
Fast nGram-Based String

Search Over Data

Encoded Using Algebraic
Signatures

W. Litwin (Dauphine),
R. Mokadem (Dauphine),

Ph. Rigaux (Dauphine)
T. Schwarz (U. Santa Clara)

1

Plan

� Problem Statement

� Our Proposal

� Key Idea

� Algebraic Signatures

� Record Encoding

� Pattern Preprocessing

� Search Example

� Performance Study

� Conclusion

2

Problem

� String Search (Pattern Matching) in A
Database or File
� Find every record matching pattern = “Dauphine”

� What about record “Universite de Technologie Paris Dauphine” ?

� Records are searched often, and updated
rarely

�We especially target large Scalable and
Distributed DBs and Files

� on Grids and P2P networks

3

Client

Server 1

Server 2

Server 3

Server 4

4

Our Proposal

� Fast String Search Method

�Several Times Faster than Boyer-Moore

� In our experiments:

�Up to eleven times for ASCII

� Up to six times for XML

�Up to seventy times for DNA

5

Key Idea : Pre-processing

� We aggregate (encode) all n-symbol
long substrings (ngrams) in visited
strings (records) and in the searched
pattern into single-symbol algebraic
signatures

� Records are encoded while coming for

storage

� Pattern is encoded during search pre-

processing

6

Client

Server 1

Server 2

Server 3

Server 4

encoded

record a

encoded

record c

encoded

record d

encoded

record b

7

Key Idea : Search

� We compare signatures for attempted
matches and shifts like Boyer-Moore
(BM) does

� “Bad character” shift

� However, matching ngram signatures �
matching n symbols at the time

8

Key Benefit

� Matching attempts usually more
discriminative than matching a single
(original) symbol at the time.

� The latter is the current approach

� BM and all other major pattern matching
algorithms we are aware of

� KMP, Quick Search, KR…

9

Key Benefit

� Longer shifts

� Fewer comparisons

� Faster search

� Local search over encoded data only

� No local user can claim unintentional
disclosure of stored data
� Important for P2P

� Thought determined fraud is not that difficult

� Idem for the data transfer to the client
10

Algebraic Signature
ICDE 2004

� Condenses information in a string into a
single character

� Defined over Galois Fields (GF) of size 2f

�Elements are bit strings of length f

� In our case, typically f = 8

�Hence our symbols are bytes

�We realize GF addition ⊕⊕⊕⊕ as XOR

�We realize GF multiplication through
log/antilog tables

11

Algebraic Signature

AS(r1 …rk) = r1α ⊕ r2α2 ⊕ · · · ⊕ rkα
k

⇒ αααα is a primitive element, e.g., αααα = 2

⇒ if AS(R1) ≠ AS(R2) then R1 ≠ R2 for sure

⇒ if AS(R1) = AS(R2) then for sure or very likely R1 = R2

� The latter case is a collision

12

Record Encoding

� We encode every stored record : r1…rK

�Either into full Cumulative Algebraic Signature

r’k = r1α ⊕ r2α2 ⊕ · · · ⊕ rkα
k

�Or into partial (moving) CAS of ngrams

r’k = rk – n+1 α ⊕· · · ⊕ rkα
n

13

Full CAS

U n i v e r s i t le d e eT c h n o o g i e P a r i s

.. 3351

14

Partial CAS for n = 2

U n i v e r s i t le d e eT c h n o o g i e P a r i s

.. 2311

� Partial CAS can be stored or dynamically calculated from
full CAS

� See the paper

15

Pattern Preprocessing

� We aggregate ngram

signatures in the pattern

in a BM-like shift table T

� Conceptual result for

“Dauphine”

� Actually:

� shift table size is f and

entry is by AS value

� Rightmost ngram value is
in variable V

2-gram Shift

33 = AS(da) 6

23 = AS(au) 5

133 = AS(up) 4

24 = AS(ph) 3

07 = AS(hi) 2

62 = AS(in) 1

67 = AS(ne) 0

Any other digram 7
16

N-Gram Search by Example

� Pattern = “Dauphine” of length l = 8

� Record = “Universite de Technologie Paris Dauphine”

� n = 2

U n i v e r s i t le d e eT c h n o o g i e P a r i s

D a u p h i n e

� Attempt to match the rightmost 2-gram of pattern against the visited
2-gram in the record

� AS(ne) =? AS(si) at offset of “i”

17

N-Gram Search by Example

� Pattern = “Dauphine” of length l = 8

� Record = “Universite de Technologie Paris Dauphine”

� n = 2

.. 23 11 .. l.. d e eT c h n o o g i e P a r i s

D a u p h i n e

� 67 =? 11

� No

� Lookup shift table T at offset 11 = (AS(si))

� T shows shift of 7 symbols since AS(si) is not in “Dauphine”

� Maximal shift here

� Equal in general to l – n + 1
18

67

N-Gram Search by Example

� N-Gram Search: Looking for “Dauphine” in

“Universite de Technologie Paris Dauphine:

U n i v e r s i t le d e eT c h n o o g i e P a r i s

D a u p h i n e

� AS(ne) =? AS(T)

� Mismatch

� What in element AS(T) in table T ?

� Maximal shift by 7

� Since “ T” is nowhere in “Dauphine”
19

N-Gram Search by Example

� N-Gram Search: Looking for “Dauphine” in

“Universite de Technologie Paris Dauphine:

U n i v e r s i t le d e eT c h n o o g i e P a r i s

D a u p h i n e

� Idem

� Mismatch

� Shift by 7

� Again maximal shift since ‘lo’ not in “Dauphine”

20

N-Gram Search by Example

� N-Gram Search: Looking for “Dauphine” in

“Universite de Technologie Paris Dauphine:

t e d e T e c rh n o l igo e P a i s D a u p h e i n

D a u p h i n e

� Idem

� Mismatch

� Shift by 7

� Maximal shift since ‘ar’ not in “Dauphine”

21

N-Gram Search by Example

� N-Gram Search: Looking for “Dauphine” in

“Universite de Technologie Paris Dauphine:

t e d e T e c rh n o l igo e P a i s D a u p h e i n

D a u p h i n e

� Compare by signature digrams “ne” and “up”

� Mismatch

� shift by 4 according to T

� To align on ‘up’ in “Dauphine”

22

N-Gram Search by Example

� N-Gram Search: Looking for “Dauphine” in

“Universite de Technologie Paris Dauphine:

t e d e T e c rh n o l igo e P a i s D a u p h e i n

D a u p h i n e

� Match ‘ne’ and ‘ne’, ‘hi’ and ‘hi’, ‘up’ against ‘up’, ‘Da’ and

‘Da’

� Full match

23

N-Gram Search by Example

� N-Gram Search: Looking for “Dauphine” in

“Universite de Technologie Paris Dauphine:

t e d e T e c rh n o l igo e P a i s D a u p h e i n

D a u p h i n e

� Test for false positive : full CAS

� Compare all the matching symbols at the server

� No test if ngram signatures never collide

� e.g., through the method proposed for DNA in the paper

24

N-Gram Search by Example

� N-Gram Search: Looking for “Dauphine” in

“Universite de Technologie Paris Dauphine:

t e d e T e c rh n o l igo e P a i s D a u p h e i n

D a u p h i n e

� Test for false positive : partial CAS

� Compare matching symbols at the server except for AS(D) in the record

� Match D after decoding at the client

� Remaining n – 1 leftmost symbols in general

� No test if ngram signatures never collide

� e.g., through the method proposed for DNA in the paper

25

BM Search by Example

� Match attempts and shifts compare single
symbol at the time

U n i v e r s i t le d e eT c h n o o g i e P a r i s

D a u p h i n e

� Compare right-most character

� Mismatch, hence move Dauphine 2 slots to the right
where ‘i’ appears in Dauphine

26

BM Search Example

� BM: Looking for “Dauphine” in “Universite
de Technologie Paris Dauphine:

U n i v e r s i t le d e eT c h n o o g i e P a r i s

D a u p h i n e

� Compare right-most character

� Match, hence compare next character

� Mismatch, hence move Dauphine 7 slots to the right

since ‘e’ appears only once in Dauphine

27

BM Search Example

� BM: Looking for “Dauphine” in “Universite
de Technologie Paris Dauphine:

U n i v e r s i t le d e eT c h n o o g i e P a r i s

D a u p h i n e

� Compare ‘h’ against ‘e’

� Mismatch, move pattern three to the right

28

BM Search Example

� BM: Looking for “Dauphine” in “Universite
de Technologie Paris Dauphine:

U n i v e r s i t le d e eT c h n o o g i e P a r i s

D a u p h i n e

� Compare ‘l’ against ‘e’

� No ‘l’ in Dauphine, move by 8

29

BM Search Example

� BM: Looking for “Dauphine” in “Universite
de Technologie Paris Dauphine:

t e d e T e c rh n o l igo e P a i s D a u p h e i n

D a u p h i n e

� No ‘r’ in Dauphine, move by 8

30

BM Search Example

� BM: Looking for “Dauphine” in “Universite
de Technologie Paris Dauphine:

t e d e T e c rh n o l igo e P a i s D a u p h e i n

D a u p h i n e

� There is a ‘p’ in Dauphine, move by 5

31

BM Search Example

� BM: Looking for “Dauphine” in “Universite
de Technologie Paris Dauphine:

t e d e T e c rh n o l igo e P a i s D a u p h e i n

D a u p h i n e

� Compare ‘e’ against ‘e’, then ‘n’ against ‘n’, …

� A match

32

Comparison

� 2-gram search has fewer shifts (6 vs 8)

� The shifts are on average longer

� Even though maximum shift size for 2-
gram is here only 7 vs. 8 for BM

� Much larger gain to expect for larger
patterns

33

N-gram Search in Nutshell

Record

Pattern

N-gram

� Get N-gram in record

� Compare with V

� the last N-gram in pattern

� If equal, check whether this

is a full match

� If not, use shift table

� Repeat until done

N-gram

?
=

?
=

Pattern Pattern Pattern Pattern Pattern

Pattern

34

Performance

� Zero Storage Overhead

� No indexing

� Like BM, KMP…

� Unlike suffix trees and arrays or ngram indexes…

� Search cost is O(s), s the number of shifts

� Maximal shift size is l - n + 1

� Expected shift size converges towards f

� Galois Field size used for CAS calculus

35

Performance

� Depends on tuning of n

� Larger n decreases the maximum shift

� But makes ngrams more discriminative

� Up to some value of n

� depending on the alphabet size, symbol value distribution…

� Our experiments show:

� N=4 for DNA records

� N=2 for ASCII & XML in natural language text

36

Analytical Calculus

Expected Shift Size for 4-gram search on DNA

37

• Random distribution of symbol values

Experiments

� We compare experimentally performance
of N-gram search with BM

� We use mostly partial CAS encoding for:

�DNA

�ASCII natural language text

�XML code

38

Experiments: DNA (homo sap.)

Search Times
39

Experiments: DNA (homo sap.)

Shifts
40

Experiments (ASCII nat. lang.)

41

Experiments (ASCII nat. lang.)

42

Conclusion

� A new algorithm suitable for data stored once
and read many times
� At least as fast as the most used pattern-matching

technique (Boyer-Moore);

� Much faster for small alphabets and/or large patterns;

� Search without decoding is valuable for P2Pn and
Grid environment.

� Current work on:
� Approximate string matching

� Multiple pattern matching

� Stronger privacy preservation
43

Thank You

for

Your Attention

44

