
VLDB 2007

IBM T. J. Watson Research

© 2007 IBM Corporation

CellSort: High Performance Sorting
on the Cell Processor

Buğra Gedik, Rajesh R. Bordawekar, Philip S. Yu
IBM Thomas J. Watson Research Center

IBM T. J. Watson Research

© 2007 IBM Corporation2 VLDB 2007

Summary of Results

Designed and implemented CellSort
– A high performance sorting algorithm for Cell

– Based on distributed bitonic merge with SIMDized bitonic sorting kernel

Our results reported in this paper show that:

1. SIMDized bitonic sort kernels are superior to quick sort kernels on Cell. The
same does not hold for SSE-enhanced bitonic sort on Intel Xeons.

2. Distributed in-core sort is highly scalable (SPEs). 16SPEs can sort floats up to
10 x faster, compared to quick sort on dual-core 3.2Ghz Intel Xeon.

3. CellSort becomes memory I/O bound as we go out-of-core. Yet, 16 SPEs can
sort 0.5GB of floats up to 4 x faster compared to dual-core 3.2Ghz Intel Xeon.

– Can sort 0.5GB of ints/floats in ~4 seconds

IBM T. J. Watson Research

© 2007 IBM Corporation3 VLDB 2007

Outline
Cell Architecture Overview

Sorting on the Cell: The Basics

Sorting on the Cell: The Algorithms
– Power-of-two Periodic Bitonic Sort

– SIMDized Bitonic Sort Kernel

– Distributed In-core Bitonic Sort

– Distributed Out-of-core Bitonic Sort

Experimental Results and Analysis

Related Work and Future Plans

Conclusions

IBM T. J. Watson Research

© 2007 IBM Corporation4 VLDB 2007

The Sony-Toshiba-IBM CELL Processor

Heterogeneous multi-core
architecture
– 1 Power Processor Element (PPE)

for control tasks
– 8 Synergistic Processor Elements

(SPE) for data intensive
processing

– High-bandwidth Bus

Each SPE has
– Synergistic Processor Unit (SPU)
– Synergistic Memory Flow (SMF)
– 256 KB Local Memory Store

Lots of parallelism!
– 128-bit SIMD per SPE
– Two-way ILP per SPE
– Combination of short-vector

SIMD, shared and distributed
memory parallel processing

IBM T. J. Watson Research

© 2007 IBM Corporation5 VLDB 2007

Issues in Application Development on Cell

Every cell program potentially a parallel out-of-core application
(here “core” refers to main-memory, not disk)
– Parallelize over multiple SPEs

– Vectorize using SIMD instructions

– Asynchronous DMAs to hide latencies

Weak front-end processor
– An ideal Cell application runs only on SPEs

Other restrictions
– No recursive functions

– No branch prediction hardware

– Everything must be 128-bit aligned

Applications should
– Minimize function calls

– Unroll loops wherever possible

– Avoid comparison-based codes as they
cannot fully exploit instruction-level parallelism

IBM T. J. Watson Research

© 2007 IBM Corporation6 VLDB 2007

Outline
Cell Architecture Overview

Sorting on the Cell: The Basics

Sorting on the Cell: The Algorithms
– Power-of-two Periodic Bitonic Sort

– SIMDized Bitonic Sort Kernel

– Distributed In-core Bitonic Sort

– Distributed Out-of-core Bitonic Sort

Experimental Results and Analysis

Related Work and Future Plans

Conclusions

IBM T. J. Watson Research

© 2007 IBM Corporation7 VLDB 2007

Sorting on the Cell: The Basics
Aim: Out-of-core Distributed SIMD sort-merge algorithm

CellSort follows a three-tiered approach
1. Single-SPE Local Sort: An efficient per-SPE sorting kernel

– We pick bitonic sort: no unpredictable branches, effectively SIMDizable

2. Distributed In-core Sort: Inter-SPE distributed merge after local sorts
– Use shared-address space + async. DMA capabilities, exploit high inter-SPE bandwidth

3. Distributed Out-of-core Sort: Memory-based distributed merge after in-core sorts
– Similar to in-core sort, but uses main memory and different communication patterns
– Less bandwidth available to memory, compared to inter-SPE bandwidth

Three levels of strip-mining
1. Need to work with DMA access limits (16 KB per access)

