
Proof-Infused Streams: Authenticating Sliding

Window Queries on Data Streams

 Feifei Li, Florida State University

 Ke Yi, Hong Kong University of Science & Technology

 Marios Hadjieleftheriou, AT&T Labs Research

 George Kollios, Boston University

Outsourced stream model: stock trading monitoring

2

Provider:

A stock broker

Servers

(bloomberg)
Q

Register Queries:

Sliding window query and/or

One shot query

Clients

Data Publishing Model [HIM02]

SD

3

Owner: publish data

Servers: host (or monitor) the data and provide query services

Clients: query the owner’s data through servers

ownerserversclients

H. Hacigumus, B. R. Iyer, and S. Mehrotra, ICDE02

Information Security Issues

4

 The third-party (server) cannot be trusted

 Lazy server

 Malicious intent

 Compromised equipment

 Unintentional errors (e.g. bugs)

Problem 1: Injection

5

SD

Select * from T where 5<A<11

A B

r1 …

… …

ri-1 4

ri 7

ri+1 9

ri+2 11

A B

r1 …

… …

ri-1 4

ri 7

ri+1 9

ri+2 11

Returns
7, 8, 9

owner

server

client

Problem 2: Drop

6

SD

Select * from T where 5<A<11

A B

r1 …

… …

ri-1 4

ri 7

ri+1 9

ri+2 11

A B

r1 …

… …

ri-1 4

ri 7

ri+1 9

ri+2 11

Returns 7

owner

server

client

9ri+1

Query Authentication: Goals

7

 Query Correctness
results do exist in the owner's database

 Query Completeness

no records have been omitted from the result

General Approach

SD

8

ownerserversclients

A B

r1 …

… …

ri-1 4

ri 7

Authenticated Structures

Query results

Verification Object (VO)

Sliding Window Query

9

SELECT SUM(stock_price)

FROM Stock_trace

WHERE stock_name = A in last 5 Minutes

SLIDES every 1 minute

Time-based Window

SELECT SUM(stock_price)

FROM Stock_trace

WHERE stock_name = A in last 100 Trades

SLIDES every 1 trade

Tuple-based Window

This talk concentrates on tuple-baesd window, generalizing

to time-based window is in the paper.

For tuple-based window, the timestamp is simply the arrival

id of the tuple.

2, A 2, B 5, A9, C4, A 8, A 7, C 7, B… 2, D

xt+1

Recent n tuples

xtxt-n xt-n+1

One Shot Query

10

2, A 2, B 5, A9, C4, A 8, A 7, C 7, B…

Recent n tuples

xtxt-n

SELECT SUM(stock_price)

FROM Stock_trace

WHERE stock_name = A in last 100 Trades

Tuple-based Window

Merkle Hash Tree[M89]-Amortizing Signature Cost

11

m1 m2 m3 m4 m5 m6 m7 m8

h1 h2 h3 h4 h5 h6 h7 h8

h12 h34 h56 h78

h1..4 h5..8

h1..8


Sign(h1..8,SK)

h12=
H(h1|h2)

R. C. Merkle. CRYPTO, 1989

m6

h78

h5 h6

m5

h56

h5..8h1..4

h1..8

Ver(h1..8,  ,pK)=valid?

Collision resistant hash function any change in the

tree will lead to a different hash value for the root

Digital signature of the root  no one except the owner

could produce the signature
Hash function is publicly knownSingle signature to sign many messages

Extends to Range Query: f=2 (f is the fanout)

12

1 2 3 4 5 6 9 12

h1 h2 h3 h4 h5 h6 h7 h8

h12 h34 h56 h78

h1..4 h5..8

h1..8


Sign(h1..8,SK)

qLB(q) RB(q)

Select * from T where 5<A<11

h1..4

VO: 5, 12, h1..4, 

5 12

h5..8



Client Side Verification

13

5 6 9 12

h5 h6 h7 h8

h56 h78

h1..4 h5..8

h1..8

Valid?
Ver(h1..8,PK, )

q

Select * from T where 5<A<11

VO: 5, 12, h1..4, 

Query results: 6, 9

Unknown to the client

Reconstruct query
subtree

Solution Overview

14

 Sign Every Tuple (with query attribute(s) and timestamp)

 Expensive update cost for the data provider

 Expensive communication cost between server and
clients as VO size is large

 But it provides timely answer on a per-tuple basis

 Amortize the signing cost by “proof-infusing” on
a group of tuples:
 A delayed response, can often be tolerated.

 Query with d query attributes is a query in d+1
dimension.

