### Example-Driven Design of Efficient Record Matching Queries

**Venkatesh Ganti** 

Surajit Chaudhuri

**Raghav Kaushik** 

**Microsoft Research** 

**Bee-Chung Chen** 

**University of Wisconsin-Madison** 

### **Record Matching**

#### Katrina: Given evacuee lists...

#### match against enquiries.

|   |   | First Name | Last Name | Address           | Phone       | Father         | Mother |
|---|---|------------|-----------|-------------------|-------------|----------------|--------|
| Г | • | Holmes     | Elois     | 2723 Third St     | 938-8374    |                |        |
| - |   | Donneaka   | Martin    |                   | 504-974-637 | Donald Qautier |        |
|   |   | Thomas     |           | 2435 Delachise St |             | Lomax          |        |
|   |   |            |           |                   |             |                |        |

| Elois      | Holmes | Third Street |             |           |  |
|------------|--------|--------------|-------------|-----------|--|
| <br>Donaka | М      |              | 504-974-637 | D Oautier |  |

# **Record Matching can be Difficult**

| Г |   | First Name | Last Name | Address           | Phone       | Father         | Mother |
|---|---|------------|-----------|-------------------|-------------|----------------|--------|
|   | - | Holmes     | Elois     | 2723 Third St     | 938-8374    |                |        |
|   | + | Donneaka   | Martin    |                   | 504-974-637 | Donald Qautier |        |
|   |   | Thomas     |           | 2435 Delachise St |             | Lomax          |        |
|   |   |            |           |                   |             |                |        |
|   |   | Elois      | Holmes    | Third Street      |             |                |        |

|            | - |             |           |  |
|------------|---|-------------|-----------|--|
| <br>Donaka | М | 504-974-637 | D Oautier |  |

- Too many options to consider while building a record matching query
- Complicated due to errors and representational differences

#### **Record Matching Queries**

Select \* from Enquiries R, Evacuees S where sim1(R.FirstName + R.LastName, S.FirstName + S.LastName) > 0.85 AND sim2(R.Address, S.Address) > 0.83 AND sim3(R.Phone, S.Phone) = 1

OR

sim4(R.FirstName + R.LastName + R.Phone, S.FirstName + S.LastName + S.Phone) > 0.87 OR

1.5 \* sim5(R.FirstName, S.FirstName) – 0.3 \* sim6(R.Father + R.Mother, S.Father + S.Mother) > 0.9

# **Creating RM Queries**

#### Challenges

- Which column combinations to compare?
- Which similarity function for each combination?
  - Name similarity: soundex or edit distance
  - Address similarity: jaccard
- How to determine the thresholds for chosen similarity function-column combination choice?

# **Example-Driven Approach**

#### Input

- A set of example (r, s) record pairs: matches
  & non-matches
- A set of candidate operators
- Goal
  - Construct a query which has the "best quality" when applied to the examples

#### Quality measure

Recall: Number of correctly classified matching pairs s.t. the fraction of false positives is less than B





# **Our Approach**

- Constrain class of output queries
  - Efficiently executable
  - Flexible enough to capture a rich set of queries
- Programmers can review & modify
  If required, add more sophisticated ML predicates to suggested queries

# **Similarity Space**

Map examples to +/- points

D-dimensional: One per similarity fn & column combination

#### Matches $\rightarrow$ + and Non-matches $\rightarrow$ –

Name similarity (edit similarity) Address similarity (jaccard over ACZ)

Predicate: name similarity > c1 and address similarity > c2



#### **Class of Queries**

- Relations R, S (schema [Name, Address, City, Zip])
- D similarity functions (and column combinations)
- Class: Union of top-right rectangular boxes

#### **Similarity functions**

Name similarity (edit similarity) Address similarity (jaccard over ACZ)



### **Problem Statement**

- Given positive and negative points, find K rectangular boxes such that
  - Recall—the number of positive points in them—is maximized
  - Number of negative points they contain is less than B
- Sub-space constraints on each rectangular box
  - Not more than d (<= D) dimensional</p>

# **Algorithm Outline**

- Consider B=0
  - No negative points at all in the result

#### Extend to B > 0

Allow a few negative points in the result

### **Union of Rectangles**

- Find the best valid rectangular box with the maximum number of +'s
- Remove +'s in box and iterate



#### **Best Rectangular Box**

#### Recursive search for the best valid rectangular box



Can be applied to D > 2 and for boxes in sub-spaces (i.e., d < D)</p>

## **Union of Rectangular Boxes**

- Greedy strategy
  - Pick best rectangular box with maximum number of +'s and no -'s
  - Remove +'s contained in box
  - Iterate until
    - All +'s are covered
    - K boxes are picked
- Approximation guarantee
  - Within (1 1/e) of the optimal
  - Follows from the greedy solution to the set coverage problem

### **Allowing Non-matches**

- A valid rectangular box may now include a fraction of negative points
- Find the best among all valid boxes
- Recursive algorithm applicable again



### **Record Transformations**

- Consider two records
  - r1: [Matrin Smith, Redmond, WA, 98052]
  - s1: [Martin Smit, NULL, WA, 98052]
- Apply FD zip→ city to s1
  - s1': [Martin Smit, Redmond, WA, 98052]
- For many similarity functions, sim(r1, s1) < sim(r1, s1')</li>
- Hence record transformations help identify matches!

#### **Record Transformations (contd)**

- Example record transformations
  - FDs to fill in missing values
  - Splitting columns into sub-columns (e.g., address or product names)
- Our framework can be extended to consider such transformations
- Idea: Iteratively add best transformation to the current query

### **Experimental Evaluation**

#### Datasets

- Organization data from an operational data warehouse
- RIDDLE repository ([Bilenko], UT Austin)

#### Techniques compared

- Addresses: a commercial cleansing tool called Trillium
- RIDDLE: SVM

### **Operator Trees vs. Trillium**

- 29 candidate similarity functions
- Zipcode splitter: out-code and in-code
- Out-code → City
- At most 4 similarity functions per box
- Union of at most 4 boxes

|                       | Precision | Recall |
|-----------------------|-----------|--------|
| Trillium              | 0.99      | 144K   |
| <b>Operator Trees</b> | 0.98      | 159K   |
| Baseline              | 0.98      | 80K    |

#### **Cora Dataset**

#### Bibliography data: authors, titles



# **Efficiency of Similarity Join**

 Similarity join (jaccard similarity) over 500K record relation with itself
 [VLDB06] SSJoin algorithm

| Threshold | SimJoin |
|-----------|---------|
| 0.9       | 61 s    |
| 0.85      | 125 s   |
| 0.80      | 285 s   |

SVM predicate: 10 days SVM + blocking: 1+ hour

### Conclusions

- Example-driven approach to suggest a record matching query
- Considered constrained space of efficiently executable queries
- Empirically demonstrated accuracy
- Web search: "data cleaning project"
  - http://research.microsoft.com/dmx/datacleaning

### Questions