Proof-Infused Streams: Authenticating Sliding
Window Queries on Data Streams

v

Feifei Li, Florida State University

v

Ke Yi, Hong Kong University of Science & Technology
Marios Hadjieleftheriou, AT&T Labs Research
George Kollios, Boston University

v Vv

Outsourced stream model: stock trading monitoring

4 A 0 Servers
. | (bloomberg)
elelel) >
Provider: gi
A stock broker S

Register Queries:
Sliding window query and/or
One shot query

Clients

Data Publishing Model amoz

Owner: publish data
Servers: host (or monitor) the data and provide query services
Clients: query the owner’s data through servers

!

clients servers owner

H. Hacigumus, B. R. lyer, and S. Mehrotra, ICDEQ2

Information Security Issues

» The third-party (server) cannot be trusted

Lazy server
Malicious intent
Compromised equipment

Unintentional errors (e.g. bugs)

Problem 1: Injection

Select * from T where 5<A<11

client owner
== Returns
A B A B
Iy ry
g Fi.1 4 Fi.1 4
Toaa : - :
Fisg 9 Fis1 9
livo 11 livo 11
server

Problem 2: Drop

Select * from T where 5<A<11

client owner
==
-0
A B A B
Iy ry
g r| 1 4 r| 1 4
ENGEERE : - :
Mi+1 Mi+1 9
livo 11 livo 11
server

Query Authentication: Goals

» Query Correctness
results do exist in the owner's database
» Query Completeness

no records have been omitted from the result

General Approach

¢

Verification Object (VO)

B I

=

-

==

clients

Query results
— L

=)

servers

Authenticated Structures

owner

Sliding Window Query

I= Recent n tuples I

AP BETACRCETACTAYSC YA BPA D

Xt-n Xen+1 Xt Xiyq

Tup ket WA ety

i MCM %i‘ﬂ baesd window, generalizing
tm-m_fwgﬁls In t%lf?aaper.

iR s Wage < he YeSRaN BoTTRialgarival
SRR SRy 1 hradee

9

One Shot Query

I= Recent n tuples :

AP BESAFCECERARFAVACYAB

Xt-n Xt

Tuple-based Window

SELECT SUM(stock price)
FROM Stock_trace
WHERE stock name = A in last 100 Trades

10

Merkle Hash Tree[mM89]-Amortizing Signature Cost

Wi | _;‘ :_L:‘. ’ ;u _" ASE ()
Ga IOV 1BV
’[[EI%%@ dde thdifenmen

' Ay Ine tener
ash value for the root

$&94(\|6f11_;8.,8<§*<,g>'a|id?

hio=
H(h,|h;)

R. C. Merkle. CRYPTO, 1989

11

Extends to Range Query: {=2 (f is the fanout)

Select * from T where 5<A<11 Sign(h, g,SK) H

Ns.g

f f f f f f

f f
1) (2] B e S
5@ | b—a—f [r@

12

Client Side Verification

Select * from T where 5<A<11

Ver(h, ;,PK, G)
VO: 5,12, h, 4, ©]

Query results: 6, 9

- -—
- ~<

—————
- -
- ~o

Reconstruct query
13 subtree

-~ —_———

Solution Overview

4 Sign Every Tuple (with query attribute(s) and timestamp)
Expensive update cost for the data provider

Expensive communication cost between server and
clients as VO size is large

But it provides timely answer on a per-tuple basis

» Amortize the signing cost by “proof-infusing” on
a group of tuples:
A delayed response, can often be tolerated.
» Query with d query attributes is a query in d+1
dimension.

» N: maximum window size; n: window size for a
particular query; b: the delay

14

Tumbling Merkle Tree (TM-tree)
Slgn(hrootltlltb)

)

y
Merkle binary search tree for Merkle binary search tree for
every b tuples every b tuples

Time

ti: timestamp of the ith tuple

15

TM-tree Continues

N

<—— Build Merkle tree

< Sort by A

v anguny AilsnQ®

Vv

Time

16

Sliding window query on the TM-tree

Tuples to be removed from results Tuples to be added to results
N\ VAN
\)
Y

3. Increménthiitiodzdt neapieidasib deeg sees

17

aNnjen

Query the TM-tree

o
e _ ° . L !
®© (@ || ® ®e © l 3 .
o oI ° . | ® False positives
IR b .
e .
|
I I B
I © o | | ® ||[®e ®
L ® ° e e
——r | F--A
| i °
Time | . ® Sent to clients \
Y e Remove from results

Q

18

Query shifts by b e Added to results
e False positives

Correctness and Completeness

» Correctness:

Guaranteed by each individual Merkle tree

» Completeness:

19

Completeness in each small Merkle tree is
guaranteed by what we have studied in the first
part of this talk

Overall completeness:

Check that the results returned are obtained by querying
consecutive trees that fall within the query range on time
dimension and they completely cover the query range on
time dimension.

This is possible as two boundary tuples’ timestamps have

been signed in each tree (hence these timestamps have to
be included in the VO by the server).

