
 Sudhir Jorwekar (IIT Bombay)
 Alan Fekete (Univ. Sydney)
 Krithi Ramamritham (IIT Bombay)
 S. Sudarshan (IIT Bombay)

Automating the Detection of
Snapshot Isolation Anomalies

• Non-serializable executions are possible in Snapshot Isolation.
• Many industry applications run on systems that use

Snapshot Isolation as the isolation level
• E.g. Oracle, PostgreSQL, SQL Server etc.

Motivation

• Non-serializable executions are possible in Snapshot Isolation.
• Many industry applications run on systems that use

Snapshot Isolation as the isolation level
• E.g. Oracle, PostgreSQL, SQL Server etc.

Motivation

Theory for identifying such anomalies already exists.
(Needs manual analysis)

To have a tool to examine the application and see whether
or not anomalies are possible when it executes on SI platform.

Automating the fixing the anomalies.

Challenges

• Non-serializable executions are possible in Snapshot Isolation.
• Many industry applications run on systems that use

Snapshot Isolation as the isolation level
• E.g. Oracle, PostgreSQL, SQL Server etc.

Motivation

Theory for identifying such anomalies already exists.
(Needs manual analysis)

Agenda

1. Introduction to Snapshot Isolation Protocol
1. Examples of SI-Anomalies
2. Existing Theory for Detecting SI-Anomalies

4. Analyzing the transaction programs

3. Reducing the false positive

4. Results

What is Snapshot Isolation?

What is Snapshot Isolation?

Snapshot Isolation [Berenson et.al. SIGMOD’95]

What is Snapshot Isolation?

A transaction T executing with Snapshot Isolation

Snapshot Isolation [Berenson et.al. SIGMOD’95]

What is Snapshot Isolation?

A transaction T executing with Snapshot Isolation
• takes snapshot of committed data at start

Snapshot Isolation [Berenson et.al. SIGMOD’95]

What is Snapshot Isolation?

A transaction T executing with Snapshot Isolation
• takes snapshot of committed data at start
• always reads/modifies data in its own snapshot

Snapshot Isolation [Berenson et.al. SIGMOD’95]

What is Snapshot Isolation?

A transaction T executing with Snapshot Isolation
• takes snapshot of committed data at start
• always reads/modifies data in its own snapshot
• updates of concurrent transactions are not visible to T

Snapshot Isolation [Berenson et.al. SIGMOD’95]

What is Snapshot Isolation?

A transaction T executing with Snapshot Isolation
• takes snapshot of committed data at start
• always reads/modifies data in its own snapshot
• updates of concurrent transactions are not visible to T
• writes of T complete when it commits

Snapshot Isolation [Berenson et.al. SIGMOD’95]

What is Snapshot Isolation?

A transaction T executing with Snapshot Isolation
• takes snapshot of committed data at start
• always reads/modifies data in its own snapshot
• updates of concurrent transactions are not visible to T
• writes of T complete when it commits
• T commits only if no other concurrent transaction has already written
the data that T intends to write.

Snapshot Isolation [Berenson et.al. SIGMOD’95]

First Committer Wins

First Committer Wins

T1 : deposits 40 in X T2: deposits 70 in X

R(X, 100)

R(X, 100)

W(X, 170)

W(X, 140)

Commit

Commit request :
Serialization problem is detected by SI.

ABORT!
Avoids lost update anomaly.

Anomaly: Write Skew (with updates)

Constraint: X+Y>=0
Initially, X = 100 and Y = 0

Anomaly: Write Skew (with updates)

T1 : Withdraw 70
from X

T2: Withdraw 90
from Y

R(X, 100)

R(Y, 0)

R(X, 100)

R(Y, 0)

W(Y, -90)

W(X, 30)

Commit

Commit

Constraint: X+Y>=0
Initially, X = 100 and Y = 0

Anomaly: Write Skew (with updates)

T1 : Withdraw 70
from X

T2: Withdraw 90
from Y

R(X, 100)

R(Y, 0)

R(X, 100)

R(Y, 0)

W(Y, -90)

W(X, 30)

Commit

Commit

Constraint: X+Y>=0
Initially, X = 100 and Y = 0

X+Y= − 60

Anomaly: Write Skew (with updates)

