Improving Data Quality: Consistency and Accuracy

Gao Cong,	Microsoft Research Asia
Wenfei Fan,	University of Edinburgh, Bell Laboratories
Floris Geerts,	Univ. of Edinburgh,
	Hasselt Univ., transnational Univ. Limburg
Xibei Jia,	University of Edinburgh
Shuai Ma,	University of Edinburgh

25th September 2007

Dirty data are costly

- Typical data error rate in industry: 1% 5%, up to 30%
- Poor data cost US companies \$600 billion annually
- 30%-80% of the development time for data cleaning in a data warehousing project
- CIA intelligence on WMD in Iraq!

These dirty data need to be cleaned (semi-)automatically !

Constraint-based data cleaning

- Constraint-based data cleaning
 - Define a set of constraints to model the data
 - Errors in data are captured as violations of these constraints
 - These violations are then repaired to improve data quality
- Constraints used in previous data cleaning tools
 - Functional Dependencies
 - □ Inclusion Dependencies
 - Denial Constraints
 - □ ...

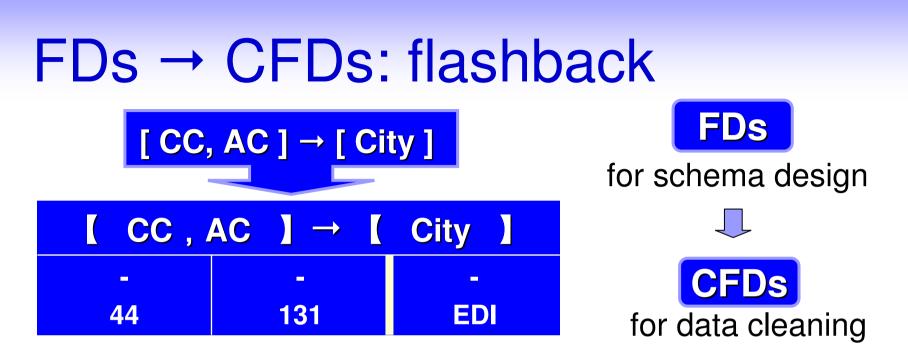
Are these traditional constraints sufficient for cleaning data?

Functional Dependencies (FDs)

$[CC, AC] \rightarrow [City]$

	Name	CC	AC	City	ZIP
t1	Ben	1	215	PHI	19132
t2	Joe	1	215	PHI	19132
t3	Paul	1	215	PHI	19355
t4	John	44	131	CHI	EH8 9LE

These data are consistent, but are they clean?



Data integration in real-life: source constraints

hold on a subset of sources

hold conditionally on the integrated data

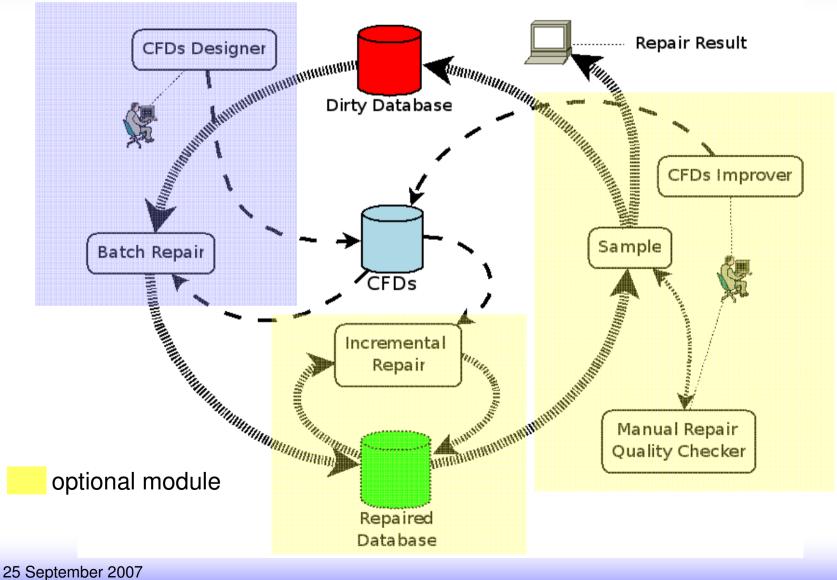
They are NOT expressible as traditional FDs
 do not hold on the entire relation
 contain constant data values

Conditional Functional Dependencies (CFDs)

