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Approximate selection queries
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Query errors:
Limited knowledge about data
Typos
Limited input device (cell phone) input
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Applications
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Record linkage
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Similarity functions:
Edit distance
Jaccard
Cosine
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“q-grams” of strings
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2-grams



5

q-gram inverted lists
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# of common grams >= 3

Searching using inverted lists
Query: “shtick”, ED(shtick, ?)≤1
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# of common grams >= 1

2-grams 3-grams?
Query: “shtick”, ED(shtick, ?)≤1
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Outline

Motivation
VGRAM

Main idea
Decomposing strings to grams
Choosing good grams
Effect of edit operations on grams
Adopting vgram in existing algorithms

Experiments
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Motivation

Small index size (memory)
Small running time

Merge matched inverted lists
Calculate ED(query, candidate)
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Observation 1: dilemma of choosing “q”
Increasing “q” causing:

Longer grams Shorter lists 
Smaller # of common grams of similar strings
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Observation 2: skew distributions of gram frequencies
DBLP: 276,699 article titles
Popular 5-grams: ation (>114K times), tions, ystem, catio
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VGRAM: Main idea

Grams with variable lengths (between qmin
and qmax)

zebra
ze(123)

corrasion
co(5213), cor(859), corr(171)

Advantages
Reducing index size ☺
Reducing running time ☺
Adoptable by many algorithms ☺
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Challenges

Generating variable-length grams?
Constructing a high-quality gram dictionary?
Relationship between string similarity and their 
gram-set similarity?
Adopting VGRAM in existing algorithms?
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Challenge 1: String Variable-length grams?
Fixed-length 2-grams

Variable-length grams

u n i v e r s a l
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[2,4]-gram dictionary

u n i v e r s a l
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Representing gram dictionary as a trie
Fixed-length 2-grams

Variable-length grams

u n i v e r s a l
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Challenge 2: Constructing gram dictionary
selecting grams 

Pruning trie using a frequency threshold T (e.g., 2)
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Challenge 2: Constructing gram dictionary
selecting grams 

Pruning trie using a frequency threshold T (e.g., 2)
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Final gram dictionary

Final grams
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Outline

Motivation
VGRAM

Main idea
Decomposing strings to grams
Choosing good grams

Effect of edit operations on grams
Adopting vgram in existing algorithms

Experiments
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Challenge 3: Edit operation’s effect on grams

k operations could affect k * q grams

u n i v e r s a l
Fixed length: q
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Deletion affects variable-length grams

i-qmax+1 i+qmax- 1Deletion

Not affected Not affectedAffected

i
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Grams affected by a deletion

u n i v e r s a l

i+qmax- 1Deletion
i

Affected?

Deletion

Affected?
[2,4]-grams

i-qmax+1
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Grams affected by a deletion (cont)

i-qmax+1 i+qmax- 1Deletion
i

Affected?

Trie of grams Trie of reversed grams
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# of grams affected by each operation

_ u _ n _ i _ v _ e _ r _ s _ a _ l _

0 1 1 1 1 2 1 2 2 2 1 1 1 2 1 1 1 1 0

Deletion/substitution Insertion
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Max # of grams affected by k operations

Vector of s = <2,4>

With 2 edit operations, at most 4 grams can be affected

Called NAG vector (# of affected grams)
Precomputed

_ u _ n _ i _ v _ e _ r _ s _ a _ l _

0 1 1 1 1 2 1 2 2 2 1 1 1 2 1 1 1 1 0

Deletion/substitution Insertion
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Summary of VGRAM index
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Challenge 4: adopting VGRAM

Easily adoptable by many algorithms

Basic interfaces:
String s grams
String s1, s2 such that ed(s1,s2) <= k 

min # of their common grams
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Lower bound on # of common grams

If ed(s1,s2) <= k, then their # of common grams >=:
(|s1|- q + 1) – k * q

u n i v e r s a l

Fixed length (q)

Variable lengths:
lower bound = # of grams of s1 – NAG(s1,k)
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Example: algorithm using inverted lists
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Outline
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Data sets
Data set 1: Texas Real Estate Commission. 

151K person names, average length = 33.
Data set 2: English dictionary from the Aspell 
spellchecker for Cygwin. 

149,165 words, average length = 8.
Data set 3: DBLP Bibliography.

277K titles, average length = 62.

Environment:
VC++, Dell GX620 PC with an Intel Pentium 3.40Hz Dual Core CPU, 2GB memory,
Window XP O.S.
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VGRAM overhead (index size)

Dataset 3: DBLP titles, [5,7]-gram, T=500, LargeFirst pruning policy 
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VGRAM overhead (construction time)

Dataset 3: DBLP titles, [5,7]-gram, T=500, LargeFirst pruning policy 
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Benefits over fixed-length grams (index)

Dataset 1: 150K Person names, k=1, MergeCount algorithm, 
T=1000, LargeFirst pruning policy 
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Benefits over fixed-length grams (running time)

Dataset 1: 150K Person names, k=1, MergeCount algorithm, 
T=1000, LargeFirst pruning policy 
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Enhance approximate join algorithms

ProbeCount
ProbeCluster
PartEnum
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Improving algorithm ProbeCount

Dataset 1: [4,6]-gram, T=200, LargeFirst pruning policy 

K=350K person names
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Improving algorithm ProbeCluster

Dataset 1: [5,7]-gram, T=1000, LargeFirst pruning policy 
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Improving algorithm PartEnum

Dataset 1: [4,6]-gram, T=1000, LargeFirst pruning policy 
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Conclusions
VGRAM: using grams of

variable-length
high-quality

Adoptable in existing algorithms
Reduce index size
Reduce running time
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Related work
Approximate String Matching

q-Grams, q-Samples
Inside DBMS
Substring matching

Set similarity join
Variable length gram applications

Speech recognition, information retrieval, artificial intelligence
Substring selectivity estimation

Improve space and time efficiency
n-Gram/2L
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Thank you

Questions or Comments?