T1 : Withdraw 70
from X

T2: Withdraw 90
from Y

R(X, 100)

R(Y, 0)

R(X, 100)

R(Y, 0)

W(Y, -90)

W(X, 30)

Commit

Commit

Constraint: X+Y>=0
Initially, X = 100 and Y = 0

T2T1

X+Y= − 60

Anomaly: Write Skew (with updates)

T1 : Withdraw 70
from X

T2: Withdraw 90
from Y

R(X, 100)

R(Y, 0)

R(X, 100)

R(Y, 0)

W(Y, -90)

W(X, 30)

Commit

Commit

Constraint: X+Y>=0
Initially, X = 100 and Y = 0

Dependency is called vulnerable under SI if it does not prevent transactions from
executing concurrently.
E.g., the rw dependency without ww dependency is vulnerable.

T2T1

X+Y= − 60

Anomaly: Write Skew (with Inserts)

1. A voucher with unique voucher# is to be created for every bill
2. Programmer codes :
 m = select max(vno) ;
 insert new tuple (billno, voucher#=m+1)
3. Let max(vno)=10 and new vouchers for billnumbers X and Y are to be created

Anomaly: Write Skew (with Inserts)

T1 T2

R(max(vno), 10)

R(max(vno), 10)

Insert (X,11)

Insert (Y, 11)

commit

commit

1. A voucher with unique voucher# is to be created for every bill
2. Programmer codes :
 m = select max(vno) ;
 insert new tuple (billno, voucher#=m+1)
3. Let max(vno)=10 and new vouchers for billnumbers X and Y are to be created

Anomaly: Write Skew (with Inserts)

T1 T2

R(max(vno), 10)

R(max(vno), 10)

Insert (X,11)

Insert (Y, 11)

commit

commit

1. A voucher with unique voucher# is to be created for every bill
2. Programmer codes :
 m = select max(vno) ;
 insert new tuple (billno, voucher#=m+1)
3. Let max(vno)=10 and new vouchers for billnumbers X and Y are to be created

Duplicate voucher# created!

Detecting Anomalies: Static Analysis

Goal is to ensure that every possible execution in given application is serializable
(not just a particular execution).

1) Application consists of transaction programs
• from which different transactions are generated depending on

• the control structures
• the parameter values

2) Transactions might interleave in different ways.
3) Hence, it is infeasible to enumerate every possible execution.

Dependencies should be identified
• Between transaction-programs
• for every possible interleaving of transaction programs

Detecting Anomalies: Static Analysis

Nodes : Transaction Programs as nodes.
Edges : Let T1 and T2 be any execution instances of transaction program P1
and P2 respectively

• P1 → P2 if there can exist some T1 that conflicts with some T2
• it is marked vulnerable if dependency does not prevent concurrent

execution

SDG: Static Dependency Graph [Fekete et al. TODS’05]

Detecting Anomalies: Static Analysis

Nodes : Transaction Programs as nodes.
Edges : Let T1 and T2 be any execution instances of transaction program P1
and P2 respectively

• P1 → P2 if there can exist some T1 that conflicts with some T2
• it is marked vulnerable if dependency does not prevent concurrent

execution

SDG: Static Dependency Graph [Fekete et al. TODS’05]

rw conflict from T1 to T2 without ww conflict.

Conditions for Vulnerability

Detecting Anomalies: Static Analysis

P1

P2

P3

P4

Nodes : Transaction Programs as nodes.
Edges : Let T1 and T2 be any execution instances of transaction program P1
and P2 respectively

• P1 → P2 if there can exist some T1 that conflicts with some T2
• it is marked vulnerable if dependency does not prevent concurrent

execution

SDG: Static Dependency Graph [Fekete et al. TODS’05]

rw conflict from T1 to T2 without ww conflict.

Conditions for Vulnerability

Detecting Anomalies: Static Analysis

P

Q

R

S

Detecting Anomalies: Static Analysis

P

Q

R

S

A transaction program P is a pivot if in static dependency graph (SDG), there is a
cycle containing subpath with

Pivot

Detecting Anomalies: Static Analysis

Theorem [Fekete TODS’05]

Absence of pivot implies serializable execution under SI.

