

T. J. Watson Research Center

Unifying Data and Domain Knowledge Using OVIII Views

Lipyeow Lim, Haixun Wang & Min Wang

© 2007 IBM Corporation

	_		
		the system of the second s	
	-		-
_			

Background

- DBMS originally designed for transaction data
- Many extensions for richer queries attempted
 - OO DBMS and ORDBMS
 - OLAP (1990s)
 - Data Cube (ICDE 1996)
 - Data Mining (CACM 1996)
- An unending quest
 - Database or Knowledge-base?
 - New applications: the Semantic web, etc.
- Move from simple transactional or analytical processing to semantics understanding and knowledge inferencing

A motivating example

- **RDBMS allows us to query wines through attributes** ID, Type, Origin, Maker, Price.
- Expressive power: relational complete (quite limited).
- Human intelligence operates in a quite different way.

ID	Туре	Origin	Maker	Price
1	Burgundy	CotesDOr	ClosDeVougeot	30
2	Riesling	NewZealand	Corbans	20
3	Zinfandel	EdnaValley	Elyse	15

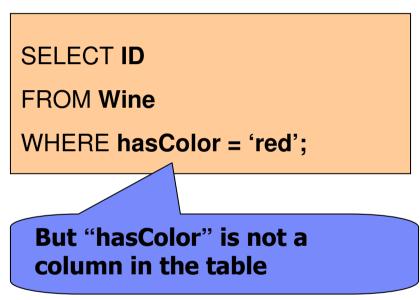
A base table : Wine

	_		
			_
		and the second sec	
	_		
	100		

Query 1:

- Which wine originates from the US?
 - Answer: Zinfandel
 - Zinfandel's Origin EdnaValley is located in California.
 - Domain knowledge used:
 EdnaValley is in California, and
 California is in the US.

• We could issue:

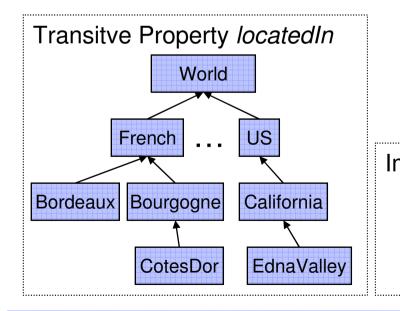

ID	Туре	Origin	Maker	Price
1	Burgundy	CotesDOr	ClosDeVougeot	30
2	Riesling	NewZealand	Corbans	20
3	Zinfandel	EdnaValley	Elyse	15

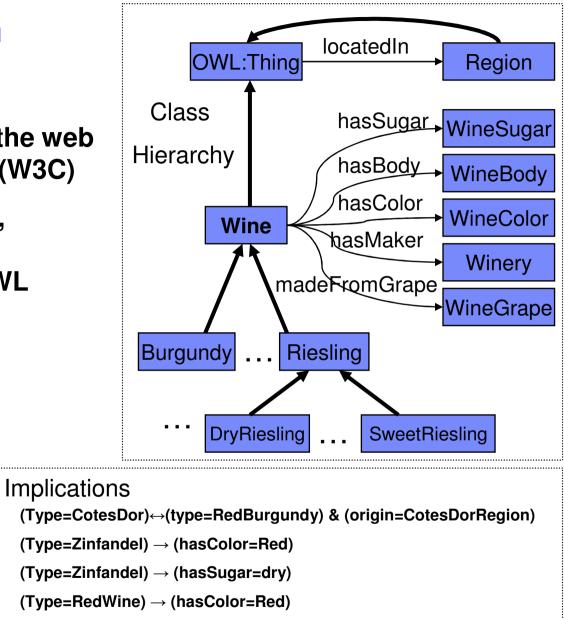
-	
_	

Query 2:

- Which wine is a red wine?
 - Answer: Zinfandel & Burgundy
 - Domain knowledge used:
 - Zinfandel is red;
 - Burgundy can be either red or white, but Burgundy from CotesDor is always red

• We could issue:

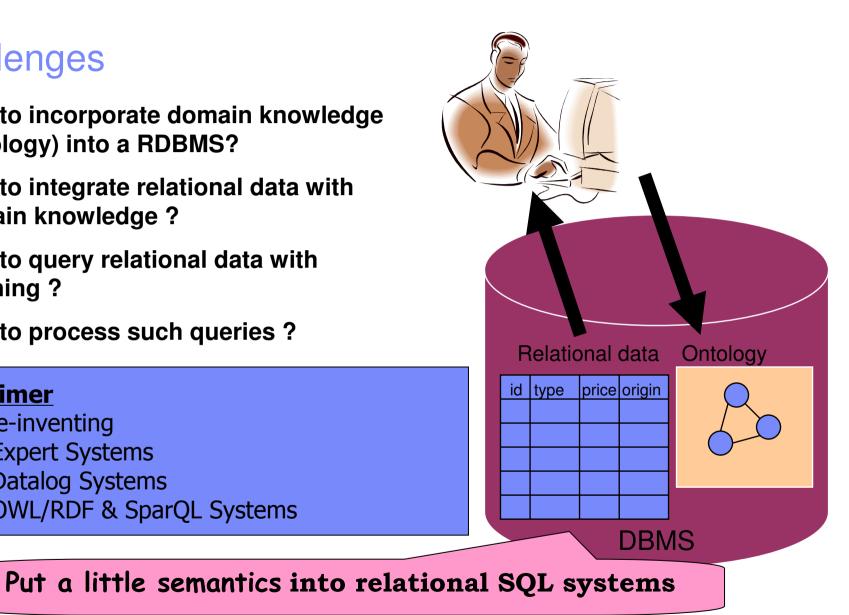



ID	Туре	Origin	Maker	Price
1	Burgundy	CotesDOr	ClosDeVougeot	30
2	Riesling	NewZealand	Corbans	20
3	Zinfandel	EdnaValley	Elyse	15

Domain Knowledge from OWL Ontology

- Eg. Wine Ontology from the web ontology language OWL (W3C)
- Extract class hierarchies, (transitive) properties, implications, etc from OWL

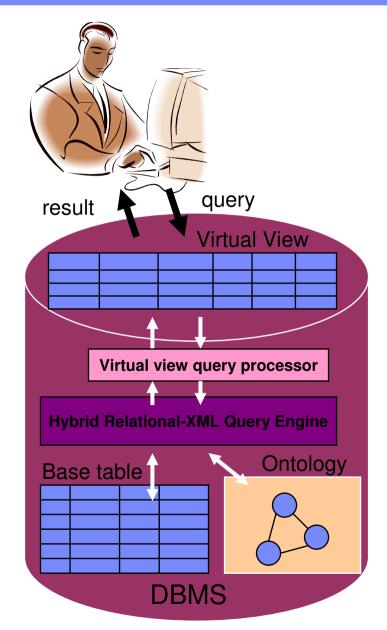
J. Watson Research Center


		_	
_	_	100	

Challenges

- How to incorporate domain knowledge (ontology) into a RDBMS?
- How to integrate relational data with domain knowledge ?
- How to query relational data with meaning?
- How to process such queries ?

Disclaimer


- Not re-inventing
 - Expert Systems
 - Datalog Systems
 - OWL/RDF & SparQL Systems

-		
_		
_	-	

Overview of our solution

- Provide user with a unified view of the data and the domain knowledge.
- Through the virtual view, we offer a rich set of functionalities for knowledge inferencing out of the Spartan simplicity of SQL.
- Leverage hybrid relational-XML storage for managing domain knowledge
- Rewrite query on virtual view
- Leverage hybrid relational-XML query engine to process re-written query.

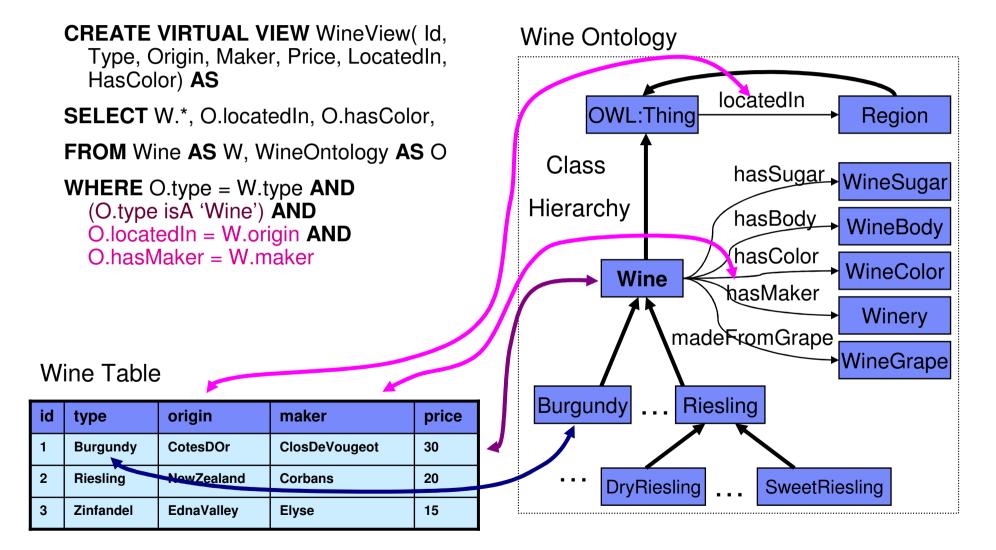
	_	_	
			_
		the second second second	
	-	-	
	_		
-	100		_