Limitation of TM-tree

» Only supports one dimensional query

» False positives lead to large VO size,
especially when each tuple has non-trivial
size.

20

Merkle kd tree (Mkd-tree)

» To get rid of false positives:
Obviously we need a multi-dimensional indexing structure
KD-tree: an excellent candidate with bounded query performance of

O(\/B) and O(blog b) to bulk-load.

A space-partition structure: partition along each dimension in turn.

(W
a
B p3

P2 po P1 ps p

Pr Ds

21

Mkd-tree and TMkd-tree

» Incorporating Merkle tree into KD-tree:

Leaf node: H(p), p is the point contained in this
node

Index node u with children v, w and dividing line lu:
H(hv|hw|lu)
» Tumbling Merkle kd-tree (TMkd-tree)

Similar idea as it is in TM-tree, but we are
using Mkd-tree as each small tree.

Boundary trees no longer introduce false
positives!

22

[s this good enough?

» Tumbling trees are good for maintaining the
update to sliding window queries

» They both have linear space to N and log b
update cost, and % logb+b+k or % Jb +k query cost
» But they are expensive for answering one-

shot queries (or the initialization of sliding
window queries)

query with window size n: have to query
n/b trees: linear in n and could be
expensive for large values of n.

23

Dyadic Merkle kd-tree (DMkd-tree): 1D
queries

e ﬂﬂ// b L b ﬂﬂ bt

N+b
: Q 4
A Merkle tree / } e
Mkd-tree

Exponential Merkle kd-tree (EMkd-
tree):Multi-dimensional queries

To newTo To To

Some Experiments

» We use real streams:
World Cup Data (WC)
I[P traces from the AT&T network (IP)

» We perform the following query:
WC: Query attribute is the response size
[P: Query attribute is the packet size

» Hardware:

2.8GHz Intel Pentium 4 CPU
Linux Machine

26

Tumbling trees: update cost

35 I T T
TM-tree —4+—

30 # TMkd-tree 7

25 .

20

|
154‘: |
| AN
10_ 1 : I]

L

)
51 :
I

I I

| | | |

0

update cost per tuple (us)

|1 3 5 7 9 11
|
| maximum delay b (x1,000 tuples)

1. b=1000 is a sweet point
2. This delay i1s small: in real streams it spans less
than one or two seconds

27

Tumbling trees: size

6 | | | | T . I I | :
TM-tree ——

ST TMkd-tree :
o~ i Size of tuples ¥ _
n 4
=
N 3 | |
N
w 27 |

1 i -

0

O 10 20 30 40 50 60 70 80 90 100110
window size N(x1,000 tuples), b=1,000

They both have linear size (to number of tuples
covered in maximal window size of N)

28

Query cost per sliding period, b=1,000: fixed
sliding period as b

T[)\ 150 I I I T T T

3 TM-tree —+—

= 125 - TMkd-tree -
g 100 | .
% 75 r .
(()) 50 [7
(@) ; g

E 25 B . | : :] 1 _
0]

© 0 '

O 005 01 015 0.2 025 0.3
query selectiviy y

Linear scan of TM-tree at leaf level results in locality
which greatly improves its performance

29

VO size per sliding period, b=1,000: fixed
sliding period as b

21 1 "I'M-treé +
18 + TMkd-tree

VO size (KB)

O 005 01 015 0.2 025 0.3 0.35
query selctivity y

TM-tree incurs roughly 4yb false positives

30

DM-kd Tree, EM-kd Tree Update Cost

Tn:: 30 . . .

= DMkd-tree —+—

o EMkd-tree

o

=2 25+ .
)

o

2 20 :
O —+

2 :

g 5f +—— :
=

10 30 50 70 90 110
maximum window size N(x1,000 tuples)

31

DMkd, EMkd trees: size

DMkd-tree —+—
25 | EMkd-tree
Size of tuples ¥

size (MB)

window size N (x1,000 tuples)

32

One Shot Query Cost

average query cost (us)

33

560
480
400

320 |

240
160
80
0

I TM-tree —+— |
TMkd-tree

- DMkd-tree ¥ :
EMkd-tree b _

\\“““\\
i - S X y
T S .
0 S 10 15 20

one-shot window size n(x1,000 tuples)

25

One Shot Query: VO size

VO size (KB)

34

21
18
15
12

o W o O

TM-tree —+— :
TMkd-tree _
DMkd-tree -

EMkd-tree =t _
----------------- o _
\\\\\\\\\\\\\\\\\\\\\ B _
o
B P W K _
: > 15 20

one-shot window size n (x1,000 tuples)

25

Summary

» All trees support aagregations

» TM-tree and DMkd-tree support only one-
dimensional queries

» TMkd-tree and EMkd-tree support multi-
dimensional queries

» Tumbling trees are good for maintaining
updates to sliding window queries, while DMkd-
tree and Emkd-tree are good for one shot
queries.

35

Thanks!

» Questions

36