2. Need to work with small local stores (can hold up to 128 KB of data)

3. Need to work with small collective local stores (can hold up to P *128 KB of data)

We employ bitonic sort in all three tiers, SIMDized at all levels

IBM T. J. Watson Research

© 2007 IBM Corporation8 VLDB 2007

Out-of-core Distributed SIMD Merge-Sort

N = number of items to sort

m = number of items that fit into a local store

P = number of processors

L = number of in-core runs

IBM T. J. Watson Research

© 2007 IBM Corporation9 VLDB 2007

Outline
Cell Architecture Overview

Sorting on the Cell: The Basics

Sorting on the Cell: The Algorithms
Power-of-two Periodic Bitonic Sort

– SIMDized Bitonic Sort Kernel

– Distributed In-core Bitonic Sort

– Distributed Out-of-core Bitonic Sort

Experimental Results and Analysis

Related Work and Future Plans

Conclusions

IBM T. J. Watson Research

© 2007 IBM Corporation10 VLDB 2007

An Θ(n lg2 n) sorting algorithm
– Best-case complexity is the same as the worst-case complexity

Advantages
– Fixed computation pattern irrespective of the input data values

• Easy to unroll loops, avoid branches, make use of ILP

– Accesses contiguous memory locations, good for SIMDization

– Ideal for SIMDization using vector shuffle and compare operators

– Fully parallelizable

complexity with P processors

Disadvantages
– Sub-optimal asymptotic complexity for the sequential case

Periodic Bitonic Sort Network (PBSN)

)lg(2 N
P
N

Θ

IBM T. J. Watson Research

© 2007 IBM Corporation11 VLDB 2007

Example of sorting 8 integers

lgN phases, i th phase is called k-merge (k=2i), produces a k-sorted list
k-sorted list = every k-item block is sorted, in alternating directions
A k-merge phase has lgk steps, i th step is called j-k-swap (j=k/2i)
In a j-k-swap, consecutive j-item blocks are compare and swapped, the compare-and-
swap order is switched after each k-item block

IBM T. J. Watson Research

© 2007 IBM Corporation12 VLDB 2007

Outline
Cell Architecture Overview

Sorting on the Cell: The Basics

Sorting on the Cell: The Algorithms
– Power-of-two Periodic Bitonic Sort

SIMDized Bitonic Sort Kernel

– Distributed In-core Bitonic Sort

– Distributed Out-of-core Bitonic Sort

Experimental Results and Analysis

Related Work and Future Plans

Conclusions

IBM T. J. Watson Research

© 2007 IBM Corporation13 VLDB 2007

SIMDizing the compare-and-swaps

SIMD comparison instruction t = cmpgt(a, b) used to create a mask t

SIMD select instruction a’ = select(a, b, t) used to yield the smaller of the
corresponding items of the two vectors (lower half of the compare-and-swap)

SIMD select instruction b’ = select(b, a, t) used to yield the larger of the
corresponding items of the two vectors (upper half of the compare-and-swap)

In total, the SIMD implementation requires 1 comparison and 2 select
instructions to complete the compare-and-swap. Total of 3 SIMD instructions.

Furthermore, there are no branches involved !!!

a b

a’ b’

128-bit vector
compare-and-swap

3 4 5 2 9 8 7 6

3 8 5 6 9 4 7 2

IBM T. J. Watson Research

© 2007 IBM Corporation14 VLDB 2007

SIMDizing the compare-and-swaps, special cases

When j is smaller than 4 in a j-k-swap, that is (j ∈{1, 2}):
– Blocks to be compare-and-swapped fall into the boundaries of a single vector

– We call these special cases, there are 5 of them
• <j =2, k =4>, <j =2, k ≥ 8>, <j =1, k =2>, <j =1, k =4>, and <j =1, k ≥8>

– These steps require different SIMDization strategies

– Why do we care about these special cases?
• For local sorts (max of 128KB of data), the fraction of j-k-swap steps with j < 4

constitute at least 18.75% of the total
• When implemented in a scalar fashion, they easily dominate the overall cost

We developed individual SIMDization techniques for each of the five
special cases
– These involve SIMD shuffle operations

– Two examples follow: <j =1, k ≥ 8> and <j =2, k =4>

IBM T. J. Watson Research

© 2007 IBM Corporation15 VLDB 2007

SIMDized compare-and-swaps: <j=1,k≥8>

Total of 7 SIMD instructions, 4 more than the regular case

IBM T. J. Watson Research

© 2007 IBM Corporation16 VLDB 2007

SIMDized compare-and-swaps: <j=2,k=4>

Total of 7 SIMD instructions, 4 more than the regular case

Note that the shuffle patterns do not match

IBM T. J. Watson Research

© 2007 IBM Corporation17 VLDB 2007

Outline
Cell Architecture Overview

Sorting on the Cell: The Basics

Sorting on the Cell: The Algorithms
– Power-of-two Periodic Bitonic Sort

– SIMDized Bitonic Sort Kernel

Distributed In-core Bitonic Sort

– Distributed Out-of-core Bitonic Sort

Experimental Results and Analysis

Related Work and Future Plans

Conclusions

IBM T. J. Watson Research

© 2007 IBM Corporation18 VLDB 2007

Distributed SIMD Merge-Sort

N = number of items to sort

m = number of items that fit into a local store

P = number of processors

L = number of in-core runs

IBM T. J. Watson Research

© 2007 IBM Corporation19 VLDB 2007

Distributed In-core Bitonic Sort
Perform P local sorts using the bitonic sorting kernel

