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Outsourced stream model: stock trading monitoring
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Provider: 

A stock broker

Servers

(bloomberg)
Q

Register Queries: 

Sliding window query and/or 

One shot query

Clients



Data Publishing Model [HIM02]

SD
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Owner:    publish data

Servers:  host (or monitor) the data and provide query services

Clients:   query the owner’s data through servers

ownerserversclients

H. Hacigumus, B. R. Iyer, and S. Mehrotra, ICDE02



Information Security Issues
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 The third-party (server) cannot be trusted

 Lazy server

 Malicious intent

 Compromised equipment

 Unintentional errors (e.g. bugs)



Problem 1: Injection
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SD

Select * from T where 5<A<11

A B

r1 …

… …

ri-1 4

ri 7

ri+1 9

ri+2 11

A B

r1 …

… …

ri-1 4

ri 7

ri+1 9

ri+2 11

Returns 
7, 8, 9

owner

server

client



Problem 2: Drop
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SD

Select * from T where 5<A<11

A B

r1 …

… …

ri-1 4

ri 7

ri+1 9

ri+2 11

A B

r1 …

… …

ri-1 4

ri 7

ri+1 9

ri+2 11

Returns 7

owner

server

client

9ri+1



Query Authentication: Goals
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 Query Correctness
results do exist in the owner's database

 Query Completeness

no records have been omitted from the result



General Approach

SD
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ownerserversclients

A B

r1 …

… …

ri-1 4

ri 7

Authenticated Structures

Query results

Verification Object (VO)



Sliding Window Query
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SELECT SUM(stock_price) 

FROM Stock_trace

WHERE stock_name = A in last 5 Minutes

SLIDES every 1 minute

Time-based Window

SELECT SUM(stock_price) 

FROM Stock_trace

WHERE stock_name = A in last 100 Trades

SLIDES every 1 trade

Tuple-based Window

This talk concentrates on tuple-baesd window, generalizing 

to time-based window is in the paper.

For tuple-based window, the timestamp is simply the arrival

id of the tuple.

2, A 2, B 5, A9, C4, A 8, A 7, C 7, B… 2, D

xt+1

Recent n tuples

xtxt-n xt-n+1



One Shot Query
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2, A 2, B 5, A9, C4, A 8, A 7, C 7, B…

Recent n tuples

xtxt-n

SELECT SUM(stock_price) 

FROM Stock_trace

WHERE stock_name = A in last 100 Trades

Tuple-based Window



Merkle Hash Tree[M89]-Amortizing Signature Cost
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m1 m2 m3 m4 m5 m6 m7 m8

h1 h2 h3 h4 h5 h6 h7 h8

h12 h34 h56 h78

h1..4 h5..8

h1..8


Sign(h1..8,SK)

h12=
H(h1|h2)

R. C. Merkle. CRYPTO, 1989

m6

h78

h5 h6

m5

h56

h5..8h1..4

h1..8

Ver(h1..8,  ,pK)=valid?

Collision resistant hash function any change in the 

tree will lead to a different hash value for the root

Digital signature of the root  no one except the owner

could produce the signature
Hash function is publicly knownSingle signature to sign many messages



Extends to Range Query: f=2 (f is the fanout)
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1 2 3 4 5 6 9 12

h1 h2 h3 h4 h5 h6 h7 h8

h12 h34 h56 h78

h1..4 h5..8

h1..8


Sign(h1..8,SK)

qLB(q) RB(q)

Select * from T where 5<A<11

h1..4

VO: 5, 12, h1..4, 

5 12

h5..8





Client Side Verification
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5 6 9 12

h5 h6 h7 h8

h56 h78

h1..4 h5..8

h1..8

Valid?
Ver(h1..8,PK, )

q

Select * from T where 5<A<11

VO: 5, 12, h1..4, 

Query results: 6, 9

Unknown to the client

Reconstruct query 
subtree



Solution Overview
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 Sign Every Tuple (with query attribute(s) and timestamp)

 Expensive update cost for the data provider

 Expensive communication cost between server and 
clients as VO size is large

 But it provides timely answer on a per-tuple basis

 Amortize the signing cost by “proof-infusing” on 
a group of tuples:
 A delayed response, can often be tolerated.

 Query with d query attributes is a query in d+1 
dimension.