P

Q

R

S

A transaction program P is a pivot if in static dependency graph (SDG), there is a
cycle containing subpath with

Pivot

Transaction Programs in SQL Language

1. Program Analysis.
• May not be possible for large applications.

2. SQL traces at backend.
• May not cover all the transaction programs.

We apply our analysis to the set of transaction programs obtained.

Identifying Set of Transaction Programs (SQL)

• SQL statements
 SELECT, INSERT, DELETE etc.

• Parameterization
 WHERE col=:UserInput

Characteristics of Transaction Programs (in SQL)

Identifying Dependencies

Identifying Dependencies

 rset(P) (resp. wset(P)) is the set of columns read (resp. written) by P

Identifying Dependencies

 rset(P) (resp. wset(P)) is the set of columns read (resp. written) by P

begin;
 select * from customer where id=:id;
 update customer set name=?, address=? where id=:id;
commit;

Update Customer Information Transaction Program (UCI)

Identifying Dependencies

 rset(P) (resp. wset(P)) is the set of columns read (resp. written) by P

begin;
 select * from customer where id=:id;
 update customer set name=?, address=? where id=:id;
commit;

Update Customer Information Transaction Program (UCI)

rset(UCI) ={customer.id, customer.name, customer.address}
wset(UCI) ={customer.name, customer.address}

Syntactic Column-based Analysis of Transaction
Programs

Column-based Syntactic Dependency Graph (CSDG)

Syntactic Column-based Analysis of Transaction
Programs

• nodes are transaction programs.
• an edge is marked as pseudovulnerable (PVUL) whenever

 rset(Pi) ∩ wset(Pj) ≠ Θ
• wset(Pi) ∩ wset(Pj) ≠ Θ does not imply ww conflict

Column-based Syntactic Dependency Graph (CSDG)

Syntactic Column-based Analysis of Transaction
Programs

• nodes are transaction programs.
• an edge is marked as pseudovulnerable (PVUL) whenever

 rset(Pi) ∩ wset(Pj) ≠ Θ
• wset(Pi) ∩ wset(Pj) ≠ Θ does not imply ww conflict

Column-based Syntactic Dependency Graph (CSDG)

PB is a syntactic pseudopivot if some cycle of edges in CSDG contains a
subpath

Syntactic Column-based Analysis of Transaction
Programs

• nodes are transaction programs.
• an edge is marked as pseudovulnerable (PVUL) whenever

 rset(Pi) ∩ wset(Pj) ≠ Θ
• wset(Pi) ∩ wset(Pj) ≠ Θ does not imply ww conflict

Column-based Syntactic Dependency Graph (CSDG)

Note: Every pivot is a syntactic pseudopivot. [but not vice-versa]

PB is a syntactic pseudopivot if some cycle of edges in CSDG contains a
subpath

Syntactic Column-based Analysis of Transaction
Programs

• nodes are transaction programs.
• an edge is marked as pseudovulnerable (PVUL) whenever

 rset(Pi) ∩ wset(Pj) ≠ Θ
• wset(Pi) ∩ wset(Pj) ≠ Θ does not imply ww conflict

Column-based Syntactic Dependency Graph (CSDG)

Note: Every pivot is a syntactic pseudopivot. [but not vice-versa]

Theorem

If a set of transaction programs contain no syntactic pseudopivots, then every
execution under SI will in fact be serializable.

PB is a syntactic pseudopivot if some cycle of edges in CSDG contains a
subpath

False Positives

CSDG for Banking Application

Pink nodes: syntactic pseudopivots

False Positives

Many transactions which can
never cause any anomaly are
detected as syntactic pseudopivots.

False positive

CSDG for Banking Application

Pink nodes: syntactic pseudopivots

Eliminating False Positives 1:
Modification Protected Readset

Eliminating False Positives 1:
Modification Protected Readset

begin;
 select * from customer where id=:id;
 update customer set name=?, address=? where id=:id;
commit;

Update Customer Information Transaction Program (UCI)

Eliminating False Positives 1:
Modification Protected Readset

begin;
 select * from customer where id=:id;
 update customer set name=?, address=? where id=:id;
commit;

Update Customer Information Transaction Program (UCI)

rset(UCI) ={customer.id, customer.name, customer.address}
wset(UCI) ={customer.name, customer.address}

