
Adaptive Aggregation
on Chip Multiprocessors

John Cieslewicz - Kenneth A. Ross
Columbia University

September 25, 2007
Adaptive Aggregation on Chip

Multiprocessors 2

Motivation
 Aggregation is a well understood database operation
 Seemingly easy to implement
 Chip multiprocessors introduce new challenges and

opportunities
 Picking the wrong aggregation technique can result in

a performance penalty of more than an order of
magnitude

September 25, 2007
Adaptive Aggregation on Chip

Multiprocessors 3

Outline
 Chip Multiprocessors
 Aggregation Strategies
 Modeling Performance
 Adaptive Aggregation
 Experimental Results

September 25, 2007
Adaptive Aggregation on Chip

Multiprocessors 4

The Multicore Future
 Thread Level Parallelism

(TLP) is the future of
performance gains

 ILP is tapped out
 Heat dissipation and

power consumption
problems

September 25, 2007
Adaptive Aggregation on Chip

Multiprocessors 5

Sun UltraSPARC T1
 1 GHz
 8 cores
 4 threads / core
 8 KB L1 D$ / core
 16 KB L1 I$ / core
 3 MB Shared L2
 Simple cores

September 25, 2007
Adaptive Aggregation on Chip

Multiprocessors 6

Aggregation Overview
 Group tuples by zero or more attributes
 Compute an aggregate for each group

 SQL standards: COUNT, SUM, AVERAGE,
MIN, MAX

 Two common strategies:
 Sorting
 Hashing

September 25, 2007
Adaptive Aggregation on Chip

Multiprocessors 7

Hashing, not sorting
 Sort based aggregation is a blocking

operation
 All input must be materialized

 Hashing allows for better pipelining and
arbitrary partitioning of the input

 We focus only on hashing for the rest of
the presentation

September 25, 2007
Adaptive Aggregation on Chip

Multiprocessors 8

Hash Aggregation

Key = 5
Value = 2 Hash

5 | 2
Aggregate: SUM

September 25, 2007
Adaptive Aggregation on Chip

Multiprocessors 9

Hash Aggregation

Key = 5
Value = 6 Hash

5 | 25 | 8
Aggregate: SUM

September 25, 2007
Adaptive Aggregation on Chip

Multiprocessors 10

Hash Aggregation

Key = 9
Value = 4 Hash

5 | 25 | 8 9 | 4
Aggregate: SUM

September 25, 2007
Adaptive Aggregation on Chip

Multiprocessors 11

Aggregation Implementation
 All threads share input stream

 Read contiguous chunks
 Execute same operation
 Intra-operator sharing and conflicts are

easier to reason about than inter-
operator

 Instructions shared by threads
 Instruction cache misses are expensive

September 25, 2007
Adaptive Aggregation on Chip

Multiprocessors 12

Option 1: Independent Tables

Thread 1 Thread 2 Thread n

 Each thread has its own hash table
 Advantages:

 No coordination between threads
 Disadvantages:

 No sharing
 Capacity and conflict cache misses
 Huge memory requirement

September 25, 2007
Adaptive Aggregation on Chip

Multiprocessors 13

Option 2: Global Tables with
Mutexes

Thread 1

Thread 2

Thread n

Contention

 Threads share 1 table
 Advantage:

 Shared table means more
unique aggregate values fit in
the cache

 Disadvantage:
 Hash buckets must be locked

to prevent race conditions
 Contention for common keys

September 25, 2007
Adaptive Aggregation on Chip

Multiprocessors 14

Option 2: Global Tables with
Atomic Instructions

Thread 1

Thread 2

Thread n

Contention

 Atomicity like a mutex, but...
 No locking, use atomic

operations for updates
 Provided by many

microarchitectures
 More efficient than locking,

longer latency than
comparable non-atomic
operation

September 25, 2007
Adaptive Aggregation on Chip

Multiprocessors 15

Option 3: Hybrid

Thread 1

Thread 2

Thread n Private Tables Fit in L2

 Independent, fixed size
tables fit in L2 cache

 “Spill” to global table
 Advantage:

 locality
 contention free
 lower memory needs

 Disadvantage
 Pure overhead if global

table is better

September 25, 2007
Adaptive Aggregation on Chip

Multiprocessors 16

Aggregation Performance

Contention

L2 Cache Size
(locality)

Th
ro

ug
hp

ut

September 25, 2007
Adaptive Aggregation on Chip

Multiprocessors 17

What influences performance?
 Runs

 Consecutive tuples with same key can be
aggregated directly

 Locality
 If keys repeat with temporal locality, bucket

will be in the cache
 Contention

 If keys repeat too often in multiple threads,
contention may occur for shared hash buckets

September