[CC ,	AC 】 →	[City]
-	-	-
44	131	EDI

	Name	CC	AC	City	ZIP
t1	Ben	1 215		PHI	19132
t2	Joe	1	215	PHI	19132
t3	Paul	1	215	PHI	19355
t4	John	44	131	CHI	EH8 9LE

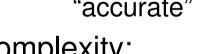
Our data cleaning framework



Automatically find a repair

a relational database DB, and a set Σ of CFDs Input: Output: a repair DB' of DB such that cost(DB', DB) is minimal

- repair: $DB' \models \Sigma$
- "good": cost(DB', DB)
 - DB' is "close" to the original data in DB
 - Minimizing changes to "accurate" attributes



Cost Model Minimally Differ ⊭ CFDs

Complexity:

It is known that finding an optimal repair is NP-complete even for a fixed set of FDs. It remains intractable for CFDs.

Find effective heuristics for repairing databases based on CFDs.

Equivalence Class

 $[CC, AC] \rightarrow [City]$

	Name	CC	AC	City	ZIP
t1	Ben	1	215	PHI	19132
t2	Joe	1	215	PHI	19132
t3	Paul	1	215	PHI	60132
t4	John	1	312	СНІ	60132

Equivalence Class

 $[CC, AC] \rightarrow [City]$

CC AC Name ZIP City Ben 215 PHI 19132 **†1** 1 215 PHI 19132 Joe t2 1 t3 Paul 215 PHI 60132 1 John 312 CHI 60132 t4 1

E1

Equivalence Class

[CC, AC] → [City]

	Name	CC	AC	City	ZIP
t1	Ben	1	215	PHI	19132
t2	Joe	1	215	PHI /	19132
t3	Paul	1	215	PHI	60132
t4	John	1	312	CHI }	60132

Separate

- The decision of **which attribute values** need to be equivalent
- The decision of exactly what value an EC should be assigned

Avoid poor local decisions

25 September 2007

E1

E2

Merge equivalence classes

 $[CC, AC] \rightarrow [City] \qquad [ZIP] \rightarrow [City]$

	Name	CC	AC	AC City	
t1	Ben	1	215	PHI	19132
t2	Joe	1	215	PHI /	19132
t3	Paul	1	215	PHI	60132
t4	John	1	312	CHI }	60132
8					E2

E1

Merge equivalence classes

 $[CC, AC] \rightarrow [City] \qquad [ZIP] \rightarrow [City]$

	Name	CC	AC	City	ZIP
t1	Ben	1	215	PHI	19132
t2	Joe	1	215	PHI /	19132
t3	Paul	1	215	PHI	60132
t4	John	1	312	СНІ	60132

E2

E1

E3 = E1 ∪ E2

Merge equivalence classes

$[CC, AC] \rightarrow [City] \qquad [ZIP] \rightarrow [City]$

E3

	Name	CC	AC	City	ZIP
t1	Ben	1	215	PHI	19132
t2	Joe	1	215	PHI /	19132
t3	Paul	1	215	PHI	60132
t4	John	1	312	СНІ	60132

E3 = E1 ∪ E2

FDs → CFDs: does it work?

$\left[\begin{array}{cc}CC\ , AC\ \right] \rightarrow \left[\begin{array}{c}City\ \right]$						【 ZIP 】	\rightarrow	[City	1
	1	21	5	PHI		6013	2	СНІ	E3: PHI
	Nar	ne		CC		AC	С	City	ZIP
t1	Ben		1	1		215)	19132
t2	Joe		1		215		PHI	1	19132
t3	Paul		1		215		PHI		60132
t4	John		1		312	2	CHI	J	60132

FDs → CFDs: does it work?

$\left[\begin{array}{cc}CC\ , & AC\end{array}\right] \rightarrow \left[\begin{array}{cc}City\end{array}\right]$						【 ZIP 】	\rightarrow	[City]	
	1 215 PHI			60132		CHI		E3: CHI		
	Nar	ne		CC		AC	С	City		ZIP
t1	Ben		1		215		PHI)	19	132
t2	Joe		1		215		PHI	/	19	132
t3	Paul		1		21	5	PHI		60)132
t4	John		1		312	2	CHI	J	60)132

FDs → CFDs: it doesn't work

$\left[\begin{array}{cc}CC\ , AC\ \right]\ \rightarrow\ \left[\begin{array}{cc}City\ \right]$					【 ZIP 】	\rightarrow	[City]
	1 21	5	PHI		60132			E3: PHI
	Name		CC		AC	С	ity	ZIP
t1	Ben	1	1		215)	19132
t2	Joe	1		215		PHI	/	19132
t3	Paul	1		215		PHI		60132
t4	John	1		312		CHI	J	60132

FD repair alg. doesn't even terminate for CFD!

