
Proof-Infused Streams: Authenticating Sliding

Window Queries on Data Streams

 Feifei Li, Florida State University

 Ke Yi, Hong Kong University of Science & Technology

 Marios Hadjieleftheriou, AT&T Labs Research

 George Kollios, Boston University

Outsourced stream model: stock trading monitoring

2

Provider:

A stock broker

Servers

(bloomberg)
Q

Register Queries:

Sliding window query and/or

One shot query

Clients

Data Publishing Model [HIM02]

SD

3

Owner: publish data

Servers: host (or monitor) the data and provide query services

Clients: query the owner’s data through servers

ownerserversclients

H. Hacigumus, B. R. Iyer, and S. Mehrotra, ICDE02

Information Security Issues

4

 The third-party (server) cannot be trusted

 Lazy server

 Malicious intent

 Compromised equipment

 Unintentional errors (e.g. bugs)

Problem 1: Injection

5

SD

Select * from T where 5<A<11

A B

r1 …

… …

ri-1 4

ri 7

ri+1 9

ri+2 11

A B

r1 …

… …

ri-1 4

ri 7

ri+1 9

ri+2 11

Returns
7, 8, 9

owner

server

client

Problem 2: Drop

6

SD

Select * from T where 5<A<11

A B

r1 …

… …

ri-1 4

ri 7

ri+1 9

ri+2 11

A B

r1 …

… …

ri-1 4

ri 7

ri+1 9

ri+2 11

Returns 7

owner

server

client

9ri+1

Query Authentication: Goals

7

 Query Correctness
results do exist in the owner's database

 Query Completeness

no records have been omitted from the result

General Approach

SD

8

ownerserversclients

A B

r1 …

… …

ri-1 4

ri 7

Authenticated Structures

Query results

Verification Object (VO)

Sliding Window Query

9

SELECT SUM(stock_price)

FROM Stock_trace

WHERE stock_name = A in last 5 Minutes

SLIDES every 1 minute

Time-based Window

SELECT SUM(stock_price)

FROM Stock_trace

WHERE stock_name = A in last 100 Trades

SLIDES every 1 trade

Tuple-based Window

This talk concentrates on tuple-baesd window, generalizing

to time-based window is in the paper.

For tuple-based window, the timestamp is simply the arrival

id of the tuple.

2, A 2, B 5, A9, C4, A 8, A 7, C 7, B… 2, D

xt+1

Recent n tuples

xtxt-n xt-n+1

One Shot Query

10

2, A 2, B 5, A9, C4, A 8, A 7, C 7, B…

Recent n tuples

xtxt-n

SELECT SUM(stock_price)

FROM Stock_trace

WHERE stock_name = A in last 100 Trades

Tuple-based Window

Merkle Hash Tree[M89]-Amortizing Signature Cost

11

m1 m2 m3 m4 m5 m6 m7 m8

h1 h2 h3 h4 h5 h6 h7 h8

h12 h34 h56 h78

h1..4 h5..8

h1..8

Sign(h1..8,SK)

h12=
H(h1|h2)

R. C. Merkle. CRYPTO, 1989

m6

h78

h5 h6

m5

h56

h5..8h1..4

h1..8

Ver(h1..8, ,pK)=valid?

Collision resistant hash function any change in the

tree will lead to a different hash value for the root

Digital signature of the root no one except the owner

could produce the signature
Hash function is publicly knownSingle signature to sign many messages

Extends to Range Query: f=2 (f is the fanout)

12

1 2 3 4 5 6 9 12

h1 h2 h3 h4 h5 h6 h7 h8

h12 h34 h56 h78

h1..4 h5..8

h1..8

Sign(h1..8,SK)

qLB(q) RB(q)

Select * from T where 5<A<11

h1..4

VO: 5, 12, h1..4,

5 12

h5..8

Client Side Verification

13

5 6 9 12

h5 h6 h7 h8

h56 h78

h1..4 h5..8

h1..8

Valid?
Ver(h1..8,PK,)

q

Select * from T where 5<A<11

VO: 5, 12, h1..4,

Query results: 6, 9

Unknown to the client

Reconstruct query
subtree

Solution Overview

14

 Sign Every Tuple (with query attribute(s) and timestamp)

 Expensive update cost for the data provider

 Expensive communication cost between server and
clients as VO size is large

 But it provides timely answer on a per-tuple basis

 Amortize the signing cost by “proof-infusing” on
a group of tuples:
 A delayed response, can often be tolerated.

 Query with d query attributes is a query in d+1
dimension.

 N: maximum window size; n: window size for a
particular query; b: the delay

Tumbling Merkle Tree (TM-tree)

15

… …

Merkle binary search tree for

every b tuples

… …

Merkle binary search tree for

every b tuples

Time

Sign(hroot|t1|tb)

ti: timestamp of the ith tuple

TM-tree Continues

16

Time

… …

Q
u
e
ry

 A
ttrib

u
te

 A

Sort by A

Build Merkle tree

Sliding window query on the TM-tree

17

• • •

1. Initialization: Query n/b trees2. Window slides3. Incremental update: query four boundary trees

Tuples to be removed from results Tuples to be added to results

Query the TM-tree

18

V
a
lu

e Time

Q

QQuery shifts by b

False positives

Sent to clients
Remove from results
Added to results
False positives

Correctness and Completeness

19

 Correctness:

 Guaranteed by each individual Merkle tree

 Completeness:

 Completeness in each small Merkle tree is

guaranteed by what we have studied in the first

part of this talk

 Overall completeness:

 Check that the results returned are obtained by querying

consecutive trees that fall within the query range on time

dimension and they completely cover the query range on

time dimension.

 This is possible as two boundary tuples’ timestamps have

been signed in each tree (hence these timestamps have to

be included in the VO by the server).

Limitation of TM-tree

20

 Only supports one dimensional query

 False positives lead to large VO size,

especially when each tuple has non-trivial

size.

Merkle kd tree (Mkd-tree)

21

 To get rid of false positives:
 Obviously we need a multi-dimensional indexing structure

 KD-tree: an excellent candidate with bounded query performance of
and to bulk-load.

 A space-partition structure: partition along each dimension in turn.

)(O b)logO(bb

Mkd-tree and TMkd-tree

22

 Incorporating Merkle tree into KD-tree:

 Leaf node: H(p), p is the point contained in this

node

 Index node u with children v, w and dividing line lu:

H(hv|hw|lu)

 Tumbling Merkle kd-tree (TMkd-tree)

 Similar idea as it is in TM-tree, but we are

using Mkd-tree as each small tree.

 Boundary trees no longer introduce false

positives!

Is this good enough?

23

 Tumbling trees are good for maintaining the

update to sliding window queries

 They both have linear space to N and log b

update cost, and

 But they are expensive for answering one-

shot queries (or the initialization of sliding

window queries)

 query with window size n: have to query

n/b trees: linear in n and could be

expensive for large values of n.

costquery or log kb
b

kbb
b

Dyadic Merkle kd-tree (DMkd-tree): 1D

queries

24

b b b b b b

2b 2b 2b

b b b

2b

b

2b

4b

N+b

4b

• • •

• • •

N+b

Merkle tree

Mkd-tree

Q

2b

b

4b

b

2b

4b

N+b

b

2b
Discarded

b

Exponential Merkle kd-tree (EMkd-

tree):Multi-dimensional queries

25

bb

4b

T0 T’0

T1

Tl

2b2b
T’1

4b

T’l

Materialized Mkd-tree

Non-materialized Mkd-tree

b b b
new T0

2b
T’1

b
T’0

bb b

2b
T1

T0

2b 2b

4b

T’l

Q

Some Experiments

26

 We use real streams:
 World Cup Data (WC)

 IP traces from the AT&T network (IP)

 We perform the following query:
 WC: Query attribute is the response size

 IP: Query attribute is the packet size

 Hardware:
 2.8GHz Intel Pentium 4 CPU

 Linux Machine

Tumbling trees: update cost

27

1. b=1000 is a sweet point

2. This delay is small: in real streams it spans less

than one or two seconds

Tumbling trees: size

28

They both have linear size (to number of tuples

covered in maximal window size of N)

Query cost per sliding period, b=1,000: fixed

sliding period as b

29

Linear scan of TM-tree at leaf level results in locality

which greatly improves its performance

VO size per sliding period, b=1,000: fixed

sliding period as b

30

TM-tree incurs roughly 4γb false positives

DM-kd Tree, EM-kd Tree Update Cost

31

DMkd, EMkd trees: size

32

One Shot Query Cost

33

One Shot Query: VO size

34

Summary

35

 All trees support aagregations

 TM-tree and DMkd-tree support only one-

dimensional queries

 TMkd-tree and EMkd-tree support multi-

dimensional queries

 Tumbling trees are good for maintaining

updates to sliding window queries, while DMkd-

tree and Emkd-tree are good for one shot

queries.

Thanks!

36

 Questions