Virtual View Unifies Data & Ontology

- Users create virtual views over the relational data and the ontology
- Virtual columns/attributes not in original data
- Virtual columns not materialized -- inferred from the ontology

							DRMS)				
id	type	е		origin		maker		price	locatedIn	(origin)	hasColor	
1	Burgundy		dy	CotesD	Or	ClosDeVougeot		30	{Bourgog	ne, France}	red	
2	Rie	Riesling		NewZea	land	Corbans		20	{}		white	
3	Zin	fande	el	EdnaVa	lley	/ Elyse		15	{Californ	a, US}	red	
		id	typ	pe	origir	ı	maker		price			
		1	Bu	urgundy	Cotes	DOr	ClosDeVougeot		30		\sim	
		2	Ri	esling	NewZ	NewZealand Corbans		1	20	\bigcirc		
		3	Zir	nfandel	Edna	Valley Elyse			15			
				Relati	ional	data				Ontolog		

_		_
_		
	_	
_		


The virtual view

ID	Туре	Origin	Maker	Price	LocatedIn	hasColor
1	Burgundy	CotesDOr	CotesDOr ClosDeVougeot		{Burgundy,France}	red
2	Riesling	NewZealand	Corbans	20	{}	white
3	Zinfandel	EdnaValley	Elyse	15	{California,US}	red

- Wine Burgundy is originated from CotesDOr, which is a sub-region of Burgundy, which in turn, is a subregion of France.
 - (type = Zinfandel) → (hasColor = red)
 - (type = Riesling) → (hasColor = white)

-			
	_		
			_
		the second second	
		-	
	_		

Creating the Virtual View

			_
		a 1	
_			
_			
	-		

Now we can write the semantic queries

Which wine originates from the US?

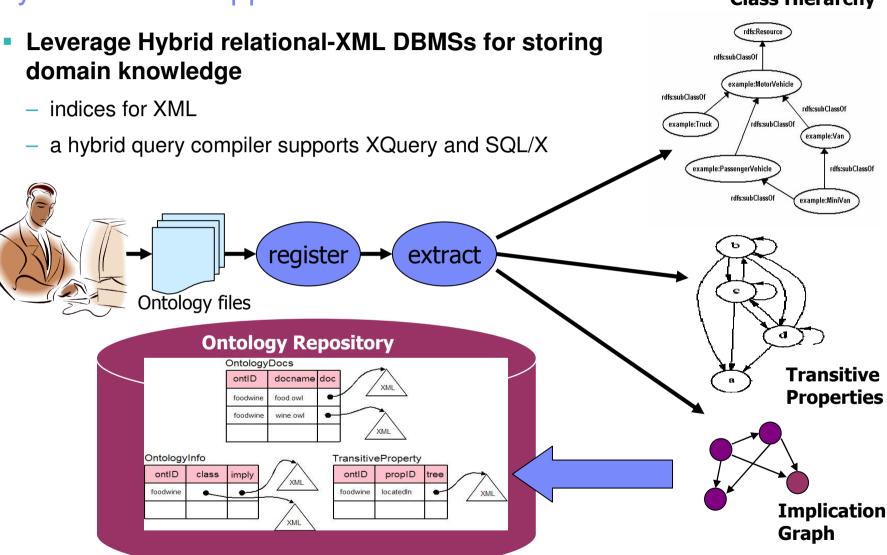
SELECT Id

FROM WineView

WHERE 'US' IN LocatedIn;

Which wine is a red wine?

SELECT Id


FROM WineView

WHERE **hasColor** = 'red';

id	type	origin	maker	price	locatedIn(origin)	hasColor
1	Burgundy	CotesDOr	ClosDeVougeot	30	{Bourgogne, French}	red
2	Riesling	NewZealand	Corbans	20	{}	white
3	Zinfandel	EdnaValley	Elyse	15	{California, US}	red

-	
	the second second second

Physical Level Support

Hybrid Relational-XML DBMS

- CREATE TABLE ClassHierarchy(id INTEGER, name VARCHAR(27), hierarchy XML);
- INSERT INTO ClassHierarchy VALUES(1, 'Wine',

```
XMLParse('<?xml version='1.0'>
```

<wine>

<WhiteWine><WhiteBurgundy>...</WhiteBurgundy>...

