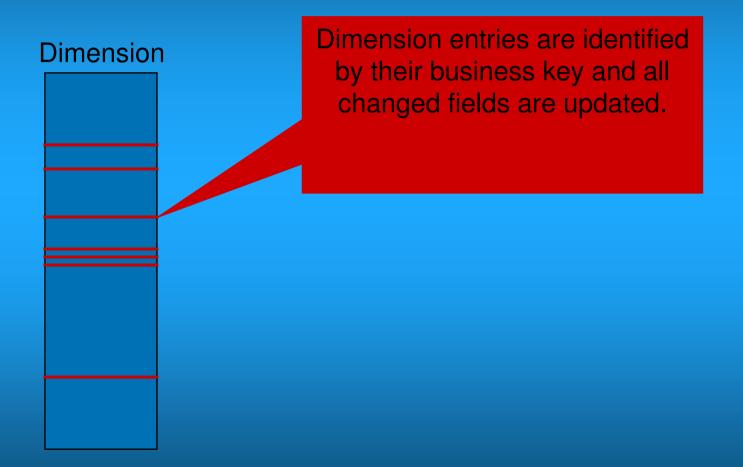
- The query run tests the system's ability to execute the most number of queries in the least amount of time (multi user test)
- Queries can be categorized by:
 - Query Class
 - Ad Hoc
 - Reporting
 - Iterative
 - Data Mining Queries
 - Schema Coverage
 - − Resource Utilization ←
 - SQL Features

Query Categorization by Resource Utilization

14

```
CPU Intensive Query (Query 70)
SELECT
  sum(ss_net_profit) as total_sum. s_state, s_county
 , grouping (s_state) + grouping (s_county)
 , rank() over(partition by grouping(s state)
                         +grouping(s_county)
            , case when grouping (s county) =0
             then s state end
  order by sum(ss net profit) desc)
FROM store sales , date dim , store
WHERE d year = [YEAR]
  AND d date sk = ss sold date sk AND s store sk = ss store sk
 AND s state in
     (SELECT s state
      FROM (SELECT
             s_state , rank() over(partition by s_state
             order by sum(ss net profit)desc) as r
            FROM store sales, store, date dim
            WHERE d year = [YEAR]
              AND d date sk = ss sold date sk AND s store sk = ss store sk
            GROUP BY s state)
       WHERE r <= 5)
 GROUP BY ROLLUP (s state, s county)
 ORDER BY
   lochierarchy desc
  , CASE WHEN lochierarchy = 0 THEN s_state END
  , rank within parent;
```

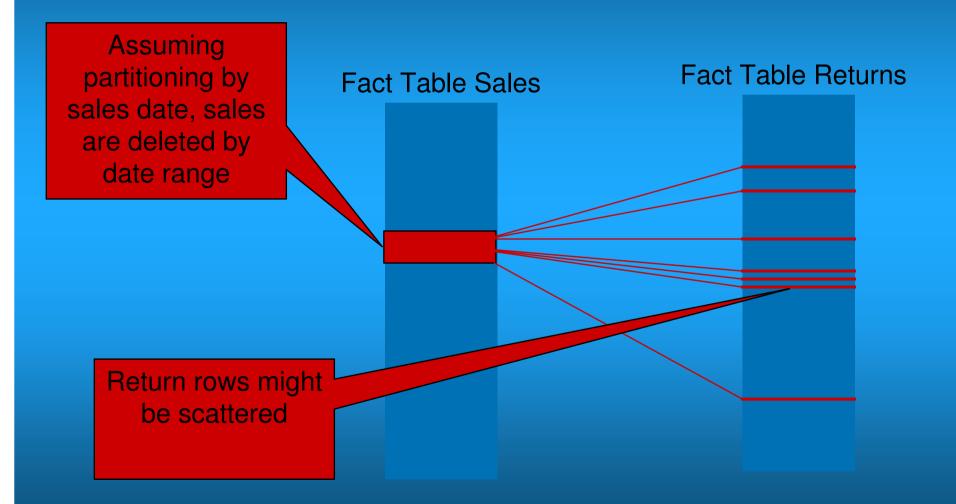
33nd International Conference on Very Large Data Bases, September 23-27 2007, University of Vienna, Austria


IO Intensive Query (82)

SELECT i item id ,i item desc , i current price FROM item, inventory ,date dim ,store sales WHERE i current price between [P] and [P] + 30 AND inv item sk = i item sk AND d date sk=inv date sk AND d date between cast('[DATE]' as date) AND (cast('[DATE]' as date)+60) AND i_manufact_id IN ([ID.1], [ID.2], [ID.3]) AND inv_quantity_on_hand between 100 and 500 AND ss item sk = i item sk GROUP BY i item id ,i item desc ,i_current_price ORDER BY i item id;

Data Maintenance Functions

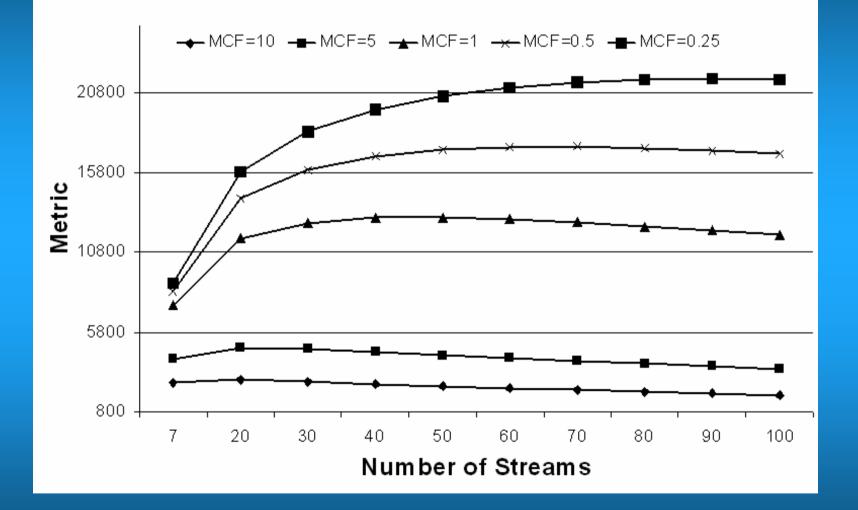
- Are defined as pseudo code
- Can be implemented in SQL, or programming SQL
- Need to guarantee referential integrity
- Maintain slowly changing dimensions
- Insert and delete fact tables


Updates/Inserts/Deletes (non history keeping)

Updates/Inserts/Deletes (history keeping)

Dimension entries are identified Dimension by their business key and end rec date=NULL Then rows is updated by setting end_rec_date to new date New row is inserted

Deletes/Inserts Fact Tables


Primary Performance Metric

Queries per Hour

$$QphDS @ SF = \frac{99 * 2 * S * 3600 * SF}{(T_{TT1} + T_{TT2} + 0.01 * S * T_{Load})}$$

- S: Number of query streams
- SF: Scale Factor
- T_{TT1} and T_{TT2} : elapsed times to complete query run #1 and #2
- T_{LOAD} is the total elapsed time to complete the database load

Metric Analysis: Use of Materialization

33nd International Conference on Very Large Data Bases, September 23-27 2007, University of Vienna, Austria

22

More Information

- Specification
- Dbgen2
- Qgen2
- Query templates
- <u>http://www.tpc.org/tpcds/default.asp</u>

33nd International Conference on Very Large Data Bases, September 23-27 2007, University of Vienna, Austria