CFD repair

To resolve CFD violations, we allow

□ merge ECs

upgrade EC (different from repairing FD)

- Change both
 - RHS attributes
 - □ and **LHS attributes** (different from repairing FD)
 - We do not "invent" values: choose value from active domain
 - If there is no suitable value from active domain, put "null"
- Guarantees termination and correctness (DB' satisfies all constraints)

Cost Model: weight and distance

Cost(u,v) = weight(t, A) * distance(u,v) / max(|u|,|v|)

Based on both

- weight: estimate the accuracy of the attributes values to be modified
 - Could be obtained by data provenance ...
- and distance: measure the "closeness" of the new value to the original one

Intuitively

- □ the more accurate the original value is
 - the less reasonable to change the value
- □ the more distant the new value is from the original one
 - the less reasonable of this change
- As will be seen soon
 - although the cost model incorporate the weight information, the cleaning algorithm also works in the absence of it

CFD: upgrade equivalence classes

Target value of equivalence class E targ(E) = **not fixed** ⇒ **fixed** : upgrade E1: PHI Fixed

	Name	CC	AC	City	ZIP
t1	Ben	1	215	PHI	19132
t2	Joe	1	215	PHI /	19132
t3	Paul	1	215	PHI	60132
t4	John	1	312	СНІ 🦒 💈	60132

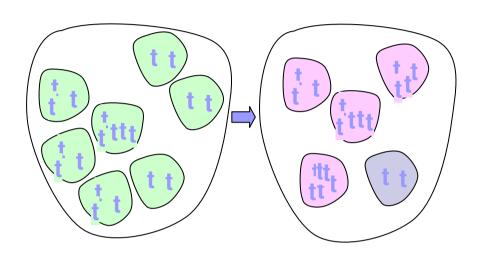
【CC,	AC 】 →	【 City 】	【ZIP】 →	[City]	E2
1	215	PHI	60132	CHI	Not Fixed
-	-	-			

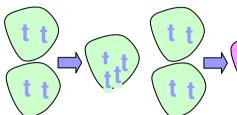
Change LHS attribute

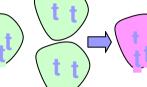
【CC,	AC】 →	【 City 】	【ZIP】 →	[City]	
1	215	PHI	60132	CHI	
-	-	-			E1: PHI
					E1: PHI Fixed

	Name	CC	AC	City	ZIP
t1	Ben	1	215	PHI	19132
t2	Joe	1	215	PHI /	19132
t3	Paul	1	215	PHI	60132
t4	John	1	312	CHI }	60132

Resolving CFD violations



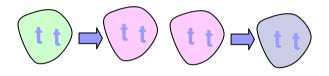




merge &

upgrade

merge



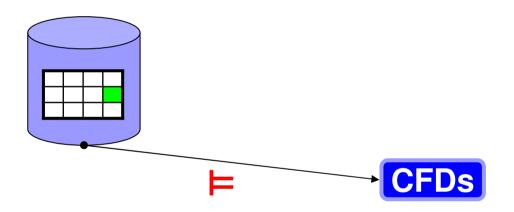
Terminate

upgrade

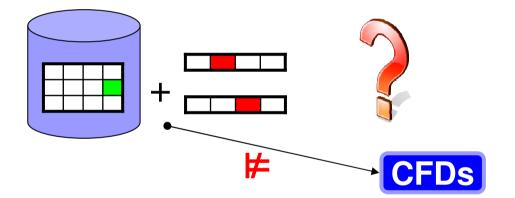
- Each step
 - Either the number of original ECs is reduced
 - Or the number of upgraded ECs is increased
- □ There are bounds for the number of **ECs** and **upgraded ECs**
- Correct

□ the output database is guaranteed to satisfy the CFDs

Now we have obtained a clean database:

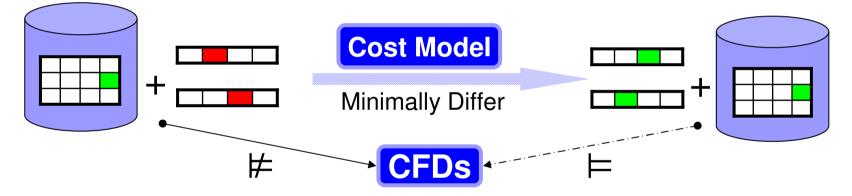


When the cleaned database is updated ...



