

Large Databases?

AT&T has 11 exabytes (10⁷ TB) of wireline, wireless, Internet data

That's

2+ trillion calls = 1 million Libraries of Congress In 2004

National Energy Research Scientific Computing Center (US) 2.8 petabytes

Google's BigTable (US) 1-2 petabytes

Wal-Mart (US) 500 TB 10⁷ transactions / day in 2004

World Data Center For Climate (D) 300 TB

Sprint (US) 2.85 trillion rows

ChoicePoint (US) 250 TB

Enterprise Database Growth?

OLTP Databases 2X every 5 years 2 years (core databases only)

OLTP Workloads 4X every 3 years

OLAP Databases 3X every 3 years

OLAP Workloads 2X every 3 years

Our Digital World?

The Internet has ... 1/2 billion hosts (IP addresses) 1.17 billion users or 17.8% of the world's population The Web has ... 109 million distinct web sites 29.7 billion web pages ~5 pages for every man, woman, and child on the planet

7.2 billion Web searches/month(3.9 billion by Google) far exceed the world population

161 exabytes (10⁸ TB) of information was created or replicated worldwide in 2006.

That's more than in the previous 5,000 years.

IDC estimates 6X growth by 2010 to 988 exabytes (a zetabyte) / year

New technical information doubles every 2 years.

... every 72 hours by 2010.

the largest source of data?

User Generated Content [UGC]

With 185+ million registered users (April 2007) MySpace ...

would be the 6th largest country (between Brasil and Pakistan).

The average MySpace page is visited 30 times a day, to access ...

Images 1+ billion Millions uploaded / day 150,000 requests / second

Songs

25 million 250,000 concurrent streams

Videos

60 TB 60,000 uploaded / day 15,000 concurrent streams

Servers

6,000 web 650 ad 250 database Facebook has ... 1.8 billion photos 31 million active users 10⁵ new users / day 1,800 applications

YouTube Videos 1.7 billion served / month 1 million streams / day = 75 billion e-mails

devices that produce UGC?

The world's 4+ billion devices - cameras, phones, PCs, CCTVs, will increase 50% by 2010.

Internet traffic?

Third-generation fiber optics

... transmits 10 trillion bits / second.

Equal to 1,900 CDs or 150 million simultaneous phone calls every second.

... predicted to triple every 6 months for at least 20 years.

Cisco predicts that IP traffic will quintuple 2006 - 2011

... to 11 exabytes/month.

... and consumer IP traffic will surpass business in 2009.

Communications?

3+ billion calls per day wireline,wireless, and VoIPare growing at 50% CAGR
The number of text messages sent daily exceeds the world population

Did you know...

that this data is ...

• 25% original; 75% replicated

25% from the workplace; 75% not

95% unstructured and growing

 While enterprise data is 10-15% structured and decreasing

What does this all mean?

Shift happens.

We are entering

Computer Science 2.0 A New World of Data Management

Dr. Michael L. Brodie Chief Scientist

Outline

- Databases Bedrock of Modern Business
- **Computer Science 2.0**
- **A New World of Data Management**
- □ Semantic Technologies in CS 2.0
- **Conclusion**

Databases: Bedrock of Modern Business

□ Robust, prototypically successful software market

- US\$15 billion /year
- Continued growth despite growing gap: 10% @ 2X vs. 6X

□ Databases in Large Enterprises (Fortune 50) & Ecosystems

- Online data: petabyte exabyte
- Systems: 5,000 10,000; 10% mission critical
- Databases: 3 5 landscapes / system
- Overlaps: M&A, re-organization, ...
- DBMSs: 3 major; 20+ other
- DBAs: 1,500+
- Database lesson: minor DBA errors cost ... plenty

Fundamental Logical Requirements

Communications Ecosystem

- Marketing
- Ordering
- Provisioning
- Network operations
- Billing
- Care
- Infrastructure

□ History

- In the beginning: stand-alone functions & product lines
- 1980s: manual linkage
- 1990s: long-distance & local, wireline & wireless, Internet, ...
- 2000s: business processes; Web customer portals

Logical Requirements

- Massive Integration across the ecosystem: processes, applications, databases
- Complex processing
 - Precise finance, billing, operations, ...
 - Approximate trend analysis, BI, What if, ...

