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Motivation of Stream Expression Cardinalities

Nature of network data streams

� Massive and fast

� Distributed at remote nodes

Statistical challenges

� What statistical sketches would be 
most efficient?

� Limited memory and computation

•Traffic matrix problem: Each remote node sees

•one packet stream, how many flows or packets

• do each pair of streams share ?
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The cardinality problem over multiple streams

�Two streams:   

Stream A = (a1, a2, …)

 Stream B = (b1, b2, …)

 (The same item may appear multiple times.)

 How many distinct items are in                   (set operation)?

 Example: A can be a stream of packets: each item is the flow ID of a packet.             is 

the number of common flows in both A and B.

�For more streams:
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Literature review on stream expression cardinalities

Key references:

�Use 1-stream cardinality algorithm: 

� Bitmap:  Estan, Varghese & Fisk, IMC’03

� LogLogN-Bitmap:  Cai, Pan, Kwok & Hwang, SIGCOMM’05

Basic idea: use set operation  |AnB|=|A|+|B|-|AuB|. Not efficient

Our approach: use correlation information efficiently

�Two-level-hash: Ganguly, Garofalakis & Rastogi, VLDBJ’04 ; Ganguly, ISAAC’05 

Basic idea: stores correlation information directly, space not efficient O((logN)^2)

Our approach: Use continuous Flajolet-Martin sketches, space O(LogLogN)

For one stream cardinality problem, many works exist:

�Flajolet & Martin, FOCS’83, Alon, Matias & Szegedy, STOC’96, 

�Durand & Flajolet, ESA’03  (LoglogN)

�And so on
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Our solution:  Generalize the Flajolet-Martin sketches

 We propose a continuous version of Flajolet-Martin sketch:

 Static sketch: 

 1) Associate each item with a pseudo-random number (universal hash)

 2) For each stream, record the minimal value of the random numbers (FM sketch)

 Let Y1 be the record for stream A and Y2 for stream B. Then Y1 and Y2 are 

correlated.

 Partition all items into three groups: 

 Note: The famous FM sketch uses geometric random numbers. Here we use a 

continuous random number (truncated in the decimals in applications). We handle 

insert-only streams.

ABBABA −−∩ ,,
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 Diagram

 Relationship:   Y1=min(X0,X1)   &   Y2=min(X0,X2).

 By using exponential random numbers, X0~exp(1/|AnB|), similarly X1, X2 are exp.

 Statistical principle:  Maximum Likelihood Estimation –the likelihood is a function of the 

three cardinality parameters and estimate them by maximizing the likelihood function  -

- MLE is Asymptotically unbiased and achieve the Cramer-Rao lower bound, but for 

more than 2 streams, MLE becomes complicated. Parameter numbers grow as 2^d-1 for 

expression over d streams.
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A Proportional Union (PU) Estimator: Simple and Efficient

 A nice property due to randomness: Because each item has the equal chance                 

to be the global minimal, i.e. min(Y1,Y2),  we have in probability 1:

 Y1=Y2   �� X0 is global minimal

 Y1<Y2   �� X1 is global minimal

 Y1>Y2   �� X2 is global minimal

 Proportional property:

 Stochastic sketches: To avoid multiple hashing, partition the item space randomly 

into m buckets and each bucket records a FM sketch
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Estimation methods and performance
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Better than State-of-the-Art algorithms
�Relative error is independent of |AuB| (Scale-Free).

�The relative error grows as square root of noise-signal-ratio (           ), better than 

expected. Almost as efficient as MLE when the noise-signal-ratio is big.

�E.g. If AnB has proportion 10%, then the standard relative error of PU is about 5% 

for m=4,000, no matter how big AuB is; MLE works slightly better.
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•Estimation approaches:

�Maximum likelihood estimate (MLE).

�PU method: )(|| 21 YYPBA =∝∩

•Theorem (Relative Error).
•Cardinality and Proportions

•Note: min(Y1,Y2) ~ exp(1/|AuB|) => estimate |AuB|
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Simulations and Comparison with State-of-the-Art

 Compare the PU algorithm with 2-level-hash (Ganguly’05), LogLog-Bitmap 
(CPKH’05) for estimating |(AnB)-C|. Proportion is defined as |(AnB)-C|/|AuBuC|.
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•Relative std error of three methods

•where N=3e7 and fix memory 188Kbytes.

•Relative std error of three methods

•where N=3e7 and fix m=1e4.

•Conclusion: PU works best, especially for small proportion.
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Experimental validation – Traffic matrix estimation

 Traffic matrix (defined as numbers of common flows, i.e. OD flows, for each pair of network nodes) in 5 minutes 

network traffic based on a major network in US with 1800 OD pairs. Use m=60,000 at each node. 

�Left panel shows good results: more than 50% node pairs have relative errors 1% or less and 

more than 90% node pairs have relative errors 10% or less.

�Right panel shows the Noise-Signal Ratios for node pairs: 50% have traffic proportion 1/64 or less.
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•THANK YOU!

•Open question:  Does there exist even more efficient sketches than the “continuous”

•FM sketches for estimating stream expression cardinalities?


