
Hardik Bati, Leo GiakoumakisLeo GiakoumakisLeo GiakoumakisLeo Giakoumakis, Steve Herbert,
Aleksandras Surna

Microsoft Corporation

� Random testing techniques have been proved to be
useful for testing large, complex software systems

� The use of random testing in SQL Server has been
valuable for several product releases

� Particularly the use of the RAGS system: Slutz, D.
Massive Stochastic Testing of SQL, In Proceedings of the 24th VLDB
Conference, (New York USA 1998), 618-622

�

� Query processor testing challenges:
◦ Practically infinite input space

◦ Dynamic code paths

◦ Difficult to test in isolation

� Random testing challenges:
◦ Ensuring that random tests hit desired targets

◦ Directing the generation process towards desired targets

� RAGS limitations:
◦ Generated queries often contain logical contradictions

◦ Most complex queries don’t return results

� Random testing in SQL ServerRandom testing in SQL ServerRandom testing in SQL ServerRandom testing in SQL Server

� The genetic approach to random testing

� Experimental results

� An integral part of our testing process

� Used in parallel with other testing methods

� Random testing has been invaluable:
◦ Particularly useful during big code restructuring
efforts

◦ Non-trivial defects are found earlier in the test
development cycle

◦ Inexpensive way to build very complex test cases

� Query compiler architecture changed during
the 2000 release
◦ Used the RAGS tool developed by Microsoft Research

◦ Made several extensions since the original version

◦ Uncovered a large number of defects

� SQL server 2005 included significant changes
in the query processor and many new features
◦ Used the method presented in the paper in parallel
with RAGS

◦ The new method discovered 10 times more defects

SELECT soundex(_s4_) _s0_ , atan(_n5_) _n1_ ,
dbo.ufnGetProductStandardCost(_n5_, _d6_) _o2_
from (
select [JobCandidateID] _o8_, [Edu.StartDate] _d7_,
[Edu.EndDate] _d6_, [Edu.Major] _s9_, [Edu.Minor] _s4_,
[Edu.GPA] _s10_, [Edu.GPAScale] _s11_, [Edu.School] _s12_,
[Edu.Loc.CountryRegion] _s13_, [Edu.Loc.State] _s14_,
[Edu.Loc.City] _s15_, Edu.Major] _n16_ ,[ContactID] _n5_ ,

HumanResources.[vJobCandidateEducation]
OUTER APPLY dbo.ufnGetContactInformation([Edu.Major]) as
TVF1) t0
option (loop join)

1. table-value
function

2. XML
column

3. Parallel plan

� All three elements had been tested independently
� The specific combination of all three was not
� The defect was found by a customer 2 months later

� Random testing in SQL Server

� The genetic approach to random testingThe genetic approach to random testingThe genetic approach to random testingThe genetic approach to random testing

� Experimental results

� A simple genetic algorithm produces SQL queries by
combining or mutating existing ones

� The genetic process is guided by feedback from
query execution against the server under test

� Execution feedback is represented as query genes

� The algorithm tries to produce new queries with
unique gene combinations

� Defects are found by the self-checking mechanisms
of the server (asserts) and by comparing results with
a trusted/previous version of the server

Produce
new query

Produce
new query

Best
query
pool

Best
query
pool

Execute
query

Execute
query

Is
query
fit?

Is
query
fit?

Collect
feedback

Collect
feedback

Compute
query genes

Compute
query genes

Discard
query

Discard
query

Server
under
test

Server
under
test

Produce
test

variations

Produce
test

variations

Add to
query pool

Add to
query pool

Create
basic query

set

Create
basic query

set

Analyze DB
schema

Analyze DB
schema

� New queries are produced by mutating or
combining one or more queries from the best
query pool

� Query synthesis techniques are enabled by
the composability of SQL language

� The paper describes a variety of synthesis
techniques; here we present only some basic
examples

SELECT _s12_ _s13_ ,_n14_ + _n14_ _n15_
FROM
(
SELECTSELECTSELECTSELECT [L_ORDERKEY] _n16_, [L_PARTKEY]
n17, [L_EXTENDEDPRICE] _n18_, [L_DISCOUNT]
n19, [L_TAX] _n20_, [L_RETURNFLAG] _s21_
FROMFROMFROMFROM tpch100m.dbo.[LINEITEM]

) t0 RIGHT OUTER JOIN (
SELECT [O_TOTALPRICE] _n14_, [O_COMMENT]
s12
FROM tpch100m.dbo.[ORDERS]
) t1 ON _s12_ > _s21_ and _n14_ = _n16_

� A new query is created as a JOIN of two basic queries

SELECT max(tt._s12_)

FROM

(

SELECT [O_TOTALPRICE] _n14_,

[O_COMMENT] _s12_

FROM tpch100m.dbo.[ORDERS]

) tt

� A basic query is mutated as a derived table with an
aggregate

SELECT _s12_ _s13_ ,_n14_ + _n14_ _n15_

FROM

(

SELECT [L_ORDERKEY] _n16_, [L_PARTKEY] […]

FROM tpch100m.dbo.[LINEITEM]

) t0 RIGHT OUTER JOIN (

SELECT [O_TOTALPRICE] _n14_, [O_COMMENT] _s12_

FROM tpch100m.dbo.[ORDERS]

) t1 ON _s12_ > _s21_ and _n14_ = _n16_

WHERE _s12_ in

(

SELECT max(tt._s12_)

FROM (

SELECT [O_TOTALPRICE] _n14_, [O_COMMENT] _s12_

FROM tpch100m.dbo.[ORDERS]) tt

WHERE tt._n14_ = t1._n14_

)
� Combination of the two previous queries as
sub-query with correlation

� Genes are based on execution feedback
◦ Execution plan
◦ Trace information provided by the server

� Query genes describe code coverage:
◦ Interesting code paths exercised
◦ The context under which those code paths are exercised

� Examples of genes:
◦ “ exercised the [Left Outer Join to Nested Loops]
optimization rule”
◦ “exercised hash join operator” + “parallel query plan”
◦ “line 555 in source file [hash.cpp]”.

[…]

<Iterator PhysicalOp="Sort" LogicalOp="Sort" fLob="1">

<NewChange Old="Nil" New="Dormant" Method="Constructor" />

</Iterator>

<Iterator PhysicalOp="Sort" LogicalOp="Sort" fLob="1">

<NewChange Old="Dormant" New="ScanStart" Method="Open" />

</Iterator>

<Iterator PhysicalOp="Sort" LogicalOp="Sort" fLob="1">

<NewChange Old="Scan" New="EOS" Method="GetRow" />

</Iterator>

[…]

� Execution feedback provided by the server in the form
of XML trace

� Describes iterator types and their state transitions

Iterator type
and attributes

Iterator state
transitions

Rule Succeeded

Join to Nested Loops 3

Left Outer Join to Nested Loops 2

Left Semi-Join to Nested Loops 1

Left Anti-Semi-Join to Nested Loops 0

Join to Hash Join 1

Full Outer Join to Hash Join 0

� Execution feedback is provided by the server via a
system table.

� It describes the set of optimization rules exercised

� The genetic process remembers the set of genes
of each query and its frequency

� During the reproduction process queries with
rare genes are preferred

� New queries with genes seen for the first time
are added to the best query pool

� New queries with genes that were seen before,
are still added to the pool
◦ If they are more readable
◦ Execute faster

� Random testing in SQL Server

� The genetic approach to random testing

� Experimental resultsExperimental resultsExperimental resultsExperimental results

� We present results from three different experiments:
◦ With feedback describing optimization rule coverage
◦ With feedback describing iterator coverage
◦ Without special feedback

� We also compare results with RAGS

� Experiments were done:
◦ on a pre-release version of SQL Server 2008
◦ using a database from TPC-H
◦ over a period of 48 hours

� Code coverage was measured in unique function
invocations (function, function-caller pairs)

� We discussed how random testing is used in
SQL Server

� We presented a new practical technique for
random test case generation, which
outperforms previous methods

� We showed that the use of different types of
execution feedback improves the
effectiveness of random testing