Input: a clean database DB, changes ΔDB to DB, and a set Σ of CFDs

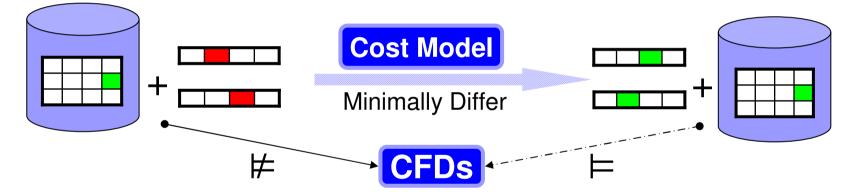
Output: a repair DB' of DB + ΔDB



One might think that the incremental repairing problem is simpler than its batch (non-incremental) counterpart ...

Input: a clean database DB, changes ΔDB to DB, and a set Σ of CFDs

Output: a repair DB' of DB + ΔDB

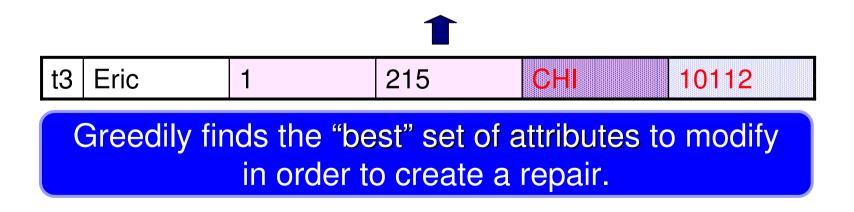


Complexity. The local data cleaning problem is also NPcomplete, even if <u>ADB</u> consists of a single tuple.

Find effective heuristic algorithms for incrementally repairing databases based on CFDs.

Repair a tuple: local repair

$\left[\begin{array}{cc} CC \\ \end{array}\right] \rightarrow \left[\begin{array}{cc} City \\ \end{array}\right]$			City 】	$[ZIP] \rightarrow [City]$		
		-	10112	NYC		
	Name	CC	AC	City	ZIP	
t1	Mark	1	215	PHI	19112	
t2	Peter	44	131	EDI	EH8 9LE	



Repair a tuple: local repair

ľ	CC, A	C 】 → Ci		→ City		
	-			10112	NYC	
	Name	CC	AC	City	ZIP	
t1	Mark	1	215	PHI	19112	
t2	Peter	44	131	EDI	EH8 9LE	
t3	Eric	1	215	CHI	10112	
\uparrow						

Since one attribute is not enough to fix this violation, we consider two attributes ...

Repair a tuple: local repair

ľ	CC, A	C 】 → Cit		→ City		
	-			10112	NYC	
	Name	CC	AC	City	ZIP	
t1	Mark	1	215	PHI	19112	
t2	Peter	44	131	EDI	EH8 9LE	
t3	Eric	1	215	PHI	19112	
1						

Techniques to reduce the search space and using index to optimize this process

Repair a group of tuples: ordering

- The order of the tuples to repair
 - has no impact on the termination
 - □ impact repairing accuracy and performance
- Orders used
 - 🗆 linear-scan: bad
 - L-IncRepair
 - based on weights: good
 - W-IncRepair: repair tuples with more weights first
 - based on violations: good
 - V-IncRepair: repair tuples with less violations first
 - Independent of weights

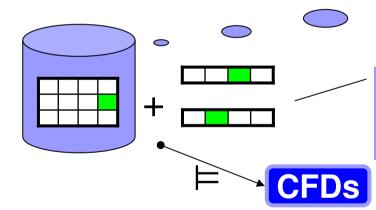
Consistent, but accurate?

We can **automatically** find a repair.

We can also **incrementally** find a repair in response to database updates.

Consistent,

but ...



Would the automatically generated repair be **what the user wants**?

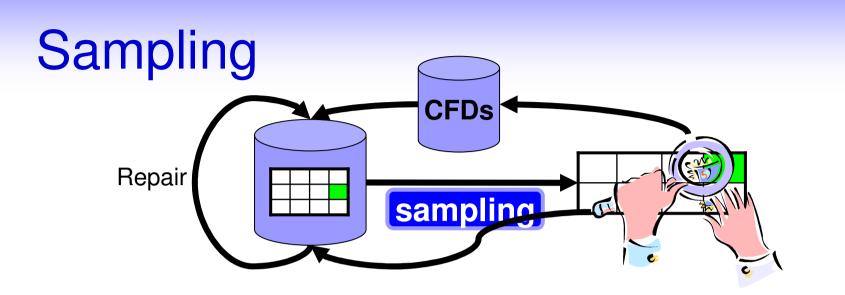
To meet the expectation of the user

it is better to involve domain experts to inspect the repairs.

Assess accuracy of repairs

- However, it is not realistic to manually inspect each editing when dealing with large dataset
- How to ensure that the repairs are accurate enough without excessive user interaction?

A statistical method to guarantee the accuracy of the repairs are above a predefined bound with a high confidence.

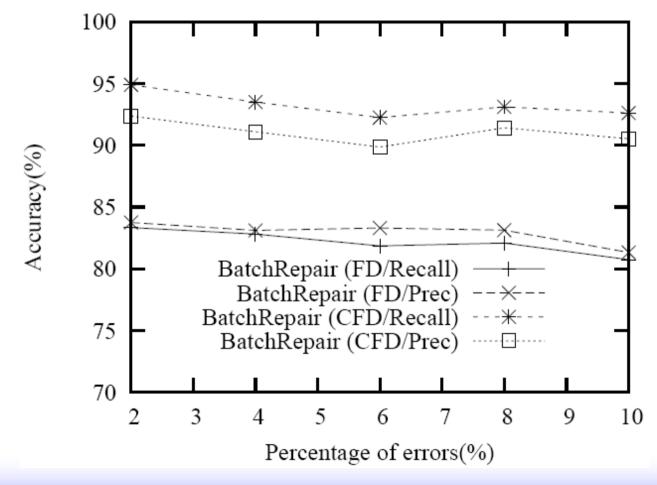


- Involve the user to
 - □ inspect small samples
 - edit both the sample data and input CFDs if necessary
 - □ invoke **automated repairing methods** to revise repairs
- Stratified sampling method
 - □ give priority to strata that are more likely to be inaccurate
 - ensure the accuracy of the repairs are above a predefined bound with a high confidence.

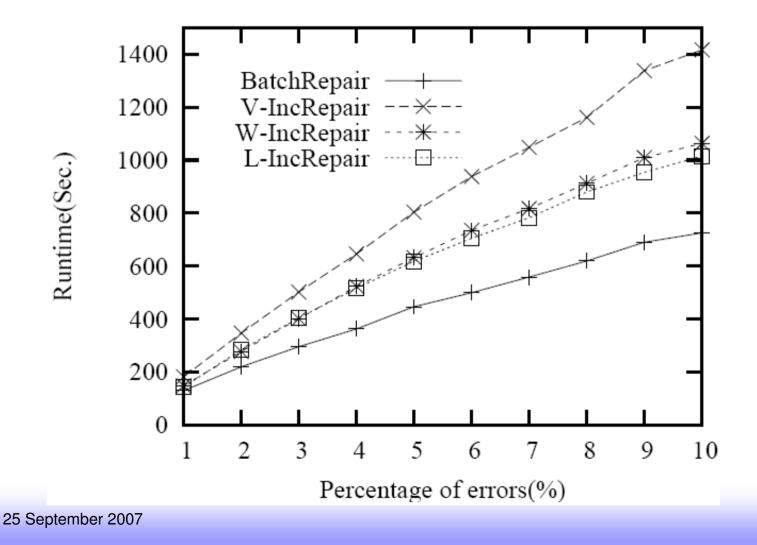
Experimental setting

- Prototype system
 Con²Clean (in Java)
- Data
 - we scraped real-life data from web
 - Generate datasets of various sizes, 10k to 300k tuples
- Constraints
 - □ Fairly large since each pattern tuple is in fact a constraint
 - 7 CFDs
 - 300---5,000 pattern tuples for each of these CFDs
- Clean data
 - □ Initial datasets are "correct" data, consistent with all CFDs
- Dirty data: error rate 1% to 10%
 - Randomly add noise to an attribute
 - New value close to the original one
 - Or an arbitrary existing value taken from another tuple

Accuracy of CFDs vs FDs



Scalability over Noise Rate



Conclusion and future work

- A framework for improving data quality: both consistency and accuracy
 - □ **Automatic** part: guarantee termination and correctness
 - Batch repair
 - Incremental repair: optional
 - Semi-automatic part
 - Statistical methods: optional
 - □ Guarantee accuracy above a predefined bound without excessive user interaction
- Future

□ Automated methods for discovering CFDs

□ Repair algorithms for other conditional constraints

A data cleaning framework using constraints specially designed for improving data quality.