Database Challenges

□ Barriers

- ... complexity
- ... cost
- ... architectural
- ... operational (QoS)

Operational Requirements

- Agility
- Self-management
- Cost

Computer Science 2.0 Requirements

Physical

- □ Massive scale, growth, & complexity
 - Data
 - Update
 - Analysis
- □ Application specific processing
 - Protein folding, time series, stock trading, social computing, ...
- □ Stringent operational requirements
 - Periodically disconnected
 - Fast recovery / failover
 - Security
 - Etc.
- Distributed across
 - Data stores
 - Platforms: Internet / wireline / wireless / devices
 - An enterprise ecosystem
 - Web
- □ Unstructured 95%
- □ Replicated 75%
- Heterogeneous
- Meta-data

... in a Nutshell

□ Scale

Growth

Diversity

□ Trust

First Wave CS 2.0 Data Stores

Alternative RDBMSs

- Parallel processing appliances
 - Netezza
 - ParAccel
 - SAP BI Accelerator
 - Greenplumb
 - DATAllegro

□ Stream processing

• StreamBase

□ XML

- Tamino
- X-Hive
- TigerLogic
- OLAP Column Stores
 - Vertica
 - Sybase IQ Analytic Server
 - SAND Technology
 - ParAccel
 - MySQL

Web-Scale Physical Stores

- Google's BigTable analytical workloads
- Yahoo!'s PNUTS transactional workloads
- □ Yahoo!'s UDS, UPES, YDHT Web Apps
- □ OceanStore: global store on unreliable servers
- □ Triple stores
 - Garlik: Person information on British citizens
 - YARS: web search & inference
 - Vertica: web search & inference
 - RDFLIb: meta-data store
 - RDF: meta-data store
 - SIMILIE
 - Piggy Bank / Semantic Bank
- User Generated Content stores
 - YouTube.com: videos
 - Joost: Internet-based TV
 - Flickr: photos
 - MySpace: social networking
 - Smugmug: photos
 - SecondLife: social networking
- □ Peer-to-Peer Data Stores: support P2P
- GRID: Scientific Data Services OGSA-DAI

First Wave CS 2.0 Targets

Physical Logical □ Massive Scale, growth, & complexity Ecosystem (Integration) Data • Processes Update Analysis Applications • Application specific processing Databases • Protein folding, time series, stock trading, social computing, ... Stringent operational requirements **Complex Processing** Periodically disconnected • Queries, transactions, Fast recovery / failover processes, and analysis Security Etc. Precise and approximate Distributed across Data stores • Platforms: Internet / wireline / wireless / devices Operational An enterprise ecosystem • Web Unstructured 95% □ Agility **Replicated 75%** Self-management Heterogeneous □ Cost Meta-data

© **verizon** 2007

business

Computer Science 2.0

End of the Computing Era

Imagine a World in Which ...

verizon 2007 ©

The Problem Solving Era

Computer science in the 20th century was about perfect solutions in closed domains and applications. Computer science in the 21st century will be about approximate solutions and frameworks that capture the relationships of partial solutions and requirements ... Dieter Fensel, IEEE Intelligent Systems, November/December 2007.

The old computing is about what computers could do; The new computing is about what people can do... Ben Shneiderman, Leonardo's Laptop: Human Needs and the New Computing Technologies, MIT Press, 2002

Problem Solving Worlds

- □ Services Science (IBM)
- □ Immersive, Interactive Worlds
 - Information / High Performance Workplace
 - ERP
 - MathWorks
 - Second Life / Social Netwoking
 - Warcraft
 - Arden
 - Google Earth

In Computer Science 2.0

Plumbing should ... disappear and manage itself

Cloud Computing

Computer Science 2.0 Plumbing

Agility

□ Service-Oriented Business Platforms (Cloud)

- Business Models: services science
- Process Models: business processes

□ Service-Oriented Software Platforms (Cloud)

- Computational Model: remote invocation
- Application Model: composite applications
- Service-Life-Cycle: service composition and re-use
- Development: independent and collaborative (pub / sub)
- Data Model: (composite) data services

□ Service-Oriented Hardware Platforms (Cloud)

- Hardware elements: devices, networks, CPUs, blades, ...
- Virtual platforms: virtualization, P2P, GRID, SANS, ...
 - o Lateral and horizontal scaling

Problem Solving in the Clouds

□ Many moving parts

- Self-describing (meta-data)
- Self-managing

X-Driven

- Policies
- Rules
- Meta-data
- Models
- Context, e.g., provenance

Information that drives your business

should drive your digital business

SOA Vision

- □ Service Life Cycle
 - Discover
 - Match
 - Select
 - Negotiate
 - Adapt
 - Compose
 - Invoke
 - Mediate
 - Monitor

Enterprise Workplace (Problem Solving)

Unit Business Services

Enterprise Business Services

Data Virtualization (Data Services) Applications (Composite Apps) Applications (Composite Apps)

SOA Reality

Vendors Committed

SOA will underlie the Next Generation of Computing

□ SOA Evolution

- · Fundamentally new misunderstood, complex, many moving parts
- 2003-2004: Enterprise class solutions claimed
- 2007: No complete SOA solutions
- Evolving
 - o 2006: Registry & repositories core of SOA introduced
 - o Framework, Methods, Best Practices, Standards, ...

