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� Random testing techniques have been proved to be 
useful for testing large, complex software systems

� The use of random testing in SQL Server has been 
valuable for several product releases

� Particularly the use of the RAGS system: Slutz, D. 
Massive Stochastic Testing of SQL, In Proceedings of the 24th VLDB 
Conference, (New York USA 1998), 618-622

�



� Query processor testing challenges:
◦ Practically infinite input space

◦ Dynamic code paths

◦ Difficult to test in isolation

� Random testing challenges:
◦ Ensuring that random tests hit desired targets

◦ Directing the generation process towards desired targets

� RAGS limitations:
◦ Generated queries often contain logical contradictions

◦ Most complex queries don’t return results
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� An integral part of our testing process

� Used in parallel with other testing methods

� Random testing has been invaluable:
◦ Particularly useful during big code restructuring 
efforts

◦ Non-trivial defects are found earlier in the test 
development cycle

◦ Inexpensive way to build very complex test cases



� Query compiler architecture changed during 
the 2000 release
◦ Used the RAGS tool developed by Microsoft Research

◦ Made several extensions since the original version

◦ Uncovered a large number of defects

� SQL server 2005 included significant changes 
in the query processor and many new features
◦ Used the method presented in the paper in parallel 
with RAGS

◦ The new method discovered 10 times more defects



SELECT soundex(_s4_) _s0_ ,   atan(_n5_) _n1_ ,   
dbo.ufnGetProductStandardCost(_n5_, _d6_) _o2_    
from     (
select [JobCandidateID] _o8_, [Edu.StartDate] _d7_,  
[Edu.EndDate] _d6_, [Edu.Major] _s9_, [Edu.Minor] _s4_,
[Edu.GPA] _s10_, [Edu.GPAScale] _s11_, [Edu.School] _s12_, 
[Edu.Loc.CountryRegion] _s13_, [Edu.Loc.State] _s14_, 
[Edu.Loc.City] _s15_, Edu.Major] _n16_ ,[ContactID] _n5_ , 

HumanResources.[vJobCandidateEducation] 
OUTER APPLY dbo.ufnGetContactInformation([Edu.Major]) as 
TVF1) t0   
option (loop join)

1. table-value 
function

2. XML 
column

3. Parallel plan

� All three elements had been tested independently
� The specific combination of all three was not 
� The defect was found by a customer 2 months later
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� A  simple genetic algorithm produces SQL queries by 
combining or mutating existing ones

� The genetic process is guided by feedback from 
query execution against the server under test

� Execution feedback is represented as query genes

� The algorithm tries to produce new queries with 
unique gene combinations

� Defects are found by the self-checking mechanisms 
of the server (asserts) and by comparing results with 
a trusted/previous version of the server
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� New queries are produced by mutating or 
combining one or more queries from the best 
query pool

� Query synthesis techniques are enabled by 
the composability of SQL language

� The paper describes a variety of synthesis 
techniques; here we present only some basic 
examples



SELECT _s12_ _s13_ ,_n14_ + _n14_ _n15_  
FROM
(
SELECTSELECTSELECTSELECT [L_ORDERKEY] _n16_, [L_PARTKEY]
_n17_, [L_EXTENDEDPRICE] _n18_, [L_DISCOUNT]
_n19_, [L_TAX] _n20_, [L_RETURNFLAG] _s21_
FROMFROMFROMFROM tpch100m.dbo.[LINEITEM] 

) t0 RIGHT OUTER JOIN (
SELECT [O_TOTALPRICE] _n14_, [O_COMMENT]
_s12_ 
FROM tpch100m.dbo.[ORDERS]
) t1 ON _s12_ > _s21_ and _n14_ = _n16_

� A new query is created as a JOIN of two basic queries



SELECT max(tt._s12_) 

FROM 

(

SELECT [O_TOTALPRICE] _n14_,

[O_COMMENT] _s12_ 

FROM tpch100m.dbo.[ORDERS] 

) tt 

� A basic query is mutated as a derived table with an 
aggregate



SELECT _s12_ _s13_ ,_n14_ + _n14_ _n15_  

FROM

(

SELECT [L_ORDERKEY] _n16_, [L_PARTKEY] […]

FROM tpch100m.dbo.[LINEITEM] 

) t0 RIGHT OUTER JOIN (

SELECT [O_TOTALPRICE] _n14_, [O_COMMENT]   _s12_ 

FROM tpch100m.dbo.[ORDERS]

) t1 ON _s12_ > _s21_ and _n14_ = _n16_

WHERE _s12_ in 

(

SELECT max(tt._s12_) 

FROM  (

SELECT [O_TOTALPRICE] _n14_, [O_COMMENT] _s12_ 

FROM tpch100m.dbo.[ORDERS]) tt 

WHERE tt._n14_ = t1._n14_

)
� Combination of the two previous queries as 
sub-query with correlation



� Genes are based on execution feedback 
◦ Execution plan
◦ Trace information provided by the server

� Query genes describe code coverage:
◦ Interesting code paths exercised
◦ The context under which those code paths are exercised

� Examples of genes:
◦ “ exercised the [Left Outer Join to Nested Loops] 
optimization rule”
◦ “exercised hash join operator” + “parallel query plan”
◦ “line 555 in source file [hash.cpp]”.



[…]

<Iterator PhysicalOp="Sort" LogicalOp="Sort" fLob="1">

<NewChange Old="Nil" New="Dormant" Method="Constructor" />

</Iterator>

<Iterator PhysicalOp="Sort" LogicalOp="Sort" fLob="1">

<NewChange Old="Dormant" New="ScanStart" Method="Open" />

</Iterator>

<Iterator PhysicalOp="Sort" LogicalOp="Sort" fLob="1">

<NewChange Old="Scan" New="EOS" Method="GetRow" />

</Iterator>

[…]

� Execution feedback provided by the server in the form 
of XML trace

� Describes iterator types and their state transitions

Iterator type 
and attributes

Iterator state 
transitions



Rule Succeeded

Join to Nested Loops 3

Left Outer Join to Nested Loops 2

Left Semi-Join to Nested Loops 1

Left Anti-Semi-Join to Nested Loops 0

Join to Hash Join 1

Full Outer Join to Hash Join 0

� Execution feedback is provided by the server via a 
system table. 

� It describes the set of optimization rules exercised



� The genetic process remembers the set of genes 
of each query and its frequency

� During the reproduction process queries with 
rare genes are preferred

� New queries with genes seen for the first time 
are added to the best query pool

� New queries with genes that were seen before, 
are still added to the pool
◦ If they are more readable
◦ Execute faster
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� We present results from three different experiments:
◦ With feedback describing optimization rule coverage
◦ With feedback  describing iterator coverage
◦ Without special feedback

� We also compare results with RAGS

� Experiments were done:
◦ on a pre-release version of SQL Server 2008
◦ using a database from TPC-H
◦ over a period of 48 hours

� Code coverage was measured in unique function 
invocations (function, function-caller pairs) 







� We discussed how random testing is used in 
SQL Server

� We presented a new practical technique for 
random test case generation, which 
outperforms previous methods

� We showed that the use of different types of 
execution feedback improves the 
effectiveness of random testing




