
1

Extending Dependencies with Conditions

Loreto Bravo University of Edinburgh

Wenfei Fan University of Edinburgh & Bell Laboratories

Shuai Ma University of Edinburgh

2

Outline

� Why Conditional Dependencies?

� Data Cleaning

� Schema Matching

� Conditional Inclusion Dependencies (CINDs)

� Definition

� Static Analysis

• Satisfiability Problem

• Implication Problem

• Inference System

� Static Analysis of CFDs+CINDs

� Satisfiability Checking Algorithms (CFDs+CINDs)

� Summary and Future Work

3

Motivation

� Data Cleaning

� Real life data is dirty!

� Specify consistency using integrity constraints

• Inconsistencies emerge as violations of constraints

� Constraints considered so far: traditional
• Functional Dependencies - FD

• Inclusion Dependencies - IND

• . . .

� Schema matching: needed for data exchange and data integration

� Pairings between semantically related source schema attributes

and target schema attributes

� expressed as inclusion dependencies (e.g., Clio)

4

Example: Amazon database

� Schema:

� book(id, isbn, title, price, format)

� CD(id, title, price, genre)

� order(id, title, type, price, country, county)

Reyden

DL

county

UK7.94CDJ. Denvera12

US17.99bookH. Portera23

countrypricetypetitleid

b65

b32

isbn

7.94Snow whitea56

17.99H. Portera23

pricetitleid

7.94

17.99

price

a-bookSnow Whitea56

countryJ. Denvera12

genretitleid

order

book CD

5

Data cleaning with inclusion dependencies

audio

Hard cover

format

t4

t3

b65

b32

isbn

17.94Snow Whitea56

17.99H. Portera23

pricetitleid

book

order

Reyden

DL

county

t2

t1

UK7.94CDJ. Denvera12

US17.99bookH. Portera23

countrypricetypetitleid

� Example Inclusion dependency:

� book[id, title, price] ⊆⊆⊆⊆ order[id, title, price]

� Definition of Inclusion Dependencies (INDs)

� R1[X] ⊆ R2[Y], for any tuple t1 in R1, there must exist a tuple t2 in

R2, such that t2[Y]=t1[X]

6

Data cleaning meets conditions

audio

Hard cover

format

t4

t3

b65

b32

isbn

17.94Snow Whitea56

17.99H. Portera23

pricetitleid
book

order

Reyden

DL

county

t2

t1

UK7.94CDJ. Denvera12

US17.99bookH. Portera23

countrypricetypetitleid

This inclusion dependency does not make sense!

� How to express?
� Every book in order table must also appear in book table

� Traditional inclusion dependencies:

� order[id, title, price] ⊆⊆⊆⊆ book[id, title, price]

7

Data cleaning meets conditions

audio

Hard cover

format

t4

t3

b65

b32

isbn

17.94Snow Whitea56

17.99H. Portera23

pricetitleidbook

order

Reyden

DL

county

t2

t1

UK7.94CDJ. Denvera12

US17.99bookH. Portera23

countrypricetypetitleid

� Conditional inclusion dependency:

� order[id, title, price, type =‘ book’] ⊆⊆⊆⊆ book[id, title, price]

8

Schema matching with inclusion dependencies

� Traditional inclusion dependencies:

book[id, title, price] ⊆⊆⊆⊆ order[id, title, price]

CD[id, title, price] ⊆⊆⊆⊆ order[id, title, price]

� Schema Matching:

� Pairings between semantically related source schema

attributes and target schema attributes, which are de facto

inclusion dependencies from source to target (e.g., Clio)

countycountrypricetypetitleid

isbn pricetitleid price genretitleid

order

book CD

9

Schema matching meets conditions

� Traditional inclusion dependencies:

order[id, title, price] ⊆⊆⊆⊆ book[id, title, price]

order[id, title, price] ⊆⊆⊆⊆ CD[id, title, price]

These inclusion dependencies do not make sense!

countycountrypricetypetitleid

isbn pricetitleid price genretitleid

order

book CD

10

Schema matching meets conditions

countycountrypricetypetitleid

isbn pricetitleid price genretitleid

Conditional inclusion dependencies:

order[id, title, price; type =‘ book’] ⊆⊆⊆⊆ book[id, title, price]

order[id, title, price; type = ‘CD’] ⊆⊆⊆⊆ CD[id, title, price]