Use in-core bitonic merge to yield the final result

The key issue is to implement distributed j-k-swaps of the in-core
bitonic merge, in an efficient manner
– Data transfer patterns

• Make sure half of the processed data is always local
– Data transfer latencies

• Use double-buffering and async. DMAs to hide latencies
– Synchronization

• Most of the time small barriers are sufficient, avoid global barriers

Let’s see an example to illustrate these techniques

IBM T. J. Watson Research

© 2007 IBM Corporation20 VLDB 2007

Distributed in-core j-k-swap

After an in-core distributed j-k-swap, each consecutive 2*j /m
SPEs do a barrier, no global barriers are needed

Remote data (red) is brought into SPE0’s local store one DMA block at a time, using double buffering

Red denote remote data, yellow denote local data

j -k swap, j =2*m, k = 4*m, P = 8

IBM T. J. Watson Research

© 2007 IBM Corporation21 VLDB 2007

Outline
Cell Architecture Overview

Sorting on the Cell: The Basics

Sorting on the Cell: The Algorithms
– Power-of-two Periodic Bitonic Sort

– SIMDized Bitonic Sort Kernel

– Distributed In-core Bitonic Sort

Distributed Out-of-core Bitonic Sort

Experimental Results and Analysis

Related Work and Future Plans

Conclusions

IBM T. J. Watson Research

© 2007 IBM Corporation22 VLDB 2007

Distributed SIMD Merge-Sort

N = number of items to sort

m = number of items that fit into a local store

P = number of processors

L = number of in-core runs

IBM T. J. Watson Research

© 2007 IBM Corporation23 VLDB 2007

Distributed Out-of-core Bitonic Sort
Perform L runs using the distributed in-core sort

Use out-of-core bitonic merge to yield the final result

The key issue is to implement the distributed j-k-swaps of the out-of-
core bitonic merge, in an efficient manner
– Data transfer patterns

• Different than the in-core sort case, all data is remote and in memory
• Two times the bandwidth of the in-core case is needed, whereas only ~1/8th of the

cross-SPE bandwidth is available

– Synchronization
• Barriers are not needed between j-k-swaps, but only after k-merges

– Data transfer latencies
• Use double-buffering and async. DMAs to hide latencies (same as earlier)

Let’s see an example to illustrate these techniques

IBM T. J. Watson Research

© 2007 IBM Corporation24 VLDB 2007

Distributed out-of-core j-k-swap

j -k swap, j =4*m, k = 8*m, P = 2, L=8

SPE 0 always processes the yellow blocks, and SPE 1 red blocks

Important: The coloring is fixed over changing j values
– Thus no barriers are needed between j-k-swaps

‘e’ (even) blocks are compare-and-swapped with ‘o’ (odd) blocks

The ‘e’ and ‘o’ labels are different for different j values

IBM T. J. Watson Research

© 2007 IBM Corporation25 VLDB 2007

Outline
Cell Architecture Overview

Sorting on the Cell: The Basics

Sorting on the Cell: The Algorithms
– Power-of-two Periodic Bitonic Sort

– SIMDized Bitonic Sort Kernel

– Distributed In-core Bitonic Sort

– Distributed Out-of-core Bitonic Sort

Experimental Results and Analysis

Related Work and Future Plans

Conclusions

IBM T. J. Watson Research

© 2007 IBM Corporation26 VLDB 2007

Evaluation Setup
Distributed bitonic sort using up to P = 16 SPEs (3.2GHz) in an IBM QS20 Cell blade
– Alternate sorting kernels: • basic bitonic, • SIMDized bitonic, • shell sort, • quick sort

Single thread quick sort on the PPE (3.2GHz)

Single and dual thread (using OpenMP) quick sort on 3.2GHz Intel Xeon

Quick sort on 3GHz Intel Pentium 4

Single-thread SSE-enhanced bitonic sort on aforementioned Intels

Sort codes for the Intels were compiled using icc compiler with optimizations on

Sort codes for the Cell were compiled using the gnu tool-chain

Maximum number of items that can be sorted
– using local sort is m = 32K (128KBs of data)

