

Performance Evaluation and Experimental Assessment
Conscience or Curse of Database Research?

Panelists: Torsten Grust (Technische Universität München)
Martin Kersten (CWI, Amsterdam)
Paul Larson (Microsoft Research)
Guido Moerkotte (Universität Mannheim)
Yannis Papakonstantinou (UCSD)

Moderators: Ioana Manolescu (INRIA Futurs)
Stefan Manegold (CWI, Amsterdam)

09/26/07 Ioana Manolescu
VLDB 2007 experimental panel

Experimental evaluation
in SIGMOD 2007 accepted papers:

some statistics

Ioana Manolescu (INRIA)
with help from Denilson Barbosa (U. Calgary)

09/26/07 Ioana Manolescu
VLDB 2007 experimental panel

SIGMOD 2007 research papers
(total: 68)

Present
exper-
iments

No exper-
iments

09/26/07 Ioana Manolescu
VLDB 2007 experimental panel

SIGMOD 2007 industrial papers (total: 15)

Present
exper-
iments

No exper-
iments

09/26/07 Ioana Manolescu
VLDB 2007 experimental panel

Hardware used in experiments

At least a
PC

Other

Unspeci-
fied

09/26/07 Ioana Manolescu
VLDB 2007 experimental panel

Hardware beyond 1 PC (total: 17)

Multi-proc

Distributed
network

Flash
memory

Special
hardware

Mac

Sun

09/26/07 Ioana Manolescu
VLDB 2007 experimental panel

OS used in experiments

Linux

Windows

AIX

Mac

Solaris

Unspecified

09/26/07 Ioana Manolescu
VLDB 2007 experimental panel

Programming language

C

C++

Java

Xquery

C#

Teja C

Unspecified

09/26/07 Ioana Manolescu
VLDB 2007 experimental panelPapers

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

Data sources used in experiments

Papers with
experi-
ments

Author-
produced

Pre-existing
data

09/26/07 Ioana Manolescu
VLDB 2007 experimental panel

Anecdote

“Note that we were not able to compare timing results
directly with X since a working executable/code
is not directly available.1

1Personal communication with the authors.”

Torsten Grust
Technische Universität München

http://www-db.in.tum.de/~grust/

Experimental Assessments
in Research Papers Today
A Little Shop of Horrors

http://www-db.in.tum.de/~grust/
http://www-db.in.tum.de/~grust/

Torsten Grust Technische Universität München

“Let them figure out the
correct syntax...”

2

The Development of a Structural Index for XML Query Evaluation · 7

competitive compression ratio and excellent query processing time when compared

to the state-of-the-art XML compressors.
1.6 Organization
The rest of this paper is organized as follows. In Section 2, we give the preliminaries of

this paper and discuss the related work of the XML indexes and the XML compressors. In

Section 3, we define the SIT and its construction algorithms. In Section 4, we propose the

SIT-lattice, discuss the strategies to specify an SLE and present the algorithms to construct

an SLE. In Section 5, we outline the XQzip architecture, describe a queriable compressed

data storage model and discuss query evaluation on the compressed data using the SIT. In

Section 6 we present a wide spectrum of experimental results related to the performance

of the SIT, the SLEs and XQzip. In Section 7, we give our concluding remarks and discuss

future work resulting from the SIT-lattice and XQzip.
2. PRELIMINARIES AND RELATED WORK
This section describes the preliminaries of this paper and the related work of the SIT index,

the lattice and the XML compressor. We assume the readers have the sufficient knowledge

of Extensible Markup Language (XML) [22; 7; 10; 12; 43; 74], the XML Parsers such as the

Document Object Model (DOM) [40], the Simple API for XML (SAX) event stream model

[67], and finally the core XML query language XPath [22; 7].

2.1 XPath Queries SupportedWe mainly focus on the processing of a practical fragment of XPath queries in the scope

of our investigation. We support three main kinds of XPath queries as follows.

First, we support all XPath 2.0 axes except “preceding”, “preceding-sibling”,

“following” and “following-sibling”. The node test is simplified in the SIT,

since we only need to compare the label id of a node with the label id of an element in

the query. A predicate further refines the set of nodes selected by the location step. The

predicate can be multiple predicates combined with logical operators, or another location

path that may contain nested predicates and so on recursively. We support the following

output expressions: (1) not specified: all elements in the set of result nodes are returned;

(2) “/text()”: only text contents of the set of the result nodes are returned; (3) one of

the five aggregate operations: count(), sum(), avg(), min() and max(); and (4)

predicate query, which is of the form, “[QP]”, where QP is a location path: the result of

the predicate query is either “true” if QP evaluates to be true, or “false” otherwise.

Second, we also support the union expression in XPath 2.0, which allows the selection

of more than one distinct element by a single query. For example, the query (unabbrevi-

ated syntax) “/descendant::Orderitem[child::discount[.>= 20% and

.<= 50%]]/ (@id | child::quantity | child::price)” selects the at-

tribute id, the child elements quantity and price of all the Orderitem elements

that are descendants of the context node and that have a discount child whose value is

in the range 20 to 50%.Finally, a desirable feature of our set of queries is that it allows aggregation, which con-

sists of count(), sum(), avg(), min() and max(), to be imposed as a predicate. We

combine aggregation-based, structure-based and value-based predicates by the logical op-

erators, not, or and and, which allows more expressive queries. For example, in the fol-

lowing query, “/descendant::a[[[child::b = "B"] and [descendant::c]]

ACM Transactions on Internet Technology, Vol. V, No. N, MM 20YY.

Torsten Grust Technische Universität München

“Let them figure out the
correct syntax...”

• Apparent lack of language knowledge / care
doesn’t help your case.

2

The Development of a Structural Index for XML Query Evaluation · 7

competitive compression ratio and excellent query processing time when compared

to the state-of-the-art XML compressors.
1.6 Organization
The rest of this paper is organized as follows. In Section 2, we give the preliminaries of

this paper and discuss the related work of the XML indexes and the XML compressors. In

Section 3, we define the SIT and its construction algorithms. In Section 4, we propose the

SIT-lattice, discuss the strategies to specify an SLE and present the algorithms to construct

an SLE. In Section 5, we outline the XQzip architecture, describe a queriable compressed

data storage model and discuss query evaluation on the compressed data using the SIT. In

Section 6 we present a wide spectrum of experimental results related to the performance

of the SIT, the SLEs and XQzip. In Section 7, we give our concluding remarks and discuss

future work resulting from the SIT-lattice and XQzip.
2. PRELIMINARIES AND RELATED WORK
This section describes the preliminaries of this paper and the related work of the SIT index,

the lattice and the XML compressor. We assume the readers have the sufficient knowledge

of Extensible Markup Language (XML) [22; 7; 10; 12; 43; 74], the XML Parsers such as the

Document Object Model (DOM) [40], the Simple API for XML (SAX) event stream model

[67], and finally the core XML query language XPath [22; 7].

2.1 XPath Queries SupportedWe mainly focus on the processing of a practical fragment of XPath queries in the scope

of our investigation. We support three main kinds of XPath queries as follows.

First, we support all XPath 2.0 axes except “preceding”, “preceding-sibling”,

“following” and “following-sibling”. The node test is simplified in the SIT,

since we only need to compare the label id of a node with the label id of an element in

the query. A predicate further refines the set of nodes selected by the location step. The

predicate can be multiple predicates combined with logical operators, or another location

path that may contain nested predicates and so on recursively. We support the following

output expressions: (1) not specified: all elements in the set of result nodes are returned;

(2) “/text()”: only text contents of the set of the result nodes are returned; (3) one of

the five aggregate operations: count(), sum(), avg(), min() and max(); and (4)

predicate query, which is of the form, “[QP]”, where QP is a location path: the result of

the predicate query is either “true” if QP evaluates to be true, or “false” otherwise.

Second, we also support the union expression in XPath 2.0, which allows the selection

of more than one distinct element by a single query. For example, the query (unabbrevi-

ated syntax) “/descendant::Orderitem[child::discount[.>= 20% and

.<= 50%]]/ (@id | child::quantity | child::price)” selects the at-

tribute id, the child elements quantity and price of all the Orderitem elements

that are descendants of the context node and that have a discount child whose value is

in the range 20 to 50%.Finally, a desirable feature of our set of queries is that it allows aggregation, which con-

sists of count(), sum(), avg(), min() and max(), to be imposed as a predicate. We

combine aggregation-based, structure-based and value-based predicates by the logical op-

erators, not, or and and, which allows more expressive queries. For example, in the fol-

lowing query, “/descendant::a[[[child::b = "B"] and [descendant::c]]

ACM Transactions on Internet Technology, Vol. V, No. N, MM 20YY.

Torsten Grust Technische Universität München

“Let them figure out the
correct syntax...”

• Apparent lack of language knowledge / care
doesn’t help your case.

• Show love respect for your object of study.

2

The Development of a Structural Index for XML Query Evaluation · 7

competitive compression ratio and excellent query processing time when compared

to the state-of-the-art XML compressors.
1.6 Organization
The rest of this paper is organized as follows. In Section 2, we give the preliminaries of

this paper and discuss the related work of the XML indexes and the XML compressors. In

Section 3, we define the SIT and its construction algorithms. In Section 4, we propose the

SIT-lattice, discuss the strategies to specify an SLE and present the algorithms to construct

an SLE. In Section 5, we outline the XQzip architecture, describe a queriable compressed

data storage model and discuss query evaluation on the compressed data using the SIT. In

Section 6 we present a wide spectrum of experimental results related to the performance

of the SIT, the SLEs and XQzip. In Section 7, we give our concluding remarks and discuss

future work resulting from the SIT-lattice and XQzip.
2. PRELIMINARIES AND RELATED WORK
This section describes the preliminaries of this paper and the related work of the SIT index,

the lattice and the XML compressor. We assume the readers have the sufficient knowledge

of Extensible Markup Language (XML) [22; 7; 10; 12; 43; 74], the XML Parsers such as the

Document Object Model (DOM) [40], the Simple API for XML (SAX) event stream model

[67], and finally the core XML query language XPath [22; 7].

2.1 XPath Queries SupportedWe mainly focus on the processing of a practical fragment of XPath queries in the scope

of our investigation. We support three main kinds of XPath queries as follows.

First, we support all XPath 2.0 axes except “preceding”, “preceding-sibling”,

“following” and “following-sibling”. The node test is simplified in the SIT,

since we only need to compare the label id of a node with the label id of an element in

the query. A predicate further refines the set of nodes selected by the location step. The

predicate can be multiple predicates combined with logical operators, or another location

path that may contain nested predicates and so on recursively. We support the following

output expressions: (1) not specified: all elements in the set of result nodes are returned;

(2) “/text()”: only text contents of the set of the result nodes are returned; (3) one of

the five aggregate operations: count(), sum(), avg(), min() and max(); and (4)

predicate query, which is of the form, “[QP]”, where QP is a location path: the result of

the predicate query is either “true” if QP evaluates to be true, or “false” otherwise.