Eliminating False Positives 1:
Modification Protected Readset

begin;
 select * from customer where id=:id;
 update customer set name=?, address=? where id=:id;
commit;

Update Customer Information Transaction Program (UCI)

rset(UCI) ={customer.id, customer.name, customer.address}
wset(UCI) ={customer.name, customer.address}

• UCI has a pseudovulnerable self edge
 - due to syntactic conflict between select and update
 seems to imply two copies of UCI could create an anomaly
• But selected row is updated subsequently so first committer wins, the other
aborts

Eliminating False Positives 1:
Modification Protected Readset

begin;
 select * from customer where id=:id;
 update customer set name=?, address=? where id=:id;
commit;

Update Customer Information Transaction Program (UCI)

rset(UCI) ={customer.id, customer.name, customer.address}
wset(UCI) ={customer.name, customer.address}

• UCI has a pseudovulnerable self edge
 - due to syntactic conflict between select and update
 seems to imply two copies of UCI could create an anomaly
• But selected row is updated subsequently so first committer wins, the other
aborts

Modification Protected Readset (MPR)

Eliminating False Positives 2:
New Identifier Generation Test

begin;
select max(accno)+1 as m from account;
insert into account(accno, balance, type) values (:m, 0, :type);

Commit;

Eliminating False Positives 2:
New Identifier Generation Test

• for assigning new primary key (numeric)
• if two transactions read same max value and create same identifier,

SI will not prevent concurrent execution
• but primary key constraint will!

• Checked outside snapshot

Select max() ... Insert

begin;
select max(accno)+1 as m from account;
insert into account(accno, balance, type) values (:m, 0, :type);

Commit;

Eliminating False Positives 3:
Existence Check Before Insert

Eliminating False Positives 3:
Existence Check Before Insert

• Select using primary key can not conflict with Insert of other transaction
having same pattern.

Select with given PK ... if not found (Insert values with same PK)

Eliminating False Positives 3:
Existence Check Before Insert

• Select using primary key can not conflict with Insert of other transaction
having same pattern.

Select with given PK ... if not found (Insert values with same PK)

begin;
select accno as found from account where accno=:m;
if(found==null)

insert into account values (:m, 0, :type);
else
 print ‘Error: Requested account number is already in use’;
endif

commit;

After Eliminating False Positives

1. UCI: MPR
2. DEP: MPR
3. CAc1 & CAc2: EFP1

Eliminated False PositivesCSDG for Banking Application

Pink nodes: remaining syntactic pseudopivots

1. ShW1 & ShW2 (Write Skew with Updates)
2. EOD (Write Skew with Insert)

Remaining Syntactic Psuedopivots

Analyzing an Application

1. Find the set of transaction programs.
2. Create CSDG using Syntactic Analysis and detect syntactic pseudopivots.
3. Reduce false positives.
4. Select appropriate techniques to avoid anomalies (manual)

After using the techniques to avoid anomalies we can rerun the analysis to
check whether they worked.

Results

TPC-C Bank Acad. Financ
e

Distinct transactions 7 7 26 34

Syntactic Pseudopivots
detected

4 7 25 34

EFP1: MPR detected 3 2 11 4

EFP2: New Identifier
Generation
Protection detected

0 2 3 3

EFP3: Existence Check
before Insert Protection
detected

0 0 2 0

Remaining Potential
Pivots

0 3 9 28

Verified True Pivots 0 3 2 2*

Acad and Finance: Real life applications in use at IITB

*: there may be more pivots, we don’t have application code

Conclusion

1. Theory of Syntactic Analysis to obtain a superset of transactions that may
cause anomalies.

2. Studied some general patterns of false positives and proposed sufficient
conditions for identifying such transactions.

3. Developed a tool that can automate the testing of database applications for
safety against SI anomalies
• identified some genuine problems in production code.

Contributions

Conclusion

1. Automating the fixing of the anomalies :
• Developing a generic technique to decide what conflicts to materialize.
• Efficient approximation algorithms to minimize promotions added to

remove anomalies (NP hardness shown in paper).

2. Identifying more false positives :
1. Developing a theory for including workflow constraints .
2. Detecting FPs due to integrity constraints.
3. Identifying some more transaction patterns.

Future work

Thank You!

