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Outsourced stream model: stock trading monitoring
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Data Publishing Model amoz

Owner: publish data
Servers: host (or monitor) the data and provide query services
Clients: query the owner’s data through servers
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Information Security Issues

» The third-party (server) cannot be trusted

Lazy server
Malicious intent
Compromised equipment

Unintentional errors (e.g. bugs)



Problem 1: Injection
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Problem 2: Drop
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Query Authentication: Goals

» Query Correctness
results do exist in the owner's database
» Query Completeness

no records have been omitted from the result



General Approach
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Sliding Window Query
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One Shot Query

I= Recent n tuples :
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Tuple-based Window

SELECT SUM(stock price)
FROM Stock_trace
WHERE stock name = A in last 100 Trades
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Merkle Hash Tree[mM89]-Amortizing Signature Cost
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Extends to Range Query: {=2 (f is the fanout)

Select * from T where 5<A<11 Sign(h, g,SK) H
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Client Side Verification

Select * from T where 5<A<11

Ver(h, ;,PK, G)
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Solution Overview

4 Sign Every Tuple (with query attribute(s) and timestamp)
Expensive update cost for the data provider

Expensive communication cost between server and
clients as VO size is large

But it provides timely answer on a per-tuple basis

» Amortize the signing cost by “proof-infusing” on
a group of tuples:
A delayed response, can often be tolerated.
» Query with d query attributes is a query in d+1
dimension.

» N: maximum window size; n: window size for a
particular query; b: the delay
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Tumbling Merkle Tree (TM-tree)
Slgn(hrootltlltb)
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Time

ti: timestamp of the ith tuple
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TM-tree Continues
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Sliding window query on the TM-tree

Tuples to be removed from results Tuples to be added to results
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Query the TM-tree
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Correctness and Completeness

» Correctness:

Guaranteed by each individual Merkle tree

» Completeness:
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Completeness in each small Merkle tree is
guaranteed by what we have studied in the first
part of this talk

Overall completeness:

Check that the results returned are obtained by querying
consecutive trees that fall within the query range on time
dimension and they completely cover the query range on
time dimension.

This is possible as two boundary tuples’ timestamps have

been signed in each tree (hence these timestamps have to
be included in the VO by the server).



Limitation of TM-tree

» Only supports one dimensional query

» False positives lead to large VO size,
especially when each tuple has non-trivial
size.
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Merkle kd tree (Mkd-tree)

» To get rid of false positives:
Obviously we need a multi-dimensional indexing structure
KD-tree: an excellent candidate with bounded query performance of

O(\/B) and O(blog b) to bulk-load.

A space-partition structure: partition along each dimension in turn.
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Mkd-tree and TMkd-tree

» Incorporating Merkle tree into KD-tree:

Leaf node: H(p), p is the point contained in this
node

Index node u with children v, w and dividing line lu:
H(hv|hw|lu)
» Tumbling Merkle kd-tree (TMkd-tree)

Similar idea as it is in TM-tree, but we are
using Mkd-tree as each small tree.

Boundary trees no longer introduce false
positives!
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[s this good enough?

» Tumbling trees are good for maintaining the
update to sliding window queries

» They both have linear space to N and log b
update cost, and % logb+b+k or % Jb +k query cost
» But they are expensive for answering one-

shot queries (or the initialization of sliding
window queries)

query with window size n: have to query
n/b trees: linear in n and could be
expensive for large values of n.
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Dyadic Merkle kd-tree (DMkd-tree): 1D
queries
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Exponential Merkle kd-tree (EMkd-
tree):Multi-dimensional queries
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Some Experiments

» We use real streams:
World Cup Data (WC)
I[P traces from the AT&T network (IP)

» We perform the following query:
WC: Query attribute is the response size
[P: Query attribute is the packet size

» Hardware:

2.8GHz Intel Pentium 4 CPU
Linux Machine
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Tumbling trees: update cost
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1. b=1000 is a sweet point
2. This delay i1s small: in real streams it spans less
than one or two seconds
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Tumbling trees: size
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They both have linear size (to number of tuples
covered in maximal window size of N)
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Query cost per sliding period, b=1,000: fixed
sliding period as b
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Linear scan of TM-tree at leaf level results in locality
which greatly improves its performance
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VO size per sliding period, b=1,000: fixed
sliding period as b
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TM-tree incurs roughly 4yb false positives
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DM-kd Tree, EM-kd Tree Update Cost
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DMkd, EMkd trees: size
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One Shot Query Cost

average query cost (us)
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One Shot Query: VO size

VO size (KB)
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Summary

» All trees support aagregations

» TM-tree and DMkd-tree support only one-
dimensional queries

» TMkd-tree and EMkd-tree support multi-
dimensional queries

» Tumbling trees are good for maintaining
updates to sliding window queries, while DMkd-
tree and Emkd-tree are good for one shot
queries.
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Thanks!

» Questions
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