□ SOA Adoption Rates in Enterprises

- 60-75% using SOA in some form
- 20% selectively use SOA w/o strategy
- 20% enterprise SOA strategy

IT Workbench: Verizon's SOA

Developers Workbench

SOA Execution Environment

SOA Scale

Verizon ITW

Published services

- Total: ~1,000
 - o Internal: 900+
 - o B2B: 100+
- Growth: 50+ / month

□ Subscribers

- Total: ~900
 - o Internal: 825+
 - o B2B: 70+
- Growth: 35 / month
- □ Service calls/day
 - Total: ~22 million
 - o Internal: 21 million
 - o B2B: 1 million
 - Since inception: 5+ billion

Gartner SOA Adoption Stage 4: Plateau

> 500

> 50

> 1 million

SOA Challenges & Maturity

□ Challenges

- Bigger Picture (CS 2.0)
- No "Architecture" in SOA
- No "integration solution", yet every operation requires "integration"
- Governance
- Federation across heterogeneous SOA backplanes, e.g.,
 - o Transparent development What is composition (SCA)
 - o Transparent QoS: performance, latency, and transaction
- Dynamic SOA

□ Fundamentally new technologies take 20-30 years to mature

- Experiment: now
- A robust, scalable platform
 - o COTS product ecosystems: 2010-2012
 - o Enterprise ecosystems: 2012-2015
- Federated SOA: 2012+
 - Compose and execute a significant service-oriented application across an ecosystem transparently of multiple SOA backplanes including specifying and monitoring QoS
- Dynamic SOA: trivial (2010), moderate (2015), significant (?)

April 2007, Trends "Information Fabric 2.0: Enterprise Information Virtualization Gets Real" Multiple-Fabric Integration

Forrester's Digital Business Architecture

Digital Business Architecture

Seven strategic platforms

- SOA platform
- Information fabric
- Interaction platform
- Information Workplace
- Unified communications platform
- Business service management platform
- Business design platform

□ Six subplatforms

- Event management
- Business process management
- Business rules
- Analytics
- Configuration management
- Security

A New World of Data Management

Data Management in SOA

SOA Vision

April 2007, Trends "Information Fabric 2.0: Enterprise Information Virtualization Gets Real" Logical Design

Information Fabric Components

□ Information Fabric Components

- Service registry and discovery
- Integrated enterprise search
- Design-time metadata repository
- Distributed transaction management
- Distributed runtime metadata repository
- Distributed information access
- Information transformation and assembling
- Information quality
- Information security
- Distributed information cache

Is the Information Fabric the DBMS of Computer Science 2.0?

Information Fabric Adoption

□ Strategies and Standards

- Data Services (SDO standard)
- Data Virtualization
- Information as -a Service (laaS)

□ Products: Service Oriented Access to data

- BEA AquaLogic Data Services Platform
- MetaMatrix
- Composite Software
- [Fedora Digital Repository System]

Product Potential

- IBM
- Oracle
- Informatica
- GemStone Systems
- Microsoft
- Progress Software

- Sybase
- Tangosol
- Terracotta
- Xcalia
- Ipedo

SOA Scale & Re-Use

□ SOA Scale: in the future

- Large SOA CRM application ~2,000
 - o User interactions
 - o Business services
 - Fine grained: < 2K lines of C#
 - SOA Re-write of 2 applications: 60 + 36
 - Converge to one: reduce to 30
 - o Infrastructure services
 - o Data services, e.g., 1,000-1,200 major, 600 minor
- SOA Enterprise
 - o Internal: ~1 million (e.g., above X ~5,000)
 - o B2B: thousands
- SOA Web: ~ billions [10,000 WSDL-based Sept 2007]

□ Reuse: Now

• Find 1 in 1,000

□ Semantic Web Services

Enrich Web Service descriptions: SAWSDL

Semantic Technologies in Computer Science 2.0

Semantic Web Services Semantic web

Web Scale SOA Data Integration (SWS)

Web Scale Data Integration (SW)

