Example-Driven Design of Efficient Record Matching Queries

Venkatesh Ganti

Surajit Chaudhuri
Raghav Kaushik
Microsoft Research
Bee-Chung Chen
University of Wisconsin-Madison

Record Matching

- Katrina: Given evacuee lists

match against enquiries.

	First Name	Last Name	Address	Phone	Father	Mother
\rightarrow	Holmes	Elois	2723 Third St	938-8374		
	Donneaka	Martin		504-974-637	Donald Qautier	
	Thomas		2435 Delachise St		Lomax	
\square	Elois	Holmes	Third Street			
	Donaka	M		504-974-637	D Oautier	

Record Matching can be Difficult

First Name	Last Name	Address	Phone	Father	Mother
Holmes	Elois	2723 Third St	$938-8374$		
Donneaka	Martin		$504-974-637$	Donald Qautier	
Thomas		2435 Delachise St		Lomax	
Elois	Holmes	Third Street			
Donaka M $504-974-637$ D Oautier					

- Too many options to consider while building a record matching query
- Complicated due to errors and representational differences

Record Matching Queries

```
Select * from Enquiries R, Evacuees S where
sim1(R.FirstName + R.LastName, S.FirstName + S.LastName) > 0.85
AND sim2(R.Address, S.Address) > 0.83
AND sim3(R.Phone, S.Phone) = 1
OR
sim4(R.FirstName + R.LastName + R.Phone,
    S.FirstName + S.LastName + S.Phone) > 0.87
OR
1.5 * sim5(R.FirstName, S.FirstName) - 0.3 * sim6(R.Father +
    R.Mother, S.Father + S.Mother) > 0.9
```


Creating RM Queries

- Challenges
- Which column combinations to compare?

■ Which similarity function for each combination?

- Name similarity: soundex or edit distance
- Address similarity: jaccard
- How to determine the thresholds for chosen similarity function-column combination choice?

Example-Driven Approach

- Input
- A set of example (\mathbf{r}, s) record pairs: matches \& non-matches
- A set of candidate operators
- Goal
- Construct a query which has the "best quality" when applied to the examples
- Quality measure
- Recall: Number of correctly classified matching pairs s.t. the fraction of false positives is less than B

Previous Work

- Machine learning (ML) based predicates
- Decision trees
- SVMs - more accurate
- However, cannot efficiently implement similarity joins involving ML predicates
- Usually, cross product followed by filter

SVM Predicates

- Current best method [Bilenko et al.]
- Example SVM predicate
- 1.5*Jaccard(R.[NAC], S.[NAC]) $0.3^{*} E d i t(R . N, S . N)>0.9$
- May not be efficiently executable
- Cross product followed by a filter

Our Approach

- Constrain class of output queries
- Efficiently executable
- Flexible enough to capture a rich set of queries
- Programmers can review \& modify
- If required, add more sophisticated ML predicates to suggested queries

Similarity Space

- Map examples to +/- points
- D-dimensional: One per similarity fn \& column combination
- Matches \rightarrow + and Non-matches \rightarrow -

Name similarity (edit similarity)
Address similarity (jaccard over ACZ)
Predicate: name similarity > c1 and address similarity >c2

Class of Queries

- Relations R, S (schema [Name, Address, City, Zip])
- D similarity functions (and column combinations)
- Class: Union of top-right rectangular boxes

Similarity functions

Name similarity (edit similarity)
Address similarity (jaccard over ACZ)

name similarity > C1 and address similarity > c2
OR
name similarity > c1' and address similarity > C2'

Problem Statement

- Given positive and negative points, find K rectangular boxes such that
- Recall-the number of positive points in them-is maximized
- Number of negative points they contain is less than B
- Sub-space constraints on each rectangular box
- Not more than d (<= D) dimensional

Algorithm Outline

- Consider B=0
- No negative points at all in the result
- Extend to B>0
- Allow a few negative points in the result

Union of Rectangles

- Find the best valid rectangular box with the maximum number of + 's
- Remove +'s in box and iterate

Best Rectangular Box

- Recursive search for the best valid rectangular box

- Can be applied to $\mathrm{D}>2$ and for boxes in sub-spaces (i.e., d<D)

Union of Rectangular Boxes

- Greedy strategy
- Pick best rectangular box with maximum number of +'s and no -'s
- Remove +'s contained in box
- Iterate until
- All +'s are covered
- K boxes are picked
- Approximation guarantee
- Within (1-1/e) of the optimal
- Follows from the greedy solution to the set coverage problem

Allowing Non-matches

- A valid rectangular box may now include a fraction of negative points
- Find the best among all valid boxes
- Recursive algorithm applicable again

Record Transformations

- Consider two records
- r1: [Matrin Smith, Redmond, WA, 98052]
- s1: [Martin Smit, NULL, WA, 98052]
- Apply FD zip \rightarrow city to s1
- s1': [Martin Smit, Redmond, WA, 98052]
- For many similarity functions, $\operatorname{sim}(\mathrm{r} 1, \mathrm{~s} 1)$ < sim(r1, s1')
- Hence record transformations help identify matches!

Record Transformations (contd)

- Example record transformations
- FDs to fill in missing values
- Splitting columns into sub-columns (e.g., address or product names)
- Our framework can be extended to consider such transformations
- Idea: Iteratively add best transformation to the current query

Experimental Evaluation

- Datasets
- Organization data from an operational data warehouse
- RIDDLE repository ([Bilenko], UT Austin)

Techniques compared

- Addresses: a commercial cleansing tool called Trillium
- RIDDLE: SVM

Operator Trees vs. Trillium

- 29 candidate similarity functions
- Zipcode splitter: out-code and in-code
- Out-code \rightarrow City
- At most 4 similarity functions per box
- Union of at most 4 boxes

	Precision	Recall
Trillium	0.99	144 K
Operator Trees	0.98	159 K
Baseline	0.98	80 K

Cora Dataset

- Bibliography data: authors, titles

Efficiency of Similarity Join

Similarity join (jaccard similarity) over 500K record relation with itself

- [VLDB06] SSJoin algorithm

Threshold	SimJoin
0.9	61 s
0.85	125 s
0.80	285 s

SVM predicate: 10 days
SVM + blocking: 1+ hour

Conclusions

- Example-driven approach to suggest a record matching query
- Considered constrained space of efficiently executable queries
- Empirically demonstrated accuracy
- Web search: "data cleaning project"
- http://research.microsoft.com/dmx/datacleaning

Questions