Second, we also support the union expression in XPath 2.0, which allows the selection

of more than one distinct element by a single query. For example, the query (unabbrevi-

ated syntax) “/descendant::Orderitem[child::discount[.>= 20% and

.<= 50%]]/ (@id | child::quantity | child::price)” selects the at-

tribute id, the child elements quantity and price of all the Orderitem elements

that are descendants of the context node and that have a discount child whose value is

in the range 20 to 50%.Finally, a desirable feature of our set of queries is that it allows aggregation, which con-

sists of count(), sum(), avg(), min() and max(), to be imposed as a predicate. We

combine aggregation-based, structure-based and value-based predicates by the logical op-

erators, not, or and and, which allows more expressive queries. For example, in the fol-

lowing query, “/descendant::a[[[child::b = "B"] and [descendant::c]]

ACM Transactions on Internet Technology, Vol. V, No. N, MM 20YY.

✘

Torsten Grust Technische Universität München

You can typeset {} in LaTeX

3

Isolating Order Semantics in Order-SensitiveXQuery-to-SQL Translation
Song Wang, Ling Wang and Elke A. RundensteinerComputer Science Department, Worcester Polytechnic Institute, Worcester, MA 01609(songwang|lingw|rundenst)@cs.wpi.edu

ABSTRACT
XQuery has ordered semantics due to implicit XML doc-ument order and explicit orderby clauses. Yet order sen-sitive XQuery processing over XML views wrapping a re-lational database remains largely unexplored. In this pa-per, we propose an algebraic approach for inferencing aboutand then isolating the ordered semantics in XQuery. Ourapproach turns an ordered XQuery algebra plan into anunordered query plan decorated with order context anno-tations. This enables existing order insensitive algebraicoptimization techniques to be applied to processing ordersensitive XQueries, specially on XML views of XML shred-ding in relational storage. Moreover multiple SQL transla-tion alternatives, based on various computation push downdecisions, are discussed. Interesting performance trade-offsamong these alternatives are illustrated by our experimentalstudy.

1. INTRODUCTION
Motivation. XML is an ordered data model and XQuery [11]has ordered semantics due to the implicit XML documentorder, explicit orderby clauses and order sensitive functions.To support this, several order sensitive algebras for nativeXQuery engines, such as TIMBER [7], Natix [6] and Rain-bow [14], have been proposed. Algebraic XQuery optimiza-tion and execution are generally performed with special careconsidering the physical order of the input and output ofeach operator (e.g. [2]). These order sensitive algebras arehence implemented with support from a customized XMLstorage manager.
On the other hand, extending existing relational queryengines to process XML queries has also gotten a lot of at-tention recently [3, 8]. The advantage of using relationaldatabases as XML storage manager is that traditional solu-tions for transaction management, indexing and query opti-mization can be utilized. Shredding of XML documents intorelational data model and translation of XQuery into SQLclearly become most essential issues in this scenario. Manyquery translation approaches proposed already for XQuery-SQL translation [5]. However order sensitive XQuery pro-

Permission to make digital or hard copies of all or part of this work forpersonal or classroom use is granted without fee provided that copies arenot made or distributed for profit or commercial advantage and that copiesbear this notice and the full citation on the first page. To copy otherwise, torepublish, to post on servers or to redistribute to lists, requires prior specificpermission and/or a fee.
CIKM ’05 Bremen, GermanyCopyright 200X ACM X-XXXXX-XX-X/XX/XX ...$5.00.

cessing over XML shredding in relational storage has not yetbeen fully addressed in the literature.In [10], three order encoding methods are proposed andcompared for shredding an XML document along with thedocument order into relational tables. Beyond the order en-coding methods, our work in this paper provides a generalframework to process XQuery expressions over relationalstorage efficiently even under ordered semantics. The focusof this work lies on the isolation of the ordered semanticsin the composed user XQuery and XML view query. Thisway the order semantics can be ignored at the time doingquery optimization. The existing order insensitive optimiza-tion techniques are allowed to be applied directly if desired.Finally SQL translation can be achieved correctly by “at-taching” back the isolated order semantics.

101
POSITIONPIDIID

RECORDLIST

Back Street Boy314
Project X213
Misfits112
BAND_PCDATAPOSITIONPIDIID

PLAY

Shutdown237

Bullet148

We Are 138249

SXE Revenge136
She125
SONG_PCDATAPOSITIONPIDIID

SONG

(a)

<RECORDLIST>
for $play in

document("dxv.xml")/PLAY/ROWOrder by $play/POSITION/text()return
<PLAY>
<BAND/>$play/BAND_PCDATA/text(),for $song in

document("dxv.xml")/SONG/ROW[PID/text() = $play/IID/text()]order by $song/POSITION/text() return
<SONG>
$song/SONG_PCDATA/text()</SONG>

</PLAY>
</RECORDLIST>

(b)
Figure 1: (a) Relational Shredding. (b) View Query

<SONGLIST>
for $uPlay in document(“record.xml")/PLAYorder by $uPlay/BAND/text()return

$uPlay/SONG[2]/text() </SONGLIST>

Figure 2: Example Order Sensitive XQuery

Running Example. The XML document order is first en-coded in the relational storage. Figure 1(a) shows an exam-ple of storing an XML document in relational tables achievedby using the inline loading with the local order encoding1.Then the view query would extract the order encoding andrebuild the XML view. The view query expressed in XQueryin Figure 1(b) reconstructs a virtual XML view identical tothe original XML document from the default XML viewdxv.xml of the relational tables (see [8]). A user XQuery
1Our approach is not limited to this loading.

Torsten Grust Technische Universität München

You can typeset {} in LaTeX

• Missing {} in
node constructors,

• document(⋯)?,

• miXeD cASe KEyWorDS,

• empty <BAND/> tag
suspicious....

3

Isolating Order Semantics in Order-SensitiveXQuery-to-SQL Translation
Song Wang, Ling Wang and Elke A. RundensteinerComputer Science Department, Worcester Polytechnic Institute, Worcester, MA 01609(songwang|lingw|rundenst)@cs.wpi.edu

ABSTRACT
XQuery has ordered semantics due to implicit XML doc-ument order and explicit orderby clauses. Yet order sen-sitive XQuery processing over XML views wrapping a re-lational database remains largely unexplored. In this pa-per, we propose an algebraic approach for inferencing aboutand then isolating the ordered semantics in XQuery. Ourapproach turns an ordered XQuery algebra plan into anunordered query plan decorated with order context anno-tations. This enables existing order insensitive algebraicoptimization techniques to be applied to processing ordersensitive XQueries, specially on XML views of XML shred-ding in relational storage. Moreover multiple SQL transla-tion alternatives, based on various computation push downdecisions, are discussed. Interesting performance trade-offsamong these alternatives are illustrated by our experimentalstudy.

1. INTRODUCTION
Motivation. XML is an ordered data model and XQuery [11]has ordered semantics due to the implicit XML documentorder, explicit orderby clauses and order sensitive functions.To support this, several order sensitive algebras for nativeXQuery engines, such as TIMBER [7], Natix [6] and Rain-bow [14], have been proposed. Algebraic XQuery optimiza-tion and execution are generally performed with special careconsidering the physical order of the input and output ofeach operator (e.g. [2]). These order sensitive algebras arehence implemented with support from a customized XMLstorage manager.
On the other hand, extending existing relational queryengines to process XML queries has also gotten a lot of at-tention recently [3, 8]. The advantage of using relationaldatabases as XML storage manager is that traditional solu-tions for transaction management, indexing and query opti-mization can be utilized. Shredding of XML documents intorelational data model and translation of XQuery into SQLclearly become most essential issues in this scenario. Manyquery translation approaches proposed already for XQuery-SQL translation [5]. However order sensitive XQuery pro-

Permission to make digital or hard copies of all or part of this work forpersonal or classroom use is granted without fee provided that copies arenot made or distributed for profit or commercial advantage and that copiesbear this notice and the full citation on the first page. To copy otherwise, torepublish, to post on servers or to redistribute to lists, requires prior specificpermission and/or a fee.
CIKM ’05 Bremen, GermanyCopyright 200X ACM X-XXXXX-XX-X/XX/XX ...$5.00.

cessing over XML shredding in relational storage has not yetbeen fully addressed in the literature.In [10], three order encoding methods are proposed andcompared for shredding an XML document along with thedocument order into relational tables. Beyond the order en-coding methods, our work in this paper provides a generalframework to process XQuery expressions over relationalstorage efficiently even under ordered semantics. The focusof this work lies on the isolation of the ordered semanticsin the composed user XQuery and XML view query. Thisway the order semantics can be ignored at the time doingquery optimization. The existing order insensitive optimiza-tion techniques are allowed to be applied directly if desired.Finally SQL translation can be achieved correctly by “at-taching” back the isolated order semantics.

101
POSITIONPIDIID

RECORDLIST

Back Street Boy314
Project X213
Misfits112
BAND_PCDATAPOSITIONPIDIID

PLAY

Shutdown237

Bullet148

We Are 138249

SXE Revenge136
She125
SONG_PCDATAPOSITIONPIDIID

SONG

(a)

<RECORDLIST>
for $play in

document("dxv.xml")/PLAY/ROWOrder by $play/POSITION/text()return
<PLAY>
<BAND/>$play/BAND_PCDATA/text(),for $song in

document("dxv.xml")/SONG/ROW[PID/text() = $play/IID/text()]order by $song/POSITION/text() return
<SONG>
$song/SONG_PCDATA/text()</SONG>

</PLAY>
</RECORDLIST>

(b)
Figure 1: (a) Relational Shredding. (b) View Query

<SONGLIST>
for $uPlay in document(“record.xml")/PLAYorder by $uPlay/BAND/text()return

$uPlay/SONG[2]/text() </SONGLIST>

Figure 2: Example Order Sensitive XQuery

Running Example. The XML document order is first en-coded in the relational storage. Figure 1(a) shows an exam-ple of storing an XML document in relational tables achievedby using the inline loading with the local order encoding1.Then the view query would extract the order encoding andrebuild the XML view. The view query expressed in XQueryin Figure 1(b) reconstructs a virtual XML view identical tothe original XML document from the default XML viewdxv.xml of the relational tables (see [8]). A user XQuery
1Our approach is not limited to this loading.

Torsten Grust Technische Universität München

You can typeset {} in LaTeX

• Missing {} in
node constructors,

• document(⋯)?,

• miXeD cASe KEyWorDS,

• empty <BAND/> tag
suspicious....

• This is the running
example in this paper.

3

Isolating Order Semantics in Order-SensitiveXQuery-to-SQL Translation
Song Wang, Ling Wang and Elke A. RundensteinerComputer Science Department, Worcester Polytechnic Institute, Worcester, MA 01609(songwang|lingw|rundenst)@cs.wpi.edu

ABSTRACT
XQuery has ordered semantics due to implicit XML doc-ument order and explicit orderby clauses. Yet order sen-sitive XQuery processing over XML views wrapping a re-lational database remains largely unexplored. In this pa-per, we propose an algebraic approach for inferencing aboutand then isolating the ordered semantics in XQuery. Ourapproach turns an ordered XQuery algebra plan into anunordered query plan decorated with order context anno-tations. This enables existing order insensitive algebraicoptimization techniques to be applied to processing ordersensitive XQueries, specially on XML views of XML shred-ding in relational storage. Moreover multiple SQL transla-tion alternatives, based on various computation push downdecisions, are discussed. Interesting performance trade-offsamong these alternatives are illustrated by our experimentalstudy.