Semantic Technologies

Meta-data

- Process Languages
 - Business Process Execution Languages (BPEL)
 - BPLE For Web Services (BPEL4WS)
- □ Web / Web Service Description Languages
 - Resource Description Framework (RDF)
 - RDF schema (RDFS)
 - Web Ontology Language (OWL)
 - Web Ontology Language for Services (OWL-S)
 - Web Services Modeling Ontology (WSMO)
 - Web Services Description Language (WSDL)
 - Semantic enhancement of WSDL (WSDL-S)
 - Semantic Annotations for WSDL (SAWSDL)
- □ Ontology stores (RDF, OWL)
 - Triple stores
- Ontology tools, management, validation
 - RDF generators
 - Integrated Ontology Development Toolkit (IBM)
 - Unicorn (IBM) Semantic metadata discovery and management
 - Ontobroker, Ontobroker OWL (Ontoprise)
 - IE tools, mapping tools, ...
 - Protégé
 - Solvent
 - More @ Simile.mit.edu

Processing & Architectures

- Duery / Reasoning / Inference
 - SPARQL: Distributed query over heterogeneous, distributed web resources
- Execution Environments
 - BPEL4WS (service / process models)
 - WSMX (Web Service Modelling eXecution environment) WSMO reference implementation
- Semantic application development environments
 - Top Quadrant: TopBraid
- Domain Specific Ontologies

Semantic Technology Adoption

□ 1990+ Domain-specific ontologies

• For large scale, complex information requirements: life sciences, healthcare, library, defense, government, energy, financial services, ...

□ 2007: Industrial scale use

- Search, information access, data quality and assessment, e-discovery and compliance, and content evaluation
- Web resource descriptions: 2.3 million RDF web pages, 466 million triples (Sept 07)
- Social network tagging FoaF, del.icio.us, flickr, MySpace, Slashdot, Wikipedia, Yahoo! Answers, YouTube, Zillow.com.

□ 2017: Semantic Data and Semantic Web Applications

• Ontologies (RDF, OWL): scale, information integration, and data quality

□ 2027: Semantic Web and Semantic Environments

Source: Enterprise Semantic Web in Practice: Jeff Pollock, Oracle, SemTech 2007 Vendor Implementations: Survey of Tools

Triple Stores

- @Semantics RDFStore
- Franz Allegrograph
- IBM Boca
- Intellidimension RDF Gateway
- Northrop Grumman Tucana Suite
- Ontotext OWLIM
- OpenLink Virtuoso
- Oracle Database 10.2

Enterprise Search and Collaboration

- OpenLink Semantic Web Data Spaces
- Radar Networks
- Siderean Seamark Navigator

Reasoners

RacerPro

Middleware

- IBM WSSR
- Microsoft Connected Services Framework
- Ontology Works
- Ontoprise
- Oracle Fusion Middleware 11g
- Profium Semantic Information Router
- Software AG (webMethods)
- Thetus Publisher

Metadata Tagging

Adobe XMP & Aduna Metadata Server

Development Environments

- Altova SemanticWorks
- HP Jena
- TopQuadrant TopBraid Composer

Semantic Technology Adoption

□ SOA vendors proceeding cautiously

- Modest RDF, OWL support
 - o Registry, repository
 - o More?
- Experimenting with semantics
 - o Customer demand, e.g., life sciences

□ Goals

- Solutions
- Standardization
- Enterprise-class

If it Works for SOA then ...

Data Management

- DBMS semantic heterogeneity
- Data Warehouse

□ Meta-Data Management

- Metadata Management
- Master Data Management

Data / Information Integration

- Extract, Translate and Load (ETL)
- Enterprise Information Integration (EII)
- Enterprise Information Management (EIM)

Content Management

- Web content management
- Record management
- Document management
- Portals

□ Governance

- Policy management
- Rules management
- SLA management

And ...

Application Integration

- Enterprise Application Integration (EAI)
- B2B Gateway
- Enterprise Service Bus (ESB)

Process Integration

- Business Process Management (BPM)
- Business-to-Business Integration (B2Bi)

Processes, Applications, and Information Integration

- Application Servers
- Application Server Platforms
- Application Platform Suites

Enterprise Workplace

- Enterprise Search
- Collaboration
- Communication: E-mail, IM, ...
- Role-based Workspace
- Identity management

Federating Metadata ...

Source: IBM

Conclusion

□ Wave of automation

- Scale
- Growth
- Complexity
- Diversity
- Trust

□ Computer Science 2.0

- Cloud computing
- Service-orientation
- Semantic Technologies

□ New World of Data Management

- Physical: wave of CS 2.0 data stores
- Logical: Information Fabric
- Database Semantic Technology Collaboration for Integration
 - Database: scale, data, information,
 - Semantic Technology: semantics