– using in-core sort is N = P *m = 16 * 32K = 512K (2MBs of data)

– using out-of-core sort is 128M number of items (0.5GB of data), since the memory available
to us in our test machine was 1GB

In-core and local sorts include the time to transfer items to/from the main memory

IBM T. J. Watson Research

© 2007 IBM Corporation27 VLDB 2007

Local Sort Performance

Single-SPE local sort performance

Local sort, integersLocal sort, floats

items

IBM T. J. Watson Research

© 2007 IBM Corporation28 VLDB 2007

Local Sort Cycle Statistics

IBM T. J. Watson Research

© 2007 IBM Corporation29 VLDB 2007

In-core Sort Performance

In-core sort, integersIn-core sort, floats

2 2

IBM T. J. Watson Research

© 2007 IBM Corporation30 VLDB 2007

Normalized In-core Sort Performance (lower is better)

In-core sort, integersIn-core sort, floats

IBM T. J. Watson Research

© 2007 IBM Corporation31 VLDB 2007

Normalized Out-of-core Sort Performance (lower is better)

IBM T. J. Watson Research

© 2007 IBM Corporation32 VLDB 2007

Scalability

out-of-core

in-core

IBM T. J. Watson Research

© 2007 IBM Corporation33 VLDB 2007

Synchronization Cost

IBM T. J. Watson Research

© 2007 IBM Corporation34 VLDB 2007

Outline
Motivation

Cell Architecture Overview

Sorting on the Cell: The Basics

Sorting on the Cell: The Algorithms
– Power-of-two Periodic Bitonic Sort
– SIMDized Bitonic Sort Kernel
– Distributed In-core Bitonic Sort
– Distributed Out-of-core Bitonic Sort

– Experimental Results and Analysis

Related Work and Future Plans

Conclusions

IBM T. J. Watson Research

© 2007 IBM Corporation35 VLDB 2007

Related Work

Few implementations of merge sort and shell sort that use SIMD
compare operations

Sorting on GPUs (Purcell [2003], Govindaraju [2006], etc.)
– Map the input data on the 2-D texture memory (upto 512 MB)

• Every 32-bit float texture element (pixel) can store upto 4 values (channels)

– Use “large-scale” data-parallel programming over the entire texture
map
• Different than the 128-bit SIMD

– Key advantages over Cell: large memory and cross-vector aggregation
routines

– MS Research TeraSort paper, SIGMOD 2006.

IBM T. J. Watson Research

© 2007 IBM Corporation36 VLDB 2007

Conclusions

CellSort provides high performance at the cost of increased
complexity in programming
– Distributed programming model, synchronization

– Asynchronous DMA transfers, memory alignment requirements

– Excessive loop unrolling and branch avoidance

Unfortunately, out-of-core sort becomes memory bound
– More SPEs with increased collective local store size

– And/Or, higher bandwidth access to main memory

IBM T. J. Watson Research

© 2007 IBM Corporation37 VLDB 2007

Future Plans

Extend to <key, data> pair sorts (easy)

Extend to arbitrary key sizes (alignment is an issue)

Extend to disk-based sorts (need disk arrays and InifiniBand)

Port TeraSort benchmark on the Cell and compare its
performance against GPUs

Questions?
Contact us for the source code.

IBM T. J. Watson Research

© 2007 IBM Corporation38 VLDB 2007

Lessons Learned

Code optimization on Cell is non-trivial
– SIMDization is only the beginning

– Compiler support is very limited for non-numerical applications
• Developers need to think like a compiler

– Control the number of registers to limit register pressure
– Determine the precise extent of unrolling for improving the CPI

– In many cases, unrolling results in modifications to the algorithm

Better performance tools support needed
• Integration of static instruction scheduling information with runtime

measurements and source code
– Better determination of performance hot spots

IBM T. J. Watson Research

© 2007 IBM Corporation39 VLDB 2007

Motivation
Sorting is a key functionality used in a wide variety of application domains
– Large-scale data intensive applications in many fields, ranging from databases to

computer graphics to scientific computing

– Past studies have explored parallelization and vectorization for massively parallel
supercomputers

– Few existing implementations use SIMD to accelerate key steps in the sorting function

– No known implementation on a SIMD-only processor (like Cell)

Sorting has been shown to be very effective on GPUs
– Recent work by Govindaraju, Grey et al (SIGMOD’06) on implementing the TeraSort

benchmark on NVIDIA 7800 GT GPU

Goals:
– To understand issues in developing a scalable and high-performance sorting algorithm on

the Cell processor

– To get in-depth experience with programming and optimizing for the Cell architecture