1. INTRODUCTION
Motivation. XML is an ordered data model and XQuery [11]has ordered semantics due to the implicit XML documentorder, explicit orderby clauses and order sensitive functions.To support this, several order sensitive algebras for nativeXQuery engines, such as TIMBER [7], Natix [6] and Rain-bow [14], have been proposed. Algebraic XQuery optimiza-tion and execution are generally performed with special careconsidering the physical order of the input and output ofeach operator (e.g. [2]). These order sensitive algebras arehence implemented with support from a customized XMLstorage manager.
On the other hand, extending existing relational queryengines to process XML queries has also gotten a lot of at-tention recently [3, 8]. The advantage of using relationaldatabases as XML storage manager is that traditional solu-tions for transaction management, indexing and query opti-mization can be utilized. Shredding of XML documents intorelational data model and translation of XQuery into SQLclearly become most essential issues in this scenario. Manyquery translation approaches proposed already for XQuery-SQL translation [5]. However order sensitive XQuery pro-

Permission to make digital or hard copies of all or part of this work forpersonal or classroom use is granted without fee provided that copies arenot made or distributed for profit or commercial advantage and that copiesbear this notice and the full citation on the first page. To copy otherwise, torepublish, to post on servers or to redistribute to lists, requires prior specificpermission and/or a fee.
CIKM ’05 Bremen, GermanyCopyright 200X ACM X-XXXXX-XX-X/XX/XX ...$5.00.

cessing over XML shredding in relational storage has not yetbeen fully addressed in the literature.In [10], three order encoding methods are proposed andcompared for shredding an XML document along with thedocument order into relational tables. Beyond the order en-coding methods, our work in this paper provides a generalframework to process XQuery expressions over relationalstorage efficiently even under ordered semantics. The focusof this work lies on the isolation of the ordered semanticsin the composed user XQuery and XML view query. Thisway the order semantics can be ignored at the time doingquery optimization. The existing order insensitive optimiza-tion techniques are allowed to be applied directly if desired.Finally SQL translation can be achieved correctly by “at-taching” back the isolated order semantics.

101
POSITIONPIDIID

RECORDLIST

Back Street Boy314
Project X213
Misfits112
BAND_PCDATAPOSITIONPIDIID

PLAY

Shutdown237

Bullet148

We Are 138249

SXE Revenge136
She125
SONG_PCDATAPOSITIONPIDIID

SONG

(a)

<RECORDLIST>
for $play in

document("dxv.xml")/PLAY/ROWOrder by $play/POSITION/text()return
<PLAY>
<BAND/>$play/BAND_PCDATA/text(),for $song in

document("dxv.xml")/SONG/ROW[PID/text() = $play/IID/text()]order by $song/POSITION/text() return
<SONG>
$song/SONG_PCDATA/text()</SONG>

</PLAY>
</RECORDLIST>

(b)
Figure 1: (a) Relational Shredding. (b) View Query

<SONGLIST>
for $uPlay in document(“record.xml")/PLAYorder by $uPlay/BAND/text()return

$uPlay/SONG[2]/text() </SONGLIST>

Figure 2: Example Order Sensitive XQuery

Running Example. The XML document order is first en-coded in the relational storage. Figure 1(a) shows an exam-ple of storing an XML document in relational tables achievedby using the inline loading with the local order encoding1.Then the view query would extract the order encoding andrebuild the XML view. The view query expressed in XQueryin Figure 1(b) reconstructs a virtual XML view identical tothe original XML document from the default XML viewdxv.xml of the relational tables (see [8]). A user XQuery
1Our approach is not limited to this loading.

Torsten Grust Technische Universität München

Beyond Syntax ...

• Variables $b, $c
not bound in
return clause.

• Have you ever run this
through any language
processor?

4

repetitive work. Figure 2 depicts two sample XQuery statements

and their respective GTPs. In XQuery1, D is not a return node,

i.e., only its existence is of interest. In XQuery2, node C is optional

(in general, any expression in the LET or RETURN clauses is op-

tional) in the sense that a B element can be a match even without

any descendant C elements. Any matching C elements, however,

must be grouped together under their common B ancestor element.

Most existing works on holistic twig query processing focus only

on returning the entire twig results [4, 14, 16]. In practice, how-

ever, returning the entire twig results is seldom necessary for either

XPath or XQuery and may consequently cause duplicate elimina-

tion or ordering problems (Section 2). Moreover, many XQuery

statements in practice require grouping the results [8]. Applying

post-duplicate elimination, sorting and grouping operations to ad-

dress these problems has already been shown to be expensive in

many existing works [8, 10].

C

B

A

D
D

B

C

GTP
1

GTP
2

Return Node

Grouped Return Node

Mandatory Axis

Optional Axis
XQuery

1:

FOR $b in //A/B[C][//D]RETURN $b

XQuery
2:

FOR $b in //B,
$d in $b//D

LET $c := $b//C
RETURN $b, $d, $c

Figure 2: Generalized Tree Pattern and XQueryIn this paper, we provide a comprehensive solution to tackle the

above challenges. In summary, the main contributions are:• We propose a novel hierarchical stack encoding scheme to

compactly represent the twig results. This scheme also re-

duces the complexity for twig query processing.• Based on this encoding scheme, we propose Twig2Stack, a

bottom-up query processing algorithm for a given general-

ized tree pattern (GTP) [8], which is a fundamental building

block for XQuery processing.• Then we show how to efficiently enumerate the GTP query

results from the encodings. To our knowledge, this is the first

GTP matching solution that is free of any post path-join, sort,

duplicate elimination, and grouping operations.• We propose an early result enumeration mechanism by using

a hybrid of top-down and bottom-up computation method to

reduce the runtime memory usage.• Extensive performance studies on various data sets and queries

show that our Twig2Stack algorithm not only has better

performance for twig query processing than existing works,

such as TwigStack [4] and TJFast [16], but is also capable

of efficiently processing the more complex GTP queries.2. DATAMODELANDQUERYLANGUAGE
An XML document is modeled as a nested structure of elements.

The scope of an element is defined by its start-tag and end-tag. An

example XML document tree is demonstrated in Figure 1.

The common query languages over XML are XPath [21] and

XQuery [22]. One fundamental task for processing XPath and

XQuery is to match twig patterns queries. The concept of general-

ized twig pattern (GTP) is introduced in [8] to consider the evalua-

tion of an XQuery as a whole to avoid repetitive work.

We now give a brief review of GTP. As shown in Figure 2, GTP

query may have solid and dotted edges, representing mandatory

and optional structural relationships, respectively. In this paper,

we consider parent-child (PC) and ancestor-descendant (AD) re-

lationships. The mandatory semantics corresponds to those path

expressions in the FOR or WHERE clauses. The optional seman-

tics corresponds to those path expressions in the LET or RETURN

clauses. For a given GTP, not all nodes are return nodes. For the

path expressions in the FOR clause, only the last node is the return

node. One example is the B node of GTP1 in Figure 2. For the

path expression in LET or RETURN clause, we may need to group

the matching elements under their common ancestor element. One

example is the C node of GTP2 in Figure 2. Please refer to [8] for

detailed definition of GTP and how to translate XQuery into GTPs.

These rich semantics introduce new challenges for handling the

duplicates and ordering issues. We now briefly review how the

query results are generated when there are non-return nodes in the

GTP query through the following three examples. Consider the

document tree in Figure 1. (i) For path query //B//D, let us

first assume B and D are both return nodes. The final matches

are (b1, d1), (b2, d2), (b2, d3), (b3, d2), (b3, d3) and (b4, d4). (ii)

Now let us assume D is the only return node. In this case, the re-

sults should be (d1), (d2), (d3) and (d4). Clearly, if we were to

generate the distinct path matches first as in the first case, dupli-

cate elimination becomes unavoidable. (iii) Lastly, let us consider

path query //A/B where B is the only return node. The results

are (b1), (b2), (b3) and (b4). This order is different from the or-

der for the entire path matches, namely, (a1, b4),(a2, b2),(a3, b1)

and (a4, b3). If we were to generate these entire path matches first,

sorting these B elements becomes unavoidable.
In this paper, we use the region encoding for the XML docu-

ment, which is widely used in XML query processing [4, 19, 23].

Region encoding associates each XML document element with a 3-

tuple [LeftPos, RightPos], Level. Here Level is the depth of the ele-

ment in the document tree. LeftPos and RightPos are both integers.

Given any two document elements, e1 and e2, e1 is e2’s ancestor iff

e1.LeftPos < e2.LeftPos and e2.RightPos < e1.RightPos.

Furthermore, if e1.Level = e2.Level − 1, then e1 is e2’s par-

ent. This encoding allows efficient structural checking between two

document elements. Figure 1 also includes the region encodings.3. EFFICIENT GTP PROCESSING
In this section, we propose the Twig2Stack algorithm for pro-

cessing a GTP query. We start with an in-depth study of the existing

PathStack [4] algorithm. Our Twig2Stack algorithm is inspired

by the similar principles.
3.1 Motivation

Bruno et.al [4] proposed a novel path matching algorithm, called

PathStack, for processing linear path expressions. Consider the

path query //A/B//D and the data path a1, a2, b2, a4, b3, d2, d3

in Figure 1. The entire path query is processed in a top-down fash-

ion by visiting the document elements in pre-order. First, each

query node E is associated with a stack, S[E]. The algorithm

pushes the document element into the stack iff the relationship be-

tween this element and the top element in its parent stack satisfies

the axis requirement in the query. Once a document element is

pushed into the leaf stack, PathStack algorithm knows that there

must be some answers to this path query. Figure 3 shows how this

query is processed given the above input. The result enumeration

is done in reverse, i.e., starting from the elements in the leaf query

nodes. For example, d3 points to b3 and implicitly to b2 as well

since the axis is AD. b3 and b2 point to a4 and a2, respectively. So
284

Torsten Grust Technische Universität München

Be Inventive Before Entering
the Experimental Section

5

result sets of f and l are the desired data of this query. There-

fore, we need to identify the tuples composed of <ef ,el>, which

satisfy Qr, as the answer.

Observing the above problems, in this paper, we introduce a

novel vectorial operator based method to address these problems.

We first discuss how to effectively index the XML document ele-

ments so as to effectively retrieve the relevant elements, and then

present some vectorial operators for the P-C and A-D relation-

ships to avoid redundant intermediate results and demonstrate how

to answer twig queries using these vectorial operators efficiently.

More importantly, to further accelerate the processing of twig queries,

we propose several techniques to optimize these vectorial opera-

tors. In addition, although Twig2Stack[4] is proposed to process

GTP queries, it is constrained by the fan-out of the XML document

and thus leads to inefficiency. To address this problem, we accord-

ingly discuss how to efficiently answer GTP queries by using our

vectorial operators. To the best of our knowledge, this is the first

paper that employs vectorial operators to efficiently process twig

queries and GTP queries.

To summarize, we make the following contributions:

• We propose several vectorial operators for the A-D and P-C

relationships, which only contain some simple operations

(e.g. shift and logic AND) and thus are easy to be per-

formed. Moreover, we propose a novel method to answer

XML twig queries using these operators and develop some

effective optimization techniques for the vectorial operators

to speed up the processing of twig queries.

• We demonstrate how to efficiently answer GTP queries di-

rectly without post-processing to eliminate those redundances

according to our vectorial operators.