</WhiteWine>

```
<DessertWine><SweetRiesling/>...
```

```
</DessertWine>...
```

```
</wine>')
```

);

 Example: find class ids and class names of all class hierarchies that contain the XPath /Wine/DessertWine/SweetRiesling:

```
SELECT id, name
FROM ClassHierarchy AS C
WHERE XMLExists('$t/Wine/DessertWine/SweetRiesling'
PASSING BY REF C.order AS "t")
```


_	_		
		4 1 1	
		1 1	
_			-

Query Re-writing

 Query expansion on virtual columns using implications.

SELECT V.Id FROM WineView AS V WHERE V.hasColor=White;

Since the following implications exists, we use them to expand the query predicate

 $(Type=WhiteWine) \rightarrow (hasColor=white)$

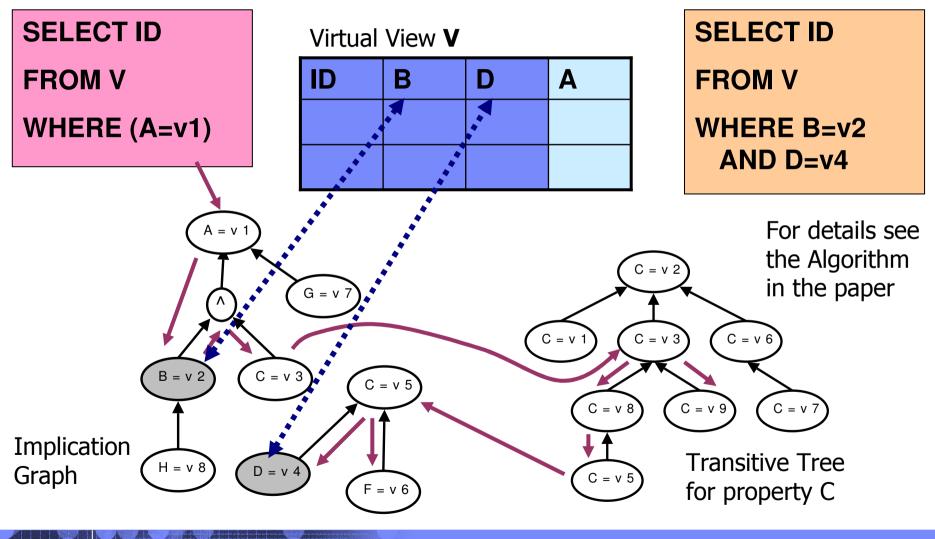
 $(Type=Riesling) \rightarrow (hasColor=white)$

SELECT V.Id FROM Wine AS W WHERE W.type=WhiteWine OR W.type=Riesling; Subsumption checking via XPath & XMLExists SQL/XML function

SELECT ~ V.ld

FROM WineView AS V

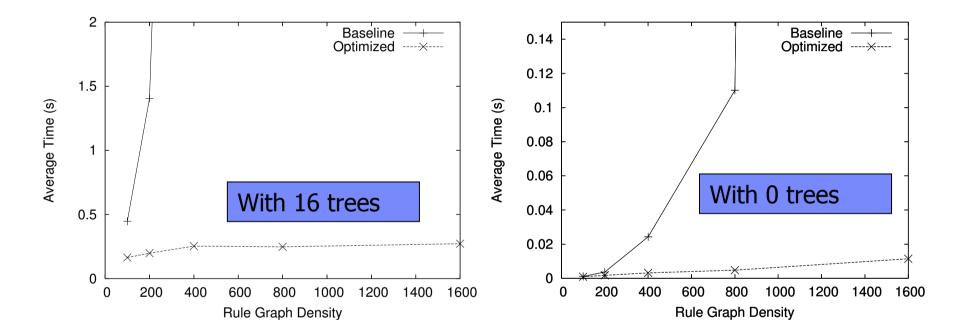
WHERE US \in V.locatedIn;


 Since locatedIn is a virtual column on the transitive closure of W.origin, we rewrite the query to

SELECT W.Id

FROM Wine AS W, TransitiveProperty AS T WHERE T.ontID='wine' AND T.propID='locatedIn' AND XMLExists(T.tree//USRegion//W.origin);