 N: maximum window size; n: window size for a 
particular query; b: the delay



Tumbling Merkle Tree (TM-tree)
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… …

Merkle binary search tree for 

every b tuples

… …

Merkle binary search tree for 

every b tuples

Time

Sign(hroot|t1|tb)

ti: timestamp of the ith tuple



TM-tree Continues
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Time

… …

Q
u
e
ry

 A
ttrib

u
te

 A

Sort by A

Build Merkle tree



Sliding window query on the TM-tree
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• • •

1. Initialization: Query n/b trees2. Window slides3. Incremental update: query four boundary trees

Tuples to be removed from results Tuples to be added to results



Query the TM-tree
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V
a
lu

e Time

Q

QQuery shifts by b

False positives

Sent to clients
Remove from results
Added to results
False positives



Correctness and Completeness
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 Correctness:

 Guaranteed by each individual Merkle tree

 Completeness:

 Completeness in each small Merkle tree is 

guaranteed by what we have studied in the first 

part of this talk

 Overall completeness: 

 Check that the results returned are obtained by querying 

consecutive trees that fall within the query range on time 

dimension and they completely cover the query range on 

time dimension.

 This is possible as two boundary tuples’ timestamps have 

been signed in each tree (hence these timestamps have to 

be included in the VO by the server).



Limitation of TM-tree
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 Only supports one dimensional query

 False positives lead to large VO size, 

especially when each tuple has non-trivial 

size.



Merkle kd tree (Mkd-tree)
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 To get rid of false positives:
 Obviously we need a multi-dimensional indexing structure

 KD-tree: an excellent candidate with bounded query performance of               
and to bulk-load.

 A space-partition structure: partition along each dimension in turn.

)(O b )logO( bb



Mkd-tree and TMkd-tree
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 Incorporating Merkle tree into KD-tree:

 Leaf node: H(p), p is the point contained in this 

node

 Index node u with children v, w and dividing line lu:  

H(hv|hw|lu)

 Tumbling Merkle kd-tree (TMkd-tree)

 Similar idea as it is in TM-tree, but we are 

using Mkd-tree as each small tree.

 Boundary trees no longer introduce false 

positives!



Is this good enough?
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 Tumbling trees are good for maintaining the 

update to sliding window queries

 They both have linear space to N and log b

update cost, and

 But they are expensive for answering one-

shot queries (or the initialization of sliding 

window queries)

 query with window size n: have to query 

n/b trees: linear in n and could be 

expensive for large values of n.

costquery  or  log kb
b

kbb
b

 



Dyadic Merkle kd-tree (DMkd-tree): 1D 

queries
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b b b b b b

2b 2b 2b

b b b

2b

b

2b

4b

N+b

4b

• • •

• • •

N+b

Merkle tree

Mkd-tree

Q

2b

b

4b

b

2b

4b

N+b

b

2b
Discarded

b



Exponential Merkle kd-tree (EMkd-

tree):Multi-dimensional queries
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Some Experiments
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 We use real streams:
 World Cup Data (WC)

 IP traces from the AT&T network (IP)

 We perform the following query:
 WC: Query attribute is the response size

 IP: Query attribute is the packet size

 Hardware:
 2.8GHz Intel Pentium 4 CPU

 Linux Machine



Tumbling trees: update cost
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1. b=1000 is a sweet point

2. This delay is small: in real streams it spans less 

than one or two seconds



Tumbling trees: size
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They both have linear size (to number of tuples 

covered in maximal window size of N)



Query cost per sliding period, b=1,000: fixed 

sliding period as b
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Linear scan of TM-tree at leaf level results in locality

which greatly improves its performance



VO size per sliding period, b=1,000: fixed 

sliding period as b
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TM-tree incurs roughly 4γb false positives



DM-kd Tree, EM-kd Tree Update Cost
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DMkd, EMkd trees: size
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One Shot Query Cost
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One Shot Query: VO size
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Summary
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 All trees support aagregations

 TM-tree and DMkd-tree support only one-

dimensional queries

 TMkd-tree and EMkd-tree support multi-

dimensional queries

 Tumbling trees are good for maintaining 

updates to sliding window queries, while DMkd-

tree and Emkd-tree are good for one shot 

queries.



Thanks!
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 Questions