• We devise an algorithm, TJOperator, to efficiently answer

twig queries. On the one hand, TJOperator does not in-

volve large redundant intermediate results for twig queries,

even if those twig queries contain both A-D and P-C rela-

tionships. On the other hand, it allows holistic processing of

twig queries without breaking a twig into root-to-leaf paths,

processing them individually and then merge-joining them.

The remainder of this paper is structured as follows. We dis-

cuss how to index XML document elements in Section 2. Section

3 presents several vectorial operators for the A-D and P-C relation-

ships. We describe how to answer twig queries using our vectorial

operators and present some optimization techniques to further im-

prove the efficiency of processing GTP queries in Section 4. In

Section 5, we provide extensive experimental evaluations to com-

pare different algorithms, and review related works in Section 6.

Finally, Section 7 concludes this paper.

2. Sequencing and Indexing

We use a sequence to represent an XML document, and process

XML queries according to this sequence. However, our method is

orthogonal to the existing proposals based on subsequence match-

ing such as [15, 21], as we need not load the whole sequence into

memory and will also not transform the XML twig queries into

sequences. Moreover, we introduce inverted indices on top of

sequences to facilitate answering XML queries, which lead to a

dramatic improvement in terms of both I/O cost and memory con-

sumption over the existing methods.

for $p in (bib.xml)/paper,

$t=$p/title,

$y=$p/year,

$c=$p/confer,

$a=$p/authors/author,

$f=$a/first_name,

$l=$a/last_name

where $t/text()="XML" and $c/text()="CIKM" and

$y/text()="2007"

return <author> {$f} {$l} </author>

p

a

f l

t y cauthors

(b) Qr

(a) An XQuery Statement

Figure 1. An XQuery statement and its corre-

sponding GTP query Qr

2.1 Sequencing
Our approach starts with a valid and effective sequencing method

for XML documents. Ad hoc sequencing methods such as Prüfer

sequence [15, 21] and ViST [25, 26] are succinct tree encoding

methods. Prüfer [20] proposed a method that constructed a one-

to-one correspondence between a labeled tree and a sequence by

removing nodes from the tree one at a time. The algorithm to con-

struct a sequence from tree Tn with n nodes labeled from 1 to n

works as follows. From Tn, remove a leaf with the smallest label

to form a smaller tree Tn−1. Let a1 denote the label of the node

that is the parent of the removed node. Repeat this process on

Tn−1 to determine a2 (the parent of the next node to be removed),

and continue until only two nodes joined by an edge are left. The

sequence (a1,a2,...,an−2) is called the Prüfer sequence of tree Tn.

From the sequence (a1,a2,...,an−2), the original tree Tn can be re-

constructed. The length of the Prüfer sequence of tree Tn is n-2.

In fact, we can construct a Prüfer sequence of length n-1 for Tn

by continuing the removal of nodes till only one node is left, and

the one-to-one correspondence is still preserved.

Any numbering scheme can be used in the above process to

label an XML document tree as long as it associates each node

in the tree with a unique number between one and the total num-

ber of nodes. This guarantees a one-to-one mapping between the

tree and the sequence. Without loss of generality, post-order is

used to uniquely number tree nodes in this paper. It helps a Prüfer

sequence be constructed for an XML document tree by using the

node removal method. This sequence consists entirely of post-

order numbers and is called NPS(Numbered Prüfer Sequence) [21].

When each number in an NPS is replaced by its corresponding

tag, a new sequence that consists of XML tags can be constructed,

which is called LPS(Labeled Prüfer Sequence). On the basis of

LPS and NPS, ELPS(Extended Labeled Prüfer Sequence) and ENPS

(Extended Numbered Prüfer Sequence) [15] can be constructed

by extending leaf nodes of the document tree with dummy child

nodes as [21]. Clearly the leaf nodes of the original tree are kept in

ELPS. For example, in Figure 2, ELPS of D1 is babacaaca, which

is constructed by inserting leaf nodes b(b1),b(b2),c(c1),c(c2) into

the corresponding positions of LPS, and the leaf nodes must be

preceding and neighboring their parents. In addition, NPS and

ENPS of D1 are 64466 and 162434656 respectively.

Observe that, ENPS and ELPS preserve P-C, A-D and sibling

order relationships, and PROPERTY 1 shows that the sequence cap-

tures the P-C and A-D relationships while PROPERTY 2 reflects

that any subtree of an XML document corresponds to a consec-

utive subsequence of the original sequence w.r.t the XML docu-

ment. More importantly, XML document elements are indexed

consecutively in our method, and for any node, it is convenient to

get the subtree rooted at it according to PROPERTY 2. Therefore,

it is very efficient for the queries to retrieve subtrees.

2

Torsten Grust Technische Universität München

Be Inventive Before Entering
the Experimental Section

• Does “=” mean XQuery’s
for or let here?

• You never ran this.
What did you run then?

5

result sets of f and l are the desired data of this query. There-

fore, we need to identify the tuples composed of <ef ,el>, which

satisfy Qr, as the answer.

Observing the above problems, in this paper, we introduce a

novel vectorial operator based method to address these problems.

We first discuss how to effectively index the XML document ele-

ments so as to effectively retrieve the relevant elements, and then

present some vectorial operators for the P-C and A-D relation-

ships to avoid redundant intermediate results and demonstrate how

to answer twig queries using these vectorial operators efficiently.

More importantly, to further accelerate the processing of twig queries,

we propose several techniques to optimize these vectorial opera-

tors. In addition, although Twig2Stack[4] is proposed to process

GTP queries, it is constrained by the fan-out of the XML document

and thus leads to inefficiency. To address this problem, we accord-

ingly discuss how to efficiently answer GTP queries by using our

vectorial operators. To the best of our knowledge, this is the first

paper that employs vectorial operators to efficiently process twig

queries and GTP queries.

To summarize, we make the following contributions:

• We propose several vectorial operators for the A-D and P-C

relationships, which only contain some simple operations

(e.g. shift and logic AND) and thus are easy to be per-

formed. Moreover, we propose a novel method to answer

XML twig queries using these operators and develop some

effective optimization techniques for the vectorial operators

to speed up the processing of twig queries.

• We demonstrate how to efficiently answer GTP queries di-

rectly without post-processing to eliminate those redundances

according to our vectorial operators.

• We devise an algorithm, TJOperator, to efficiently answer

twig queries. On the one hand, TJOperator does not in-

volve large redundant intermediate results for twig queries,

even if those twig queries contain both A-D and P-C rela-

tionships. On the other hand, it allows holistic processing of

twig queries without breaking a twig into root-to-leaf paths,

processing them individually and then merge-joining them.

The remainder of this paper is structured as follows. We dis-

cuss how to index XML document elements in Section 2. Section

3 presents several vectorial operators for the A-D and P-C relation-

ships. We describe how to answer twig queries using our vectorial

operators and present some optimization techniques to further im-

prove the efficiency of processing GTP queries in Section 4. In

Section 5, we provide extensive experimental evaluations to com-

pare different algorithms, and review related works in Section 6.

Finally, Section 7 concludes this paper.

2. Sequencing and Indexing

We use a sequence to represent an XML document, and process

XML queries according to this sequence. However, our method is

orthogonal to the existing proposals based on subsequence match-

ing such as [15, 21], as we need not load the whole sequence into

memory and will also not transform the XML twig queries into

sequences. Moreover, we introduce inverted indices on top of

sequences to facilitate answering XML queries, which lead to a

dramatic improvement in terms of both I/O cost and memory con-

sumption over the existing methods.

for $p in (bib.xml)/paper,

$t=$p/title,

$y=$p/year,

$c=$p/confer,

$a=$p/authors/author,

$f=$a/first_name,

$l=$a/last_name

where $t/text()="XML" and $c/text()="CIKM" and

$y/text()="2007"

return <author> {$f} {$l} </author>

p

a

f l

t y cauthors

(b) Qr

(a) An XQuery Statement

Figure 1. An XQuery statement and its corre-

sponding GTP query Qr

2.1 Sequencing
Our approach starts with a valid and effective sequencing method

for XML documents. Ad hoc sequencing methods such as Prüfer

sequence [15, 21] and ViST [25, 26] are succinct tree encoding

methods. Prüfer [20] proposed a method that constructed a one-

to-one correspondence between a labeled tree and a sequence by

removing nodes from the tree one at a time. The algorithm to con-

struct a sequence from tree Tn with n nodes labeled from 1 to n

works as follows. From Tn, remove a leaf with the smallest label

to form a smaller tree Tn−1. Let a1 denote the label of the node

that is the parent of the removed node. Repeat this process on

Tn−1 to determine a2 (the parent of the next node to be removed),

and continue until only two nodes joined by an edge are left. The

sequence (a1,a2,...,an−2) is called the Prüfer sequence of tree Tn.

From the sequence (a1,a2,...,an−2), the original tree Tn can be re-

constructed. The length of the Prüfer sequence of tree Tn is n-2.

In fact, we can construct a Prüfer sequence of length n-1 for Tn

by continuing the removal of nodes till only one node is left, and

the one-to-one correspondence is still preserved.

Any numbering scheme can be used in the above process to

label an XML document tree as long as it associates each node

in the tree with a unique number between one and the total num-

ber of nodes. This guarantees a one-to-one mapping between the

tree and the sequence. Without loss of generality, post-order is

used to uniquely number tree nodes in this paper. It helps a Prüfer

sequence be constructed for an XML document tree by using the

node removal method. This sequence consists entirely of post-

order numbers and is called NPS(Numbered Prüfer Sequence) [21].

When each number in an NPS is replaced by its corresponding

tag, a new sequence that consists of XML tags can be constructed,

which is called LPS(Labeled Prüfer Sequence). On the basis of

LPS and NPS, ELPS(Extended Labeled Prüfer Sequence) and ENPS

(Extended Numbered Prüfer Sequence) [15] can be constructed

by extending leaf nodes of the document tree with dummy child

nodes as [21]. Clearly the leaf nodes of the original tree are kept in

ELPS. For example, in Figure 2, ELPS of D1 is babacaaca, which

is constructed by inserting leaf nodes b(b1),b(b2),c(c1),c(c2) into

the corresponding positions of LPS, and the leaf nodes must be

preceding and neighboring their parents. In addition, NPS and

ENPS of D1 are 64466 and 162434656 respectively.

Observe that, ENPS and ELPS preserve P-C, A-D and sibling

order relationships, and PROPERTY 1 shows that the sequence cap-

tures the P-C and A-D relationships while PROPERTY 2 reflects

that any subtree of an XML document corresponds to a consec-

utive subsequence of the original sequence w.r.t the XML docu-

ment. More importantly, XML document elements are indexed

consecutively in our method, and for any node, it is convenient to

get the subtree rooted at it according to PROPERTY 2. Therefore,

it is very efficient for the queries to retrieve subtrees.

2

Torsten Grust Technische Universität München

Be Inventive Before Entering
the Experimental Section

• Does “=” mean XQuery’s
for or let here?

• You never ran this.
What did you run then?

• You included
performance numbers,
but you measured
something else.

5

result sets of f and l are the desired data of this query. There-

fore, we need to identify the tuples composed of <ef ,el>, which

satisfy Qr, as the answer.

Observing the above problems, in this paper, we introduce a

novel vectorial operator based method to address these problems.

We first discuss how to effectively index the XML document ele-

ments so as to effectively retrieve the relevant elements, and then

present some vectorial operators for the P-C and A-D relation-

ships to avoid redundant intermediate results and demonstrate how

to answer twig queries using these vectorial operators efficiently.