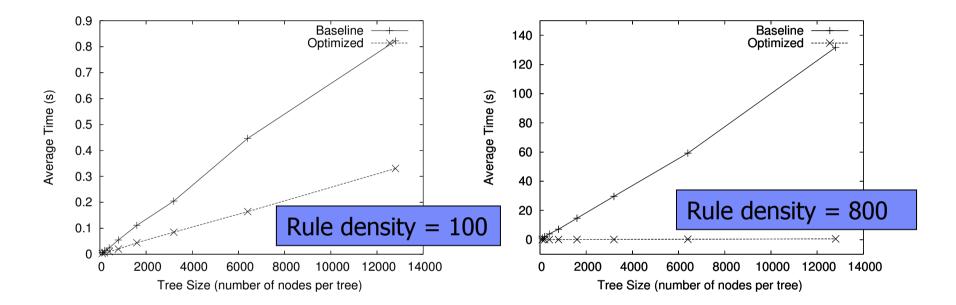
But the expansion is not that simple



Experiments

- Investigate time to rewrite the queries on virtual views
- Data Generation
 - trees for transitive properties parametrized by
 - Number of nodes
 - Maximum fanout
 - graphs for implications parametrized by
 - Number of relationships
 - Number of values
 - Number of levels in the graph
 - Density : number of rules between two consecutive levels
 - Fanout : number of atoms in a rule body
- Measurement: rewriting time averaged over 5 randomly generated data sets.
- Performance for baseline rewriting algorithm and optimized rewriting algorithm (using memoization)

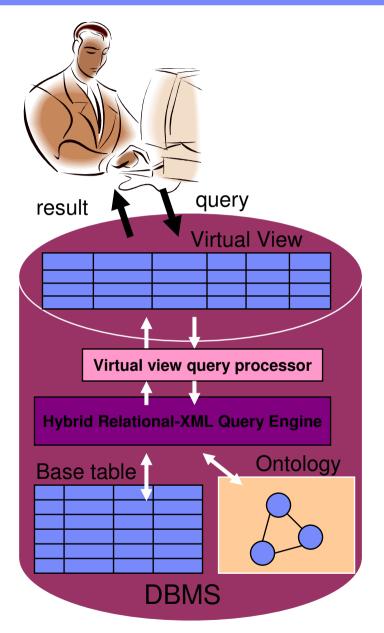
-			
_	_	_	
		_	_
		_	 -
	-		


Implication Graph Density

- Number of rules did not affect rewriting performance as much as density of the implication rule graph.
- Baseline algorithm is not scalable. Memoization is much better.
- In general, the rewriting time is reasonable (< 0.5 s)

_	

Size of transitive property trees

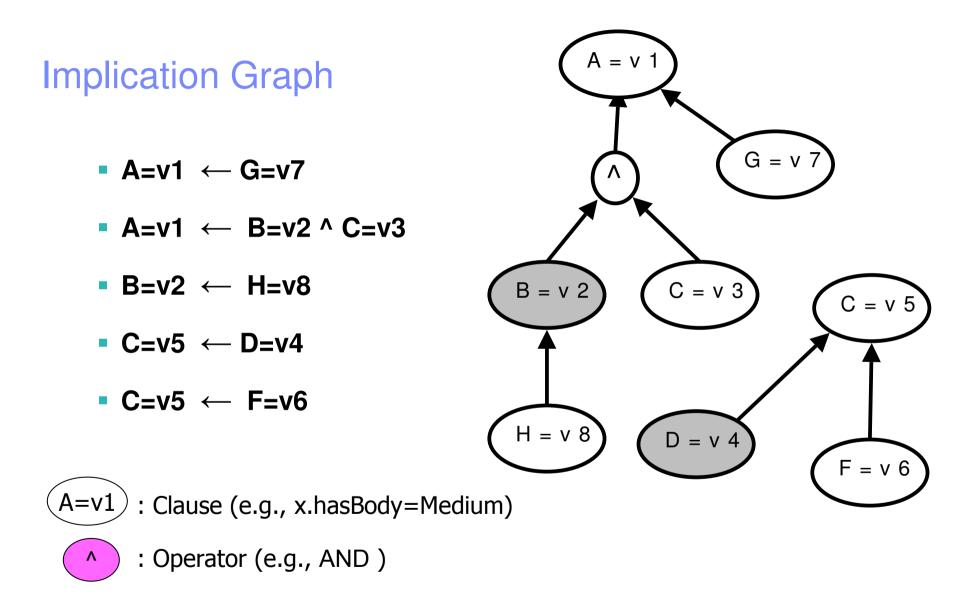


Rewriting time scales linearly with size of trees.

	-	
		_
	the second s	

Conclusion

- Framework for putting a little semantics into relational SQL systems.
- Users register ontologies in DBMS and links them with relational data by creating virtual views
- Virtual columns in the virtual views are not materialized
- Queries on the virtual columns are rewritten to predicates on base table columns.
- Future work: performance issues



	-	
		_
	the second s	

Questions

		_
	_	the second second second
	_	
_	_	
 _	_	
	_	

