

RadixZip: Linear Time
Compression of Token Streams

Binh Vo <binh@google.com>
Gurmeet Singh Manku <manku@google.com>

Google Inc., USA

Data of interest
● Collections of records:

– Databases.
– Logs (query or ad-clicks at Google).
– Tables (telephone records at AT&T).

● Transposing into collections of columns.
– Faster lookup of specific attributes.
– Improved compression.

Context sorting compressors
● BZip - 1994 (Burrows, Wheeler, Seward).

– General purpose compression.
– Based on the BWT (suffix sorting).

● Vczip - 2004 (Vo and Vo).
– Fixed width table compression.
– Based on column dependency (predictor sorting).

● Common theme: sort data by some context.
– A context is any string which helps 'predict' target.
– Similar to sorting the target if prediction is accurate.
– But reversible!

BWT: Suffixes as a context

● Transformed data is more compressible.
– Bzip = BWT + Move-to-Front + Run-Length + Huffman

Column-specific properties
● Boundary awareness:

– Byte indices.
– Intra-token contexts.

● Multi-column context:
– Dependency.
– E.g. a user with a

fixed IP and browser.

Token-specific redundancy
● Boundary awareness:

– Byte indices.
– Intra-token contexts.

● Multi-column context:
– Dependency.
– E.g. a user with a

fixed IP and browser.

Token-specific redundancy
● Boundary awareness:

– Byte indices.
– Intra-token contexts.

● Multi-column context:
– Dependency.
– E.g. a user with a

fixed IP and browser.

Token-specific redundancy
● Boundary awareness:

– Byte indices.
– Intra-token contexts.

● Multi-column context:
– Dependency.
– E.g. a user with a

fixed IP and browser.

RadixZipTransform

● For each col i:
– Sort by token prefixes formed from earlier columns.
– Append reordered col i to output.

RadixZipTransform

● For each col i:
– Sort by token prefixes formed from earlier columns.
– Append reordered col i to output.

RadixZipTransform

● For each col i:
– Sort by token prefixes formed from earlier columns.
– Append reordered col i to output.

RadixZipTransform

● For each col i:
– Sort by token prefixes formed from earlier columns.
– Append reordered col i to output.

RadixZipTransform

● For each col i:
– Sort by token prefixes formed from earlier columns.
– Append reordered col i to output.

Linear Time

● Perform a Radix sort.
● Append one column before each iteration.

Linear Time

● Perform a Radix sort.
● Append one column before each iteration.

Linear Time

● Perform a Radix sort.
● Append one column before each iteration.

Linear Time

● Perform a Radix sort.
● Append one column before each iteration.

Compression benefits

● Preserves byte columns.
● Context sorted, but limited to token boundaries.
● Transformed data is more compressible:

– RadixZip = RadixZipTransform + MTF + RLE + Huffman

Performance
● Linear time complexity.
● Memory properties:

– Requires 8 bytes per token.
– Cache-friendly.

● Comparison to BWT:
– Faster than currently known BWT implementations.
– Similarly, using less memory.
– RadixZip is simple to implement, robust code.

Inter-column dependency

● Passing permutations equivalent to presorting.
● Passed permutations continue to propagate.

RadixZip vs Bzip2 (census data)
● US population survey.

– Fixed-width fields.
– Divided by field.

● RadixZip outperforms
on larger columns.

● Loss on smaller ones,
– Likely due to needing

more byte-columns to
'ramp up'.

● About 15% total gain.

RadixZip vs Bzip2 (census data)
● Compression speed

improves:
– Especially on highly

compressible streams,
– Since Bzip2's alg is

worst-case quadratic.
● Decompression speed

improves.
● Most outliers are on

very small streams.

Dependency results
● Hand-picked

dependencies from
census data.

● Use of a predictor can
reduce compressed
size to ~0.

● High dependency
indicates little to no
new information.

Conclusion
● RadixZipTransform - a linear time transform.
● Improvement in both performance and

compression for token streams over general
purpose compressors.

● Efficient exploitation of stream correlation.