More importantly, to further accelerate the processing of twig queries,

we propose several techniques to optimize these vectorial opera-

tors. In addition, although Twig2Stack[4] is proposed to process

GTP queries, it is constrained by the fan-out of the XML document

and thus leads to inefficiency. To address this problem, we accord-

ingly discuss how to efficiently answer GTP queries by using our

vectorial operators. To the best of our knowledge, this is the first

paper that employs vectorial operators to efficiently process twig

queries and GTP queries.

To summarize, we make the following contributions:

• We propose several vectorial operators for the A-D and P-C

relationships, which only contain some simple operations

(e.g. shift and logic AND) and thus are easy to be per-

formed. Moreover, we propose a novel method to answer

XML twig queries using these operators and develop some

effective optimization techniques for the vectorial operators

to speed up the processing of twig queries.

• We demonstrate how to efficiently answer GTP queries di-

rectly without post-processing to eliminate those redundances

according to our vectorial operators.

• We devise an algorithm, TJOperator, to efficiently answer

twig queries. On the one hand, TJOperator does not in-

volve large redundant intermediate results for twig queries,

even if those twig queries contain both A-D and P-C rela-

tionships. On the other hand, it allows holistic processing of

twig queries without breaking a twig into root-to-leaf paths,

processing them individually and then merge-joining them.

The remainder of this paper is structured as follows. We dis-

cuss how to index XML document elements in Section 2. Section

3 presents several vectorial operators for the A-D and P-C relation-

ships. We describe how to answer twig queries using our vectorial

operators and present some optimization techniques to further im-

prove the efficiency of processing GTP queries in Section 4. In

Section 5, we provide extensive experimental evaluations to com-

pare different algorithms, and review related works in Section 6.

Finally, Section 7 concludes this paper.

2. Sequencing and Indexing

We use a sequence to represent an XML document, and process

XML queries according to this sequence. However, our method is

orthogonal to the existing proposals based on subsequence match-

ing such as [15, 21], as we need not load the whole sequence into

memory and will also not transform the XML twig queries into

sequences. Moreover, we introduce inverted indices on top of

sequences to facilitate answering XML queries, which lead to a

dramatic improvement in terms of both I/O cost and memory con-

sumption over the existing methods.

for $p in (bib.xml)/paper,

$t=$p/title,

$y=$p/year,

$c=$p/confer,

$a=$p/authors/author,

$f=$a/first_name,

$l=$a/last_name

where $t/text()="XML" and $c/text()="CIKM" and

$y/text()="2007"

return <author> {$f} {$l} </author>

p

a

f l

t y cauthors

(b) Qr

(a) An XQuery Statement

Figure 1. An XQuery statement and its corre-

sponding GTP query Qr

2.1 Sequencing
Our approach starts with a valid and effective sequencing method

for XML documents. Ad hoc sequencing methods such as Prüfer

sequence [15, 21] and ViST [25, 26] are succinct tree encoding

methods. Prüfer [20] proposed a method that constructed a one-

to-one correspondence between a labeled tree and a sequence by

removing nodes from the tree one at a time. The algorithm to con-

struct a sequence from tree Tn with n nodes labeled from 1 to n

works as follows. From Tn, remove a leaf with the smallest label

to form a smaller tree Tn−1. Let a1 denote the label of the node

that is the parent of the removed node. Repeat this process on

Tn−1 to determine a2 (the parent of the next node to be removed),

and continue until only two nodes joined by an edge are left. The

sequence (a1,a2,...,an−2) is called the Prüfer sequence of tree Tn.

From the sequence (a1,a2,...,an−2), the original tree Tn can be re-

constructed. The length of the Prüfer sequence of tree Tn is n-2.

In fact, we can construct a Prüfer sequence of length n-1 for Tn

by continuing the removal of nodes till only one node is left, and

the one-to-one correspondence is still preserved.

Any numbering scheme can be used in the above process to

label an XML document tree as long as it associates each node

in the tree with a unique number between one and the total num-

ber of nodes. This guarantees a one-to-one mapping between the

tree and the sequence. Without loss of generality, post-order is

used to uniquely number tree nodes in this paper. It helps a Prüfer

sequence be constructed for an XML document tree by using the

node removal method. This sequence consists entirely of post-

order numbers and is called NPS(Numbered Prüfer Sequence) [21].

When each number in an NPS is replaced by its corresponding

tag, a new sequence that consists of XML tags can be constructed,

which is called LPS(Labeled Prüfer Sequence). On the basis of

LPS and NPS, ELPS(Extended Labeled Prüfer Sequence) and ENPS

(Extended Numbered Prüfer Sequence) [15] can be constructed

by extending leaf nodes of the document tree with dummy child

nodes as [21]. Clearly the leaf nodes of the original tree are kept in

ELPS. For example, in Figure 2, ELPS of D1 is babacaaca, which

is constructed by inserting leaf nodes b(b1),b(b2),c(c1),c(c2) into

the corresponding positions of LPS, and the leaf nodes must be

preceding and neighboring their parents. In addition, NPS and

ENPS of D1 are 64466 and 162434656 respectively.

Observe that, ENPS and ELPS preserve P-C, A-D and sibling

order relationships, and PROPERTY 1 shows that the sequence cap-

tures the P-C and A-D relationships while PROPERTY 2 reflects

that any subtree of an XML document corresponds to a consec-

utive subsequence of the original sequence w.r.t the XML docu-

ment. More importantly, XML document elements are indexed

consecutively in our method, and for any node, it is convenient to

get the subtree rooted at it according to PROPERTY 2. Therefore,

it is very efficient for the queries to retrieve subtrees.

2

Torsten Grust Technische Universität München

current statesQ during graph traversal, we introduce reach-ability tests on all states of Q whenever the size of the cur-rent states increases, due to non-deterministic transitions.
Example 6.1: Consider the regular path a.(a|b)*.c.d. Its
NFA is shown Figure 4. We use# to denote an empty char-acter. Suppose the current states Q are {A}. When a nodena with label a is processed,Q becomes {C, E, G}. Since|Q| increases, we perform reachability tests. The transitionsthat disconnectC from I are: (G, c,H) and (H , d, I). Sup-pose CARD(a, c) < CARD(a, d). We keep C in Q only ifthere is a c-node reachable by na.

6.2 Calculus approach

We discuss DATALOG to illustrate how reachability testsand graph framework optimize path evaluation in calculusstyle. A regular path can be expressed as a query in linear
DATALOG [1] and a graph can be represented as a relationEdge: V ×Σ×V . Assume that we have access to the rootsof the graph R. Consider the regular path in Example 6.1a.(a|b)*.c.d again. A DATALOG program of the path is:(1) C1(y):- Edge(r, a, y), R(r)
(2) C2(z):- C1(y), Edge(y, a, z) (3) C1(z):- C1(y), Edge(y, b, z)(4) C2(z):- C2(y), Edge(y, a, z) (5) C2(z):- C2(y), Edge(y, b, z)(6) C3(y):- C2(x), Edge(x, c, y) (7) C3(y):- C1(x), Edge(x, c, y)(8) Result(z):- C3(y), Edge(y, d, z)
Clauses C1, C2 and C3 are introduced to represent thepath. We refer the instantiations of C1, C2 and C3 to asintermediate results, which are bounded by the graph size.The DATALOG program above can be viewed as a logicencoding of the NFA in Figure 4. Hence, it is straightfor-ward to derive a corresponding pruning technique proposedin Section 6.1 to such programs. In addition, sophisticatedevaluation strategies and optimization for DATALOG can beapplied [1]. Next, we discuss garbage collection in logicprogramming and the graph framework.
To translate a regular path for a graph represented by thegraph framework H(G), we need to unfold the DATALOGprogram h times where h is the depth of H(G). We denotethe edges of the subgraph in layer i to be Edgei and a su-perscript to denote the clauses related to layer k, e.g., Ck

i .Consider Clause (5) for example. One of the clauses derivedfrom the first unfolding is
C2

2 (r2):- C1
2 (y), Edge1(y, b, r2), R2(r2),

whereC1
2 means thatC2 is evaluated on layer 1 and if one ofthe edges in layer 1 connects to a root r2 of layer 2, then, weswitch to evaluateC2 in layer 2. Since the graph frameworkis a layer structure, no clauses of layer j will have clausesof layer i in its body where i > j, even for recursive DAT-

ALOG. Hence, the DATALOG program can rely on garbagecollection in logic programming to prune the clauses thatare no longer useful for deriving query results. This was notpossible without the layered structure of graph framework.

7 Experimental Evaluations

In this section, we present an experimental study to ver-ify the effectiveness of our proposed techniques. All exper-iments were run on a machine with 3.4GHZ. The experi-ments were run in warm memory. The proposed techniqueswere implemented in C++. The synthetic graphs were gen-erated by BOOST graph library [8]. The statistics of the syn-thetic graphs in our experiment, were presented in Figure 5.The graphs were sorted by size. The runtime reported were
CPU times. We evaluated (1) the four heuristics for graphpartitioning with bridges and cut vertices; (2) the functionmodels for selecting the most efficient index for a graph;and (3) the efficiency of using reachability test to optimizeregular path queries.
Experiment 1. Graph partitioning. To evaluate the per-formance of the four heuristic functions presented in Sec-tion 4, we compared their effectiveness in separating differ-ent structures from a graph and reported their runtimes. Re-garding implementations of Algorithm 1, we excluded thebridges (cut vertices) that were connected to other bridges(cut vertices) only. The reason is that partitioning the graphat such bridges (cut vertices) does not separate the sub-graphs with different structural properties. All the resultsreported were the average of 5 runs.
Figure 6(a) showed the depth of the graph frameworksproduced by the heuristic functions with bridges and cutvertices. The random graphs used contained a mixtures ofdifferent structures. When a heuristics returned a frame-work with small depth, it implied that the heuristics did notseparate a nesting of different structures. The edge-on-cycleheuristics hc produced a framework with small depth con-sistently. The performance of ht, hb and hd were similarwhile the graph density hd often returned a framework witha large depth. Since the graphs contained more the cut ver-tices than bridges, there are more possibilities for partition-ing. Subsequently, the frameworks returned by cut verticeswas often deeper than the ones by bridges.
Next, we verified if the heuristics identified large treesand DAG from the graphs. Figure 6(b) showed bridge den-sity hb and non-tree density hn could often identify largertrees than the others. The reason is that hb and hn pre-cisely identified trees: hb(T) ≈ 1 and hn(T) = 0. How-ever, the size of the trees of graphs, returned by heuristicswas small as BOOST tended to produce “inter-connected”graphs where no large subtrees can be identified. The re-sults also showed that using cut vertices can locate a largertree partition.
Figure 6(c) showed that the edge-on-cycle density hc re-turned large DAGs. The performance of the others were sim-ilar. The results verified that the synthetic graphs did notcontain large trees.
Figure 6(d) showed the runtime for the bridge and cut-

7

Brevity is a Virtue!