 N: maximum window size; n: window size for a
particular query; b: the delay

Tumbling Merkle Tree (TM-tree)

15

… …

Merkle binary search tree for

every b tuples

… …

Merkle binary search tree for

every b tuples

Time

Sign(hroot|t1|tb)

ti: timestamp of the ith tuple

TM-tree Continues

16

Time

… …

Q
u
e
ry

 A
ttrib

u
te

 A

Sort by A

Build Merkle tree

Sliding window query on the TM-tree

17

• • •

1. Initialization: Query n/b trees2. Window slides3. Incremental update: query four boundary trees

Tuples to be removed from results Tuples to be added to results

Query the TM-tree

18

V
a
lu

e Time

Q

QQuery shifts by b

False positives

Sent to clients
Remove from results
Added to results
False positives

Correctness and Completeness

19

 Correctness:

 Guaranteed by each individual Merkle tree

 Completeness:

 Completeness in each small Merkle tree is

guaranteed by what we have studied in the first

part of this talk

 Overall completeness:

 Check that the results returned are obtained by querying

consecutive trees that fall within the query range on time

dimension and they completely cover the query range on

time dimension.

 This is possible as two boundary tuples’ timestamps have

been signed in each tree (hence these timestamps have to

be included in the VO by the server).

Limitation of TM-tree

20

 Only supports one dimensional query

 False positives lead to large VO size,

especially when each tuple has non-trivial

size.

Merkle kd tree (Mkd-tree)

21

 To get rid of false positives:
 Obviously we need a multi-dimensional indexing structure

 KD-tree: an excellent candidate with bounded query performance of
and to bulk-load.

 A space-partition structure: partition along each dimension in turn.

)(O b)logO(bb

Mkd-tree and TMkd-tree

22

 Incorporating Merkle tree into KD-tree:

 Leaf node: H(p), p is the point contained in this

node

 Index node u with children v, w and dividing line lu:

H(hv|hw|lu)

 Tumbling Merkle kd-tree (TMkd-tree)

 Similar idea as it is in TM-tree, but we are

using Mkd-tree as each small tree.

 Boundary trees no longer introduce false

positives!

Is this good enough?

23

 Tumbling trees are good for maintaining the

update to sliding window queries

 They both have linear space to N and log b

update cost, and

 But they are expensive for answering one-

shot queries (or the initialization of sliding

window queries)

 query with window size n: have to query

n/b trees: linear in n and could be

expensive for large values of n.

costquery or log kb
b

kbb
b

 

Dyadic Merkle kd-tree (DMkd-tree): 1D

queries

24

b b b b b b

2b 2b 2b

b b b

2b

b

2b

4b

N+b

4b

• • •

• • •

N+b

Merkle tree

Mkd-tree

Q

2b

b

4b

b

2b

4b

N+b

b

2b
Discarded

b

Exponential Merkle kd-tree (EMkd-

tree):Multi-dimensional queries

25

bb

4b

T0 T’0

T1

Tl

2b2b
T’1

4b

T’l

Materialized Mkd-tree

Non-materialized Mkd-tree

b b b
new T0

2b
T’1

b
T’0

bb b

2b
T1

T0

2b 2b

4b

T’l

Q

Some Experiments

26

 We use real streams:
 World Cup Data (WC)

 IP traces from the AT&T network (IP)

 We perform the following query:
 WC: Query attribute is the response size

 IP: Query attribute is the packet size

 Hardware:
 2.8GHz Intel Pentium 4 CPU

 Linux Machine

Tumbling trees: update cost

27

1. b=1000 is a sweet point

2. This delay is small: in real streams it spans less

than one or two seconds

Tumbling trees: size

28

They both have linear size (to number of tuples

covered in maximal window size of N)

Query cost per sliding period, b=1,000: fixed

sliding period as b

29

Linear scan of TM-tree at leaf level results in locality

which greatly improves its performance

VO size per sliding period, b=1,000: fixed

sliding period as b

30

TM-tree incurs roughly 4γb false positives

DM-kd Tree, EM-kd Tree Update Cost

31

DMkd, EMkd trees: size

32

One Shot Query Cost

33

One Shot Query: VO size

34

Summary

35

 All trees support aagregations

 TM-tree and DMkd-tree support only one-

dimensional queries

 TMkd-tree and EMkd-tree support multi-

dimensional queries

 Tumbling trees are good for maintaining

updates to sliding window queries, while DMkd-

tree and Emkd-tree are good for one shot

queries.

Thanks!

36

 Questions

