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Outsourced stream model: stock trading monitoring
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Provider: 

A stock broker

Servers

(bloomberg)
Q

Register Queries: 

Sliding window query and/or 

One shot query

Clients



Data Publishing Model [HIM02]

SD
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Owner:    publish data

Servers:  host (or monitor) the data and provide query services

Clients:   query the owner’s data through servers

ownerserversclients

H. Hacigumus, B. R. Iyer, and S. Mehrotra, ICDE02



Information Security Issues
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 The third-party (server) cannot be trusted

 Lazy server

 Malicious intent

 Compromised equipment

 Unintentional errors (e.g. bugs)



Problem 1: Injection
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SD

Select * from T where 5<A<11

A B

r1 …

… …

ri-1 4

ri 7

ri+1 9

ri+2 11

A B

r1 …

… …

ri-1 4

ri 7

ri+1 9

ri+2 11

Returns 
7, 8, 9

owner

server

client



Problem 2: Drop

6

SD

Select * from T where 5<A<11

A B

r1 …

… …

ri-1 4

ri 7

ri+1 9

ri+2 11

A B

r1 …

… …

ri-1 4

ri 7

ri+1 9

ri+2 11

Returns 7

owner

server

client

9ri+1



Query Authentication: Goals
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 Query Correctness
results do exist in the owner's database

 Query Completeness

no records have been omitted from the result



General Approach

SD
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ownerserversclients

A B

r1 …

… …

ri-1 4

ri 7

Authenticated Structures

Query results

Verification Object (VO)



Sliding Window Query
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SELECT SUM(stock_price) 

FROM Stock_trace

WHERE stock_name = A in last 5 Minutes

SLIDES every 1 minute

Time-based Window

SELECT SUM(stock_price) 

FROM Stock_trace

WHERE stock_name = A in last 100 Trades

SLIDES every 1 trade

Tuple-based Window

This talk concentrates on tuple-baesd window, generalizing 

to time-based window is in the paper.

For tuple-based window, the timestamp is simply the arrival

id of the tuple.

2, A 2, B 5, A9, C4, A 8, A 7, C 7, B… 2, D

xt+1

Recent n tuples

xtxt-n xt-n+1



One Shot Query
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2, A 2, B 5, A9, C4, A 8, A 7, C 7, B…

Recent n tuples

xtxt-n

SELECT SUM(stock_price) 

FROM Stock_trace

WHERE stock_name = A in last 100 Trades

Tuple-based Window



Merkle Hash Tree[M89]-Amortizing Signature Cost
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m1 m2 m3 m4 m5 m6 m7 m8

h1 h2 h3 h4 h5 h6 h7 h8

h12 h34 h56 h78

h1..4 h5..8

h1..8


Sign(h1..8,SK)

h12=
H(h1|h2)

R. C. Merkle. CRYPTO, 1989

m6

h78

h5 h6

m5

h56

h5..8h1..4

h1..8

Ver(h1..8,  ,pK)=valid?

Collision resistant hash function any change in the 

tree will lead to a different hash value for the root

Digital signature of the root  no one except the owner

could produce the signature
Hash function is publicly knownSingle signature to sign many messages



Extends to Range Query: f=2 (f is the fanout)
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1 2 3 4 5 6 9 12

h1 h2 h3 h4 h5 h6 h7 h8

h12 h34 h56 h78

h1..4 h5..8

h1..8


Sign(h1..8,SK)

qLB(q) RB(q)

Select * from T where 5<A<11

h1..4

VO: 5, 12, h1..4, 

5 12

h5..8





Client Side Verification
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5 6 9 12

h5 h6 h7 h8

h56 h78

h1..4 h5..8

h1..8

Valid?
Ver(h1..8,PK, )

q

Select * from T where 5<A<11

VO: 5, 12, h1..4, 

Query results: 6, 9

Unknown to the client

Reconstruct query 
subtree



Solution Overview
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 Sign Every Tuple (with query attribute(s) and timestamp)

 Expensive update cost for the data provider

 Expensive communication cost between server and 
clients as VO size is large

 But it provides timely answer on a per-tuple basis

 Amortize the signing cost by “proof-infusing” on 
a group of tuples:
 A delayed response, can often be tolerated.

 Query with d query attributes is a query in d+1 
dimension.

 N: maximum window size; n: window size for a 
particular query; b: the delay



Tumbling Merkle Tree (TM-tree)

15

… …

Merkle binary search tree for 

every b tuples

… …

Merkle binary search tree for 

every b tuples

Time

Sign(hroot|t1|tb)

ti: timestamp of the ith tuple



TM-tree Continues
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Time

… …

Q
u
e
ry

 A
ttrib

u
te

 A

Sort by A

Build Merkle tree



Sliding window query on the TM-tree
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• • •

1. Initialization: Query n/b trees2. Window slides3. Incremental update: query four boundary trees

Tuples to be removed from results Tuples to be added to results



Query the TM-tree
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V
a
lu

e Time

Q

QQuery shifts by b

False positives

Sent to clients
Remove from results
Added to results
False positives



Correctness and Completeness
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 Correctness:

 Guaranteed by each individual Merkle tree

 Completeness:

 Completeness in each small Merkle tree is 

guaranteed by what we have studied in the first 

part of this talk

 Overall completeness: 

 Check that the results returned are obtained by querying 

consecutive trees that fall within the query range on time 

dimension and they completely cover the query range on 

time dimension.

 This is possible as two boundary tuples’ timestamps have 

been signed in each tree (hence these timestamps have to 

be included in the VO by the server).



Limitation of TM-tree
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 Only supports one dimensional query

 False positives lead to large VO size, 

especially when each tuple has non-trivial 

size.



Merkle kd tree (Mkd-tree)
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 To get rid of false positives:
 Obviously we need a multi-dimensional indexing structure

 KD-tree: an excellent candidate with bounded query performance of               
and to bulk-load.

 A space-partition structure: partition along each dimension in turn.

)(O b )logO( bb



Mkd-tree and TMkd-tree
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 Incorporating Merkle tree into KD-tree:

 Leaf node: H(p), p is the point contained in this 

node

 Index node u with children v, w and dividing line lu:  

H(hv|hw|lu)

 Tumbling Merkle kd-tree (TMkd-tree)

 Similar idea as it is in TM-tree, but we are 

using Mkd-tree as each small tree.

 Boundary trees no longer introduce false 

positives!



Is this good enough?
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 Tumbling trees are good for maintaining the 

update to sliding window queries

 They both have linear space to N and log b

update cost, and

 But they are expensive for answering one-

shot queries (or the initialization of sliding 

window queries)

 query with window size n: have to query 

n/b trees: linear in n and could be 

expensive for large values of n.

costquery  or  log kb
b

kbb
b

 



Dyadic Merkle kd-tree (DMkd-tree): 1D 

queries
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b b b b b b

2b 2b 2b

b b b

2b

b

2b

4b

N+b

4b

• • •

• • •

N+b

Merkle tree

Mkd-tree

Q

2b

b

4b

b

2b

4b

N+b

b

2b
Discarded

b



Exponential Merkle kd-tree (EMkd-

tree):Multi-dimensional queries
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bb

4b

T0 T’0

T1

Tl

2b2b
T’1

4b

T’l

Materialized Mkd-tree

Non-materialized Mkd-tree

b b b
new T0

2b
T’1

b
T’0

bb b

2b
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T0

2b 2b

4b

T’l
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Some Experiments
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 We use real streams:
 World Cup Data (WC)

 IP traces from the AT&T network (IP)

 We perform the following query:
 WC: Query attribute is the response size

 IP: Query attribute is the packet size

 Hardware:
 2.8GHz Intel Pentium 4 CPU

 Linux Machine



Tumbling trees: update cost
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1. b=1000 is a sweet point

2. This delay is small: in real streams it spans less 

than one or two seconds



Tumbling trees: size
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They both have linear size (to number of tuples 

covered in maximal window size of N)



Query cost per sliding period, b=1,000: fixed 

sliding period as b
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Linear scan of TM-tree at leaf level results in locality

which greatly improves its performance



VO size per sliding period, b=1,000: fixed 

sliding period as b
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TM-tree incurs roughly 4γb false positives



DM-kd Tree, EM-kd Tree Update Cost
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DMkd, EMkd trees: size
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One Shot Query Cost
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One Shot Query: VO size
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Summary
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 All trees support aagregations

 TM-tree and DMkd-tree support only one-

dimensional queries

 TMkd-tree and EMkd-tree support multi-

dimensional queries

 Tumbling trees are good for maintaining 

updates to sliding window queries, while DMkd-

tree and Emkd-tree are good for one shot 

queries.



Thanks!
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 Questions