6

Torsten Grust Technische Universität München

current statesQ during graph traversal, we introduce reach-ability tests on all states of Q whenever the size of the cur-rent states increases, due to non-deterministic transitions.
Example 6.1: Consider the regular path a.(a|b)*.c.d. Its
NFA is shown Figure 4. We use# to denote an empty char-acter. Suppose the current states Q are {A}. When a nodena with label a is processed,Q becomes {C, E, G}. Since|Q| increases, we perform reachability tests. The transitionsthat disconnectC from I are: (G, c,H) and (H , d, I). Sup-pose CARD(a, c) < CARD(a, d). We keep C in Q only ifthere is a c-node reachable by na.

6.2 Calculus approach

We discuss DATALOG to illustrate how reachability testsand graph framework optimize path evaluation in calculusstyle. A regular path can be expressed as a query in linear
DATALOG [1] and a graph can be represented as a relationEdge: V ×Σ×V . Assume that we have access to the rootsof the graph R. Consider the regular path in Example 6.1a.(a|b)*.c.d again. A DATALOG program of the path is:(1) C1(y):- Edge(r, a, y), R(r)
(2) C2(z):- C1(y), Edge(y, a, z) (3) C1(z):- C1(y), Edge(y, b, z)(4) C2(z):- C2(y), Edge(y, a, z) (5) C2(z):- C2(y), Edge(y, b, z)(6) C3(y):- C2(x), Edge(x, c, y) (7) C3(y):- C1(x), Edge(x, c, y)(8) Result(z):- C3(y), Edge(y, d, z)
Clauses C1, C2 and C3 are introduced to represent thepath. We refer the instantiations of C1, C2 and C3 to asintermediate results, which are bounded by the graph size.The DATALOG program above can be viewed as a logicencoding of the NFA in Figure 4. Hence, it is straightfor-ward to derive a corresponding pruning technique proposedin Section 6.1 to such programs. In addition, sophisticatedevaluation strategies and optimization for DATALOG can beapplied [1]. Next, we discuss garbage collection in logicprogramming and the graph framework.
To translate a regular path for a graph represented by thegraph framework H(G), we need to unfold the DATALOGprogram h times where h is the depth of H(G). We denotethe edges of the subgraph in layer i to be Edgei and a su-perscript to denote the clauses related to layer k, e.g., Ck

i .Consider Clause (5) for example. One of the clauses derivedfrom the first unfolding is
C2

2 (r2):- C1
2 (y), Edge1(y, b, r2), R2(r2),

whereC1
2 means thatC2 is evaluated on layer 1 and if one ofthe edges in layer 1 connects to a root r2 of layer 2, then, weswitch to evaluateC2 in layer 2. Since the graph frameworkis a layer structure, no clauses of layer j will have clausesof layer i in its body where i > j, even for recursive DAT-

ALOG. Hence, the DATALOG program can rely on garbagecollection in logic programming to prune the clauses thatare no longer useful for deriving query results. This was notpossible without the layered structure of graph framework.

7 Experimental Evaluations

In this section, we present an experimental study to ver-ify the effectiveness of our proposed techniques. All exper-iments were run on a machine with 3.4GHZ. The experi-ments were run in warm memory. The proposed techniqueswere implemented in C++. The synthetic graphs were gen-erated by BOOST graph library [8]. The statistics of the syn-thetic graphs in our experiment, were presented in Figure 5.The graphs were sorted by size. The runtime reported were
CPU times. We evaluated (1) the four heuristics for graphpartitioning with bridges and cut vertices; (2) the functionmodels for selecting the most efficient index for a graph;and (3) the efficiency of using reachability test to optimizeregular path queries.
Experiment 1. Graph partitioning. To evaluate the per-formance of the four heuristic functions presented in Sec-tion 4, we compared their effectiveness in separating differ-ent structures from a graph and reported their runtimes. Re-garding implementations of Algorithm 1, we excluded thebridges (cut vertices) that were connected to other bridges(cut vertices) only. The reason is that partitioning the graphat such bridges (cut vertices) does not separate the sub-graphs with different structural properties. All the resultsreported were the average of 5 runs.
Figure 6(a) showed the depth of the graph frameworksproduced by the heuristic functions with bridges and cutvertices. The random graphs used contained a mixtures ofdifferent structures. When a heuristics returned a frame-work with small depth, it implied that the heuristics did notseparate a nesting of different structures. The edge-on-cycleheuristics hc produced a framework with small depth con-sistently. The performance of ht, hb and hd were similarwhile the graph density hd often returned a framework witha large depth. Since the graphs contained more the cut ver-tices than bridges, there are more possibilities for partition-ing. Subsequently, the frameworks returned by cut verticeswas often deeper than the ones by bridges.
Next, we verified if the heuristics identified large treesand DAG from the graphs. Figure 6(b) showed bridge den-sity hb and non-tree density hn could often identify largertrees than the others. The reason is that hb and hn pre-cisely identified trees: hb(T) ≈ 1 and hn(T) = 0. How-ever, the size of the trees of graphs, returned by heuristicswas small as BOOST tended to produce “inter-connected”graphs where no large subtrees can be identified. The re-sults also showed that using cut vertices can locate a largertree partition.
Figure 6(c) showed that the edge-on-cycle density hc re-turned large DAGs. The performance of the others were sim-ilar. The results verified that the synthetic graphs did notcontain large trees.
Figure 6(d) showed the runtime for the bridge and cut-

7

Brevity is a Virtue!

• “We studied it — but you will never be able to
experience it yourselves.”

6

Torsten Grust Technische Universität München7

10003
266514594

18302929512077325531217248183687

1656

R
e

ti
re

d
In

s
tr

u
c
ti
o

n
s

I1
 a

c
c
e

s
s
e

s

I1
 m

is
s
e
s

D
1

 a
c
c
e

s
s
e

s

D
1

 m
is

s
e
s

L
2

 a
c
c
e

s
s
e

s

L
2

 m
is

s
e

s

L
2

 p
re

fe
tc

h
e

s

R
e

ti
re

d
 B

ra
n

c
h

In
s
tr

u
c
ti
o

n
s

B
ra

n
c
h

M
is

p
re

d
ic

ti
o

n
s

#
 o

f
s
a
m

p
le

s

PostgreSQL System X MonetDB HIQUE

Figure 5. Oprofile results - project 2 fields
select projection list from t1, t2, . . . , tmwhere t1.field = t2.field and t2.field = t3.fieldand . . . and tm−1.field = tm.fieldThe trends on each system’s performance were consis-tent. Due to space limitations, we present only an indicativepart. The results appear in Figure 4: in Figures 4(a) and 4(b)we show the join performance with unique2 as the join at-tribute, as we scale the number of input tables for a tablecardinality of 1m tuples and for a projection list of eithertwo or all fields from each table. In Figures 4(c) and 4(d)we do the same for joining tables of 100k tuples each onthe times4 field. In the remaining plots we focus on thelength of the projection list while we keep the number andcardinality of input tables fixed, as we want to present theeffect of tuple width on the total execution time. We mustnote here that the PostgreSQL client we employed (psql)always attempted to buffer the result set before presentingit. In high output cardinality tests, where memory demandsincreased, the client would consistently hang. We thereforedo not report execution times for those cases.Hash nested loops were consistently faster than standardnested loops across the entire workload, and would ap-proach the performance of the merging algorithms, pro-vided that partitions could be restricted to one page each.For high selectivity join predicates, e.g., when the ten fieldis used as the join attribute, performance exceeds (slightly)the merge-based algorithms, the reason being that there aremany joining tuples per corresponding table partitions, ren-dering sorting redundant. As far as the merging algorithmsare concerned, merge join is always inferior to hash-sort-merge join, the latter proving the most efficient algorithmoverall. The difference is negligible for small cardinalities,where the complexity of creating and sorting all hash par-titions bears a cost similar to totally sorting the input. Asthe input cardinality increases, sorting the entire table in-troduces a significantly higher penalty: while for 10k tuplesper input table the difference in execution time was less than3%, when the input cardinality reached 1m tuples the per-formance difference increased to 10%.HIQUE outperformed both iterator-based systems (i.e.,PostgreSQL and System X) by far, while it consistentlysurpassed the hardware-conscious MonetDB. Moreover,HIQUE’s advantage grows proportionally to the input cardi-nalities, therefore verifying our model’s ability to handle

4270535787305283396757679810802182
30196686664

602439

R
e

ti
re

d
In

s
tr

u
c
ti
o

n
s

I1
 a

c
c
e

s
s
e

s

I1
 m

is
s
e
s

D
1

 a
c
c
e

s
s
e

s

D
1

 m
is

s
e
s

L
2

 a
c
c
e

s
s
e

s

L
2

 m
is

s
e

s

L
2

 p
re

fe
tc

h
e

s

R
e

ti
re

d
 B

ra
n

c
h

In
s
tr

u
c
ti
o

n
s

B
ra

n
c
h

M
is

p
re

d
ic

ti
o

n
s

#
 o

f
s
a
m

p
le

s

PostgreSQL System X MonetDB HIQUE

Figure 6. Oprofile results - project all fieldslarge tables more efficiently than iterators. It also exhibitsa linear increase in response time with respect to the num-ber of input tables, so long as the output cardinality remainsfixed (e.g., when unique2 is used as the join attribute), as theholistic approach renders obsolete the need to store any in-termediate results. HIQUE’s performance superiority is evenmore evident for join predicates that produce multiple tuple-to-tuple matches, (e.g., on joins over the times4, times10 andten fields) reaching even a 6x speedup over the competition.Note that the difference in performance is wide enough tocover the generation and compilation costs.Our methodology can be extended to cover evaluationof queries with more general join predicates. If we do notadopt advanced techniques like generalized hash teams, thistype of query can be evaluated by either performing generalnested loops join, or by joining pairs of tables with merge orhash join and re-formatting the intermediate results. Basedon the proven efficiency of the holistic nested loops imple-mentation against iterator-based nested loops, as well as theshorter response time on most 2-table joins, our model’s su-periority in general join predicates can easily be argued.
5.3 Processor Metrics

We next proceeded to extract processor profiling datafor the join of two 1m-tuple tables on unique2. We usedOProfile to collect sampling data from the processor’s hard-ware performance counters. The measurements concernedonly the server processes and covered (a) total retired in-structions, (b) I1-cache accesses and misses, (c) D1-cacheaccesses and misses, (d) L2-cache accesses, misses andprefetches (to the best of our knowledge, the Athlon64 ar-chitecture employs data prefetching to L2-cache and in-struction prefetching to I1-cache), (e) retired branch instruc-tions and branch mispredictions. We discovered that onlySystem X generates software prefetching instructions. Thedifficulty in including such instructions in the query enginehinders their utilization, while the comparable performanceof System X to PostgreSQL shows that software prefetchingis no panacea. This justifies our decision to exploit only theprocessor’s hardware prefetcher and avoid the complex pro-cess of using software prefetching instructions. The results,for projecting two and all fields from each table, appear inFigures 5 and 6 respectively, normalised to the maximum

