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Motivation
 Aggregation is a well understood database operation
 Seemingly easy to implement
 Chip multiprocessors introduce new challenges and

opportunities
 Picking the wrong aggregation technique can result in

a performance penalty of more than an order of
magnitude
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Outline
 Chip Multiprocessors
 Aggregation Strategies
 Modeling Performance
 Adaptive Aggregation
 Experimental Results
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The Multicore Future
 Thread Level Parallelism

(TLP) is the future of
performance gains

 ILP is tapped out
 Heat dissipation and

power consumption
problems
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Sun UltraSPARC T1
 1 GHz
 8 cores
 4 threads / core
 8 KB L1 D$ / core
 16 KB L1 I$ / core
 3 MB Shared L2
 Simple cores
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Aggregation Overview
 Group tuples by zero or more attributes
 Compute an aggregate for each group

 SQL standards: COUNT, SUM, AVERAGE,
MIN, MAX

 Two common strategies:
 Sorting
 Hashing
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Hashing, not sorting
 Sort based aggregation is a blocking

operation
 All input must be materialized

 Hashing allows for better pipelining and
arbitrary partitioning of the input

 We focus only on hashing for the rest of
the presentation
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Hash Aggregation

Key = 5
Value = 2 Hash

5 | 2
Aggregate: SUM
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Hash Aggregation

Key = 5
Value = 6 Hash

5 | 25 | 8
Aggregate: SUM
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Hash Aggregation

Key = 9
Value = 4 Hash

5 | 25 | 8 9 | 4
Aggregate: SUM
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Aggregation Implementation
 All threads share input stream

 Read contiguous chunks
 Execute same operation
 Intra-operator sharing and conflicts are

easier to reason about than inter-
operator

 Instructions shared by threads
 Instruction cache misses are expensive
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Option 1: Independent Tables

Thread 1 Thread 2 Thread n

 Each thread has its own hash table
 Advantages:

 No coordination between threads
 Disadvantages:

 No sharing
 Capacity and conflict cache misses
 Huge memory requirement
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Option 2: Global Tables with
Mutexes

Thread 1

Thread 2

Thread n

Contention

 Threads share 1 table
 Advantage:

 Shared table means more
unique aggregate values fit in
the cache

 Disadvantage:
 Hash buckets must be locked

to prevent race conditions
 Contention for common keys
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Option 2: Global Tables with
Atomic Instructions

Thread 1

Thread 2

Thread n

Contention

 Atomicity like a mutex, but...
 No locking, use atomic

operations for updates
 Provided by many

microarchitectures
 More efficient than locking,

longer latency than
comparable non-atomic
operation
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Option 3: Hybrid

Thread 1

Thread 2

Thread n Private Tables Fit in L2

 Independent, fixed size
tables fit in L2 cache

 “Spill” to global table
 Advantage:

 locality
 contention free
 lower memory needs

 Disadvantage
 Pure overhead if global

table is better
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Aggregation Performance

Contention

L2 Cache Size
(locality)
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What influences performance?
 Runs

 Consecutive tuples with same key can be
aggregated directly

 Locality
 If keys repeat with temporal locality, bucket

will be in the cache
 Contention

 If keys repeat too often in multiple threads,
contention may occur for shared hash buckets
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Modeling Performance
 Sample the input stream
 Add statistics gathering to hybrid approach
 Each thread gathers independent statistics

 No coordination overhead
 Each thread proceeds as fast as possible
 Local decision may not be globally optimal

E.g., “If every thread saw input like mine, there would be
contention.”
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Why can’t the optimizer
choose?
 Statistics might be wrong or inadequate
 Static choice cannot adapt to change in

distribution
 Multiple operators to choose from

versus one that works well; reduces
plan space

 Aggregation occurs late in plans, other
operators may have introduced skew
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Sampling for Runs
 Count the number of runs seen during the sampling

window, find average run length
 On uniform input, run optimization is beneficial up to

|Group By| = 8
 Expected run length=1+(1/8)2+(1/8)3...=8/7
 Use run optimization if average run length exceeds

8/7
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Sampling for Locality
 Count “hits” in the local table

 A “hit” is when a key is found (no insertion)
 Tables sized to fit in L2 (likely to be a $ hit)

 Avoid compulsory misses with “warm-up”
 Locality if miss rate is less than 50%

 Derived by the relative cost of processing a tuple in the local
table compared to the cost of using a global table
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Miss rate
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Contention
 Often subsumed by locality, except...
 Distributions with “heavy hitters” have

contention without locality
 Global table must be avoided if there is

contention because overhead
dominates execution time
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Modeling Contention
 Contention directly related to the proportion of the

input with the same key.
 Contention negligible below a measurable threshold

 See paper for model of contention
 When contention is present,

the penalty per contentious
tuple is linearly related to the
inverse of the key’s
frequency in the input
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Sampling for Contention
 Count accesses to each hash bucket
 If any bucket’s access count exceeds a threshold,

mark it as potentially contentious*

 Calculate the penalty due to contention of all marked
contentious buckets*

 If the cumulative contention penalty is sufficiently
high, flag the input as contentious*

*See paper for a full description
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MIN, MAX,
Duplicate Elimination
 Contention Free
 Why? Answer: Updates are rare

 E.g., given a uniform input, after 99 inputs
the running minimum is in the first
percentile. The chance that the 100th value
will update the minimum is 1%

 Adversarial distributions exist, but can
be handled with randomization
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Adaptive Aggregation

MIN, MAX,
DUPE?

Locality or
Contention?

Hybrid
Aggregation

Global
Aggregation

If runs are present, add run optimization.

YES

YES

NO

NO
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Experiments

 224 ≈ 16 Million Input Tuples
 7 Input Distributions, 3 Queries
 Q1: SELECT G, count(*), sum(V), sum(V*V)

 FROM R GROUP BY G

 Q2: SELECT G, max(V), min(V), max(V)
  FROM R GROUP BY G

 Q3: SELECT DISTINCT G FROM R



September 25, 2007
Adaptive Aggregation on Chip

Multiprocessors 29

Q1 (sum & count):
Uniform Input
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Time Breakdown (Uniform Input)
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Q2 (min & max): Uniform Input
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Q3 (DISTINCT): Uniform Input
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Q1 (sum & count): Self-similar
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Contention

No Contention
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See the paper for…
 The full contention model
 Results with other input distributions
 The impact of resampling the input stream

 Able to adapt to changes in the distribution

 Scales with the number of computed aggregates
 Global table with mutex / lock eventually out performs atomic

instructions



September 25, 2007
Adaptive Aggregation on Chip

Multiprocessors 35

Conclusion
 Investigated aggregation performance

on a real chip multiprocessor
 Identified locality and contention as key

performance issues
 Introduced an adaptive aggregation

operator that uses lightweight sampling
to choose the best aggregation strategy
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Das Ende
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