The constraints do not hold on the entire order table

� order[id, title, price] ⊆ book[id, title, price] holds only if type = ‘book’

� order[id, title, price] ⊆ CD[id, title, price] holds only if type = ‘CD’

order

book CD

11

� (R1[X; Xp] ⊆⊆⊆⊆ R2[Y; Yp], Tp):

� R1[X] ⊆⊆⊆⊆ R2[Y]: embedded traditional IND from R1 to R2

� attributes: X ∪ Xp ∪ Y ∪ Yp

� Tp: a pattern tableau

� tuples in Tp consist of constants and unnamed variable _

� Example:

CD[id, title, price; genre = ‘a-book’] ⊆⊆⊆⊆book[id, title, price; format = ‘audio’]

� Corresponding CIND:

� (CD[id, title, price; genre] ⊆⊆⊆⊆book[id, title, price; format], Tp)

Conditional Inclusion Dependencies (CINDs)

_

price

_

id

_

title

_

price

audioa-book__

formatgenretitleid
Tp

12

R1[X] ⊆⊆⊆⊆ R2[Y]

� X: [A1, …, An]

� Y : [B1, …, Bn]

As a CIND: (R1[X; nil] ⊆⊆⊆⊆ R2[Y; nil], Tp)

� pattern tableau Tp: a single tuple consisting of _ only

CINDs subsume traditional INDs

INDs as a special case of CINDs

_

An

_

B1

_

…

Bn…A1

13

Static Analysis of CINDs

� Satisfiability problem

� INPUT: Give a set Σ of constraints

� Question: Does there exist a nonempty instance I satisfying Σ?

� Whether Σ itself is dirty or not

� For INDs the problem is trivially true

� For CFDs (to be seen shortly) it is NP-complete

� Good news for CINDs

Proposition: Any set of CINDs is always satisfiable

I╠ Σ

14

Static Analysis of CINDs

� Implication problem

� INPUT: set Σ of constraints and a single constraint φ

� Question: for each instance I that satisfies Σ, does I also satisfy

φ?

� Remove redundant constraints

� PSPACE-complete for traditional inclusion dependencies

Theorem. Complexity bounds for CINDs

� Presence of constants

� PSPACE-complete in the absence of finite domain attributes

• Good news – The same as INDs

� EXPTIME-complete in the general setting

Σ╠ φ

15

Finite axiomatizability of CINDs

1-Reflexivity

2-Projection and Permutation

3-Transitivity

IND Counterparts

Finite Domain Attributes

Sound and Complete in the

Absence of Finite Attributes

Theorem. The above eight rules constitute a sound and complete

inference system for implication analysis of CINDs

7-F-reduction

8-F-upgrade

4-Downgrading

5-Augmentation

6-Reduction

� φ is implied by Σ iff it can be computed by the inference system

� INDs have such Inference System

� Good news: CINDs too!

16

Axioms for CINDs: finite domain reduction

� New CINDs can be inferred by axioms

� (R1[X; A] ⊆⊆⊆⊆ R2[Y; Yp], Tp),

� dom(A) = { true, false}

d

d

Yp

tp2

tp1

false

_

X

_true

YA

then (R1[X; Xp] ⊆⊆⊆⊆ R2[Y; Yp], tp),

d

Yp

__

YX

Tp

17

Static analyses: CIND vs. IND

yesPSPACE-completeO(1)IND

yesEXPTIME-completeO(1)CIND

finite axiom’tyimplicationsatisfiability

� In the absence of finite-domain attributes:

yesPSPACE-completeO(1)IND

yesPSPACE-completeO(1)CIND

finite axiom’tyimplicationsatisfiability

�General setting with finite-domain attributes:

CINDs retain most complexity bounds of their traditional counterpart

18

An extension of traditional FDs

Example: cust([country = 44, zip] →→→→ [street])

Conditional Functional Dependencies (CFDs)

Elem Str.0120201Ben

Jim

Joe

Bob

Name

Tree Ave.0797444

Tree Ave.0797444

Oak Ave.0120201

streetzipcountry

19

Static analyses: CFD + CIND vs. FD + IND

NoundecidableO(1)FD + IND

NoundecidableundecidableCFD + CIND

finite axiom’tyimplicationsatisfiability

� CINDs and CFDs properly subsume FDs and INDs

� Both the satisfiability analysis and implication analysis are

beyond reach in practice

This calls for effective heuristic methods

20

Satisfiability Checking Algorithms

� Before using a set of CINDs for data cleaning or schema

matching we need to make sure that they make sense (that they

are clean)

� We need to find heuristics to solve the satisfiability problem

� Input: A set Σ of CFDs and CINDs

� Output: true / false

� We modified and extended techniques used for FDs and INDs

� For example: Chase, to build a “canonical” witness

instance, i.e., I╠ Σ

21

ChaseCFDs+CINDs – Terminate case

� Σ = {ϕ1, ψ1}

� ϕ1=(R2(G → H), (_ || c)) - CFD

� ψ1=(R2[G; nil] ⊆⊆⊆⊆ R1[F; nil], (_ || _)) - CIND

FE

VH1VG1

HG

R1 R2

VG1

F

VE1

E

cVG1

HG

R1 R2

FE

cVG1

HG

R1 R2

Done!

ϕϕϕϕ1

ψ1

22

ChaseCFDs+CINDs – Loop case

� Σ = {ϕ1, ψ1, ψ2}

� ϕ1=(R2(G → H), (_ || c)) - CFD

� ψ1=(R2[G; nil] ⊆⊆⊆⊆ R1[F; nil], (_ || _)) - CIND

� ψ2=(R1[E; nil] ⊆⊆⊆⊆ R2[G; nil], (_ || _))

FE

cVG1

HG

R1 R2

VG1

F

VE1

E

cVG1

HG

R1 R2

cVG1VG1VE1

FE

cVE1

HG

cVG1VG1VE1

VE1

F

VE2

E

cVE1

HG

Infinite
application

of
ψ1 and ψ2

Loop!

ψ1

ψ2ψ1

ψ2

23

More about the checking algorithms

� Simplification of the chase:

� The fresh variables are taken from a finite set

� We avoid the infinite loop of the chase by limiting the size of

the witness instance

� If the algorithm returns:

• True: we know the constraints are satisfiable

• False: there may be false negative answers – the

problem is undecidable and the best we can get is a

heuristic

� In order to improve accuracy of the algorithm we use:

� Optimization techniques

24

Example optimization techniques

Unsatisfiability Propagation

� IF

� CFDs on R4 is unsatisfiable

� There is a CIND Ψ4: (R3[X; nil] ⊆⊆⊆⊆ R4[Y; Yp], tp)

� THEN

� R3 must be empty!

R3 R4 R1 R2 R5

Ψ4

Ψ2, Ψ3

Ψ5

Ψ1

R6

Node(Relation): related to CFDs

Edge: related to CINDS

25

CFDs+CINDs satisfiability checking - experiments

� Experimental Settings

� Accuracy tested for satisfiable sets of CFDs and CINDs

• The data sets where generated by ensuring the

existence of a witness database that satisfies them

� Scalability tested for random sets of CFDs and CINDs

� Each experiment was run 6 times and the average is

reported

� # of constraints: up to 20,000

� # of relations: up to 100

� Ratio of finite attributes: up to 25%

� An Intel Pentium D 3.00GHz with 1GB memory

26

CFDs+CINDs satisfiability checking - experiments

Accuracy testing is based satisfiable sets of CFDs and CINDs

Algorithm:
1. Chase : modified version Chase
2. DG+Chase: graph optimization based Chase

 0

 20

 40

 60

 80

 100

 0 5000 10000 15000 20000

A
cc

u
ra

cy
(%

)

Number of Constraints

Chase
DG + Chase

27

CFDs+CINDs satisfiability checking - experiments

 0

 10

 20

 30

 40

 50

 60

 0 5000 10000 15000 20000

R
u
n
ti

m
e(

se
c.

)

Number of Constraints

Chase
DG + Chase

Scalability testing is based on random sets of CFDs and CINDs

 0

 20

 40

 60

 80

 100

 120

 0 20 40 60 80 100

R
u

n
ti

m
e(

se
c.

)

Number of Relations

Chase
DG + Chase

28

Summary and future work

� New constraints: conditional inclusion dependencies

� for both data cleaning and schema matching

� complexity bounds of satisfiability and implication analyses

� a sound and complete inference system

� Complexity bounds for CFDs and CINDs taken together

� Heuristic satisfiability checking algorithms for CFDs and CINDs

� Open research issues:

� Deriving schema mapping from the constraints

� Repairing dirty data based on CFDs + CINDs

� Discovering CFDs + CINDs

Towards a practical method
for data cleaning and schema matching