Torsten Grust Technische Universität München

“We consistently outperform

7

10003
266514594

18302929512077325531217248183687

1656

R
e

ti
re

d
In

s
tr

u
c
ti
o

n
s

I1
 a

c
c
e

s
s
e

s

I1
 m

is
s
e
s

D
1

 a
c
c
e

s
s
e

s

D
1

 m
is

s
e
s

L
2

 a
c
c
e

s
s
e

s

L
2

 m
is

s
e

s

L
2

 p
re

fe
tc

h
e

s

R
e

ti
re

d
 B

ra
n

c
h

In
s
tr

u
c
ti
o

n
s

B
ra

n
c
h

M
is

p
re

d
ic

ti
o

n
s

#
 o

f
s
a
m

p
le

s

PostgreSQL System X MonetDB HIQUE

Figure 5. Oprofile results - project 2 fields
select projection list from t1, t2, . . . , tmwhere t1.field = t2.field and t2.field = t3.fieldand . . . and tm−1.field = tm.fieldThe trends on each system’s performance were consis-tent. Due to space limitations, we present only an indicativepart. The results appear in Figure 4: in Figures 4(a) and 4(b)we show the join performance with unique2 as the join at-tribute, as we scale the number of input tables for a tablecardinality of 1m tuples and for a projection list of eithertwo or all fields from each table. In Figures 4(c) and 4(d)we do the same for joining tables of 100k tuples each onthe times4 field. In the remaining plots we focus on thelength of the projection list while we keep the number andcardinality of input tables fixed, as we want to present theeffect of tuple width on the total execution time. We mustnote here that the PostgreSQL client we employed (psql)always attempted to buffer the result set before presentingit. In high output cardinality tests, where memory demandsincreased, the client would consistently hang. We thereforedo not report execution times for those cases.Hash nested loops were consistently faster than standardnested loops across the entire workload, and would ap-proach the performance of the merging algorithms, pro-vided that partitions could be restricted to one page each.For high selectivity join predicates, e.g., when the ten fieldis used as the join attribute, performance exceeds (slightly)the merge-based algorithms, the reason being that there aremany joining tuples per corresponding table partitions, ren-dering sorting redundant. As far as the merging algorithmsare concerned, merge join is always inferior to hash-sort-merge join, the latter proving the most efficient algorithmoverall. The difference is negligible for small cardinalities,where the complexity of creating and sorting all hash par-titions bears a cost similar to totally sorting the input. Asthe input cardinality increases, sorting the entire table in-troduces a significantly higher penalty: while for 10k tuplesper input table the difference in execution time was less than3%, when the input cardinality reached 1m tuples the per-formance difference increased to 10%.HIQUE outperformed both iterator-based systems (i.e.,PostgreSQL and System X) by far, while it consistentlysurpassed the hardware-conscious MonetDB. Moreover,HIQUE’s advantage grows proportionally to the input cardi-nalities, therefore verifying our model’s ability to handle

4270535787305283396757679810802182
30196686664

602439

R
e

ti
re

d
In

s
tr

u
c
ti
o

n
s

I1
 a

c
c
e

s
s
e

s

I1
 m

is
s
e
s

D
1

 a
c
c
e

s
s
e

s

D
1

 m
is

s
e
s

L
2

 a
c
c
e

s
s
e

s

L
2

 m
is

s
e

s

L
2

 p
re

fe
tc

h
e

s

R
e

ti
re

d
 B

ra
n

c
h

In
s
tr

u
c
ti
o

n
s

B
ra

n
c
h

M
is

p
re

d
ic

ti
o

n
s

#
 o

f
s
a
m

p
le

s

PostgreSQL System X MonetDB HIQUE

Figure 6. Oprofile results - project all fieldslarge tables more efficiently than iterators. It also exhibitsa linear increase in response time with respect to the num-ber of input tables, so long as the output cardinality remainsfixed (e.g., when unique2 is used as the join attribute), as theholistic approach renders obsolete the need to store any in-termediate results. HIQUE’s performance superiority is evenmore evident for join predicates that produce multiple tuple-to-tuple matches, (e.g., on joins over the times4, times10 andten fields) reaching even a 6x speedup over the competition.Note that the difference in performance is wide enough tocover the generation and compilation costs.Our methodology can be extended to cover evaluationof queries with more general join predicates. If we do notadopt advanced techniques like generalized hash teams, thistype of query can be evaluated by either performing generalnested loops join, or by joining pairs of tables with merge orhash join and re-formatting the intermediate results. Basedon the proven efficiency of the holistic nested loops imple-mentation against iterator-based nested loops, as well as theshorter response time on most 2-table joins, our model’s su-periority in general join predicates can easily be argued.
5.3 Processor Metrics

We next proceeded to extract processor profiling datafor the join of two 1m-tuple tables on unique2. We usedOProfile to collect sampling data from the processor’s hard-ware performance counters. The measurements concernedonly the server processes and covered (a) total retired in-structions, (b) I1-cache accesses and misses, (c) D1-cacheaccesses and misses, (d) L2-cache accesses, misses andprefetches (to the best of our knowledge, the Athlon64 ar-chitecture employs data prefetching to L2-cache and in-struction prefetching to I1-cache), (e) retired branch instruc-tions and branch mispredictions. We discovered that onlySystem X generates software prefetching instructions. Thedifficulty in including such instructions in the query enginehinders their utilization, while the comparable performanceof System X to PostgreSQL shows that software prefetchingis no panacea. This justifies our decision to exploit only theprocessor’s hardware prefetcher and avoid the complex pro-cess of using software prefetching instructions. The results,for projecting two and all fields from each table, appear inFigures 5 and 6 respectively, normalised to the maximum

Torsten Grust Technische Universität München

“We consistently outperform

7

10003
266514594

18302929512077325531217248183687

1656

R
e

ti
re

d
In

s
tr

u
c
ti
o

n
s

I1
 a

c
c
e

s
s
e

s

I1
 m

is
s
e
s

D
1

 a
c
c
e

s
s
e

s

D
1

 m
is

s
e
s

L
2

 a
c
c
e

s
s
e

s

L
2

 m
is

s
e

s

L
2

 p
re

fe
tc

h
e

s

R
e

ti
re

d
 B

ra
n

c
h

In
s
tr

u
c
ti
o

n
s

B
ra

n
c
h

M
is

p
re

d
ic

ti
o

n
s

#
 o

f
s
a
m

p
le

s

PostgreSQL System X MonetDB HIQUE

Figure 5. Oprofile results - project 2 fields
select projection list from t1, t2, . . . , tmwhere t1.field = t2.field and t2.field = t3.fieldand . . . and tm−1.field = tm.fieldThe trends on each system’s performance were consis-tent. Due to space limitations, we present only an indicativepart. The results appear in Figure 4: in Figures 4(a) and 4(b)we show the join performance with unique2 as the join at-tribute, as we scale the number of input tables for a tablecardinality of 1m tuples and for a projection list of eithertwo or all fields from each table. In Figures 4(c) and 4(d)we do the same for joining tables of 100k tuples each onthe times4 field. In the remaining plots we focus on thelength of the projection list while we keep the number andcardinality of input tables fixed, as we want to present theeffect of tuple width on the total execution time. We mustnote here that the PostgreSQL client we employed (psql)always attempted to buffer the result set before presentingit. In high output cardinality tests, where memory demandsincreased, the client would consistently hang. We thereforedo not report execution times for those cases.Hash nested loops were consistently faster than standardnested loops across the entire workload, and would ap-proach the performance of the merging algorithms, pro-vided that partitions could be restricted to one page each.For high selectivity join predicates, e.g., when the ten fieldis used as the join attribute, performance exceeds (slightly)the merge-based algorithms, the reason being that there aremany joining tuples per corresponding table partitions, ren-dering sorting redundant. As far as the merging algorithmsare concerned, merge join is always inferior to hash-sort-merge join, the latter proving the most efficient algorithmoverall. The difference is negligible for small cardinalities,where the complexity of creating and sorting all hash par-titions bears a cost similar to totally sorting the input. Asthe input cardinality increases, sorting the entire table in-troduces a significantly higher penalty: while for 10k tuplesper input table the difference in execution time was less than3%, when the input cardinality reached 1m tuples the per-formance difference increased to 10%.HIQUE outperformed both iterator-based systems (i.e.,PostgreSQL and System X) by far, while it consistentlysurpassed the hardware-conscious MonetDB. Moreover,HIQUE’s advantage grows proportionally to the input cardi-nalities, therefore verifying our model’s ability to handle

4270535787305283396757679810802182
30196686664

602439

R
e

ti
re

d
In

s
tr

u
c
ti
o

n
s

I1
 a

c
c
e

s
s
e

s

I1
 m

is
s
e
s

D
1

 a
c
c
e

s
s
e

s

D
1

 m
is

s
e
s

L
2

 a
c
c
e

s
s
e

s

L
2

 m
is

s
e

s

L
2

 p
re

fe
tc

h
e

s

R
e

ti
re

d
 B

ra
n

c
h

In
s
tr

u
c
ti
o

n
s

B
ra

n
c
h

M
is

p
re

d
ic

ti
o

n
s

#
 o

f
s
a
m

p
le

s

PostgreSQL System X MonetDB HIQUE

Figure 6. Oprofile results - project all fieldslarge tables more efficiently than iterators. It also exhibitsa linear increase in response time with respect to the num-ber of input tables, so long as the output cardinality remainsfixed (e.g., when unique2 is used as the join attribute), as theholistic approach renders obsolete the need to store any in-termediate results. HIQUE’s performance superiority is evenmore evident for join predicates that produce multiple tuple-to-tuple matches, (e.g., on joins over the times4, times10 andten fields) reaching even a 6x speedup over the competition.Note that the difference in performance is wide enough tocover the generation and compilation costs.Our methodology can be extended to cover evaluationof queries with more general join predicates. If we do notadopt advanced techniques like generalized hash teams, thistype of query can be evaluated by either performing generalnested loops join, or by joining pairs of tables with merge orhash join and re-formatting the intermediate results. Basedon the proven efficiency of the holistic nested loops imple-mentation against iterator-based nested loops, as well as theshorter response time on most 2-table joins, our model’s su-periority in general join predicates can easily be argued.
5.3 Processor Metrics

We next proceeded to extract processor profiling datafor the join of two 1m-tuple tables on unique2. We usedOProfile to collect sampling data from the processor’s hard-ware performance counters. The measurements concernedonly the server processes and covered (a) total retired in-structions, (b) I1-cache accesses and misses, (c) D1-cacheaccesses and misses, (d) L2-cache accesses, misses andprefetches (to the best of our knowledge, the Athlon64 ar-chitecture employs data prefetching to L2-cache and in-struction prefetching to I1-cache), (e) retired branch instruc-tions and branch mispredictions. We discovered that onlySystem X generates software prefetching instructions. Thedifficulty in including such instructions in the query enginehinders their utilization, while the comparable performanceof System X to PostgreSQL shows that software prefetchingis no panacea. This justifies our decision to exploit only theprocessor’s hardware prefetcher and avoid the complex pro-cess of using software prefetching instructions. The results,for projecting two and all fields from each table, appear inFigures 5 and 6 respectively, normalised to the maximum

... this hopeless case.”

Torsten Grust Technische Universität München

“We consistently outperform

7

10003
266514594

18302929512077325531217248183687

1656

R
e

ti
re

d
In

s
tr

u
c
ti
o

n
s

I1
 a

c
c
e

s
s
e

s

I1
 m

is
s
e
s

D
1

 a
c
c
e

s
s
e

s

D
1

 m
is

s
e
s

L
2

 a
c
c
e

s
s
e

s

L
2

 m
is

s
e

s

L
2

 p
re

fe
tc

h
e

s

R
e

ti
re

d
 B

ra
n

c
h

In
s
tr

u
c
ti
o

n
s

B
ra

n
c
h

M
is

p
re

d
ic

ti
o

n
s

#
 o

f
s
a
m

p
le

s

PostgreSQL System X MonetDB HIQUE

Figure 5. Oprofile results - project 2 fields
select projection list from t1, t2, . . . , tmwhere t1.field = t2.field and t2.field = t3.fieldand . . . and tm−1.field = tm.fieldThe trends on each system’s performance were consis-tent. Due to space limitations, we present only an indicativepart. The results appear in Figure 4: in Figures 4(a) and 4(b)we show the join performance with unique2 as the join at-tribute, as we scale the number of input tables for a tablecardinality of 1m tuples and for a projection list of eithertwo or all fields from each table. In Figures 4(c) and 4(d)we do the same for joining tables of 100k tuples each onthe times4 field. In the remaining plots we focus on thelength of the projection list while we keep the number andcardinality of input tables fixed, as we want to present theeffect of tuple width on the total execution time. We mustnote here that the PostgreSQL client we employed (psql)always attempted to buffer the result set before presentingit. In high output cardinality tests, where memory demandsincreased, the client would consistently hang. We thereforedo not report execution times for those cases.Hash nested loops were consistently faster than standardnested loops across the entire workload, and would ap-proach the performance of the merging algorithms, pro-vided that partitions could be restricted to one page each.For high selectivity join predicates, e.g., when the ten fieldis used as the join attribute, performance exceeds (slightly)the merge-based algorithms, the reason being that there aremany joining tuples per corresponding table partitions, ren-dering sorting redundant. As far as the merging algorithmsare concerned, merge join is always inferior to hash-sort-merge join, the latter proving the most efficient algorithmoverall. The difference is negligible for small cardinalities,where the complexity of creating and sorting all hash par-titions bears a cost similar to totally sorting the input. Asthe input cardinality increases, sorting the entire table in-troduces a significantly higher penalty: while for 10k tuplesper input table the difference in execution time was less than3%, when the input cardinality reached 1m tuples the per-formance difference increased to 10%.HIQUE outperformed both iterator-based systems (i.e.,PostgreSQL and System X) by far, while it consistentlysurpassed the hardware-conscious MonetDB. Moreover,HIQUE’s advantage grows proportionally to the input cardi-nalities, therefore verifying our model’s ability to handle

4270535787305283396757679810802182
30196686664

602439

R
e

ti
re

d
In

s
tr

u
c
ti
o

n
s

I1
 a

c
c
e

s
s
e

s

I1
 m

is
s
e
s

D
1

 a
c
c
e

s
s
e

s

D
1

 m
is

s
e
s

L
2

 a
c
c
e

s
s
e

s

L
2

 m
is

s
e

s

L
2

 p
re

fe
tc

h
e

s

R
e

ti
re

d
 B

ra
n

c
h

In
s
tr

u
c
ti
o

n
s

B
ra

n
c
h

M
is

p
re

d
ic

ti
o

n
s

#
 o

f
s
a
m

p
le

s

PostgreSQL System X MonetDB HIQUE

Figure 6. Oprofile results - project all fieldslarge tables more efficiently than iterators. It also exhibitsa linear increase in response time with respect to the num-ber of input tables, so long as the output cardinality remainsfixed (e.g., when unique2 is used as the join attribute), as theholistic approach renders obsolete the need to store any in-termediate results. HIQUE’s performance superiority is evenmore evident for join predicates that produce multiple tuple-to-tuple matches, (e.g., on joins over the times4, times10 andten fields) reaching even a 6x speedup over the competition.Note that the difference in performance is wide enough tocover the generation and compilation costs.Our methodology can be extended to cover evaluationof queries with more general join predicates. If we do notadopt advanced techniques like generalized hash teams, thistype of query can be evaluated by either performing generalnested loops join, or by joining pairs of tables with merge orhash join and re-formatting the intermediate results. Basedon the proven efficiency of the holistic nested loops imple-mentation against iterator-based nested loops, as well as theshorter response time on most 2-table joins, our model’s su-periority in general join predicates can easily be argued.
5.3 Processor Metrics

We next proceeded to extract processor profiling datafor the join of two 1m-tuple tables on unique2. We usedOProfile to collect sampling data from the processor’s hard-ware performance counters. The measurements concernedonly the server processes and covered (a) total retired in-structions, (b) I1-cache accesses and misses, (c) D1-cacheaccesses and misses, (d) L2-cache accesses, misses andprefetches (to the best of our knowledge, the Athlon64 ar-chitecture employs data prefetching to L2-cache and in-struction prefetching to I1-cache), (e) retired branch instruc-tions and branch mispredictions. We discovered that onlySystem X generates software prefetching instructions. Thedifficulty in including such instructions in the query enginehinders their utilization, while the comparable performanceof System X to PostgreSQL shows that software prefetchingis no panacea. This justifies our decision to exploit only theprocessor’s hardware prefetcher and avoid the complex pro-cess of using software prefetching instructions. The results,for projecting two and all fields from each table, appear inFigures 5 and 6 respectively, normalised to the maximum

• Compare against
the real competition.

• Makes for a more
interesting analysis,
too.

... this hopeless case.”

Torsten Grust Technische Universität München

“If it was hard to measure,
why should it be easy to read?”

8

Torsten Grust Technische Universität München

“If it was hard to measure,
why should it be easy to read?”

• These graphs contain the core message of the work.

8

Torsten Grust Technische Universität München9

1© M. Kersten

Bedtime stories:

Experimental validation

Martin Kersten

2© M. Kersten

Experimental validation

• What are the requirements for a credible
experimental assessment ?

• Are there classes of papers that do not need
experimental validation?

3© M. Kersten

Experiment Metrics

• Platform accessibility

1. Off-the-shelf

2. Accessible to scientist

3. For rich only

• Software accessibility

1. Open-source,

2. Built your self

3. Proprietary

• Parameter space

1. Space exploration

2. Public points

3. Private point

• Address a desire

1. Real-life

2. Simulation

3. Theory

• Metric Monsters

1. Colleagues

2. Compiler

3. Clock

4© M. Kersten

Experiment Metrics

• Platform accessibility

1. Off-the-shelf

2. Accessible to scientist

3. For rich only

• Software accessibility

1. Open-source,

2. Built your self

3. Proprietary

• Parameter space

1. Space exploration

2. Public points

3. Private point

• Address a desire

1. Real-life

2. Simulation

3. Theory

• Metric Monsters

1. Colleagues

2. Compiler

3. Clock

5© M. Kersten

Experiment Metrics

• Platform accessibility

1. Off-the-shelf

2. Accessible to scientist

3. For rich only

• Software accessibility

1. Open-source,

2. Built your self

3. Proprietary

• Parameter space

1. Space exploration

2. Public points

3. Private point

• Address a desire

1. Real-life

2. Simulation

3. Theory

• Metric Monsters

1. Colleagues

2. Compiler

3. Clock

The Fairy T
ale In

dex

6© M. Kersten

The Verdict

SIGMOD’07 VLDB’07

The fairy tale index

Fairy tale Dull reality

7© M. Kersten

The Verdict

SIGMOD’07

VLDB’07

The fairy tale index

Fairy tale Dull reality

1.89

1.97

Performance Evaluation and Performance Evaluation and

Experimental AssessmentExperimental Assessment

Paul LarsonPaul Larson

Microsoft ResearchMicrosoft Research

Typical experimental evaluations of Typical experimental evaluations of

limited valuelimited value

•• Database systems used for lots of different purposesDatabase systems used for lots of different purposes
–– Different databases, workloads, hardwareDifferent databases, workloads, hardware

•• Easy to find a case where your idea improves Easy to find a case where your idea improves
performance by X %performance by X %

•• Lots of work to find outLots of work to find out
–– Does the improvement hold up in different contexts?Does the improvement hold up in different contexts?

–– How does it interact with other features?How does it interact with other features?

–– WhatWhat’’s the effects on other quality measures?s the effects on other quality measures?

•• Solid experimental performance evaluation is difficult Solid experimental performance evaluation is difficult
and takes a lot of workand takes a lot of work

Benchmarks and performance Benchmarks and performance

comparisonscomparisons

•• Good benchmarks are hard to design but Good benchmarks are hard to design but

very usefulvery useful

•• Thorough experimental evaluations and Thorough experimental evaluations and

comparisons are extremely valuablecomparisons are extremely valuable

•• So why do we have so few papers on new So why do we have so few papers on new

benchmarks or comparing performance?benchmarks or comparing performance?

–– few submitted or few accepted?few submitted or few accepted?

SigmodSigmod experimental repeatability experimental repeatability

requirementrequirement

•• Experiments verified by a committeeExperiments verified by a committee

•• Submit code and data setsSubmit code and data sets

•• Doubt we have a big problem with fraudulent Doubt we have a big problem with fraudulent

results?results?

•• Impractical Impractical -- Lots of work for what benefit?Lots of work for what benefit?

•• Industrial labs not able to participateIndustrial labs not able to participate

–– CanCan’’t distribute code without licenset distribute code without license

–– CanCan’’t distribute experimental codet distribute experimental code

Performance Evaluation and

Experimental Assessment

Guido Moerkotte

• Should experimental assessment and

performance evaluation be considered part of

research or rather part of engineering?

• Who cares.

• What are the requirments for a credible

assessement?

• Answer doesn’t fit into 5 minutes.

• Are current experimental benchmarks up to

the task?

• Not necessarily.

• Are there classes of papers that do not need

experimental validation?

• Yes: PODS papers.

• Yes: those with time/space complexity

analysis

• Are there other metrics than performance

that could/should be assessed empirically?

• Yes, but not in databases.

• Would a requirement list or even template

help to ensure standardized and complete

representation?

• Yes, see TPC. But for universities this is too

heavy.

• And: standardized benchmarks only exist for

old problems.

• Is comparison with commercial systems

possible?

• Yes, it reveals deficiencies and potentially

proposes remedies.

• What are the minimal requirements on

experimental validations?

• plausibility. [no cheating!]

• completeness: e.g.: index: time to load, query,

update, query. plus space

• approximate reproducability.

• Should we modify the reviewing process to

solicit more disclosure of data and code?

• Who is going to read the code anyway?

• Answers are only valid, if you don’t want a

paper to be accepted.

Karl Popper, anonymity, the

“12 pages” and repeatability

Falsifiability is the demarcation
between science and non-science

Karl Popper

Let’s hear it from the Viennese

Thanks wikipedia!

I can now (pretend I have) read Popper’s works.

The easy way to do it

• Detail/document the experimental
procedure

– Data set, algorithm

– Archive; SIGMOD?

• or provide an (online) system

…and while talking about online systems…

Shameless (yet can be repeatable) Advertising Section

Check out app2you.org: Create custom, interactive,

database-driven web applications in minutes!
for classroom management, graduate admissions, hiring,

event planning, and all sorts of collaborative processes you need

The easy way became hard by

conference paper regulations

• “12 pages” do not fit all

– Allow pointers to web sites having data
sets, detailed descriptions, online
demos

• Clashes with anonymity

Repeatability proposal

• Will discourage some flagrant cases

• … but onerous and “offensive” [per
member of my thesis committee]

• Anonymity-complete bruhaha

Conclusion

• Strongly promote “repeatability” aspects

• Remove regulations that collide with them

• Measure the effect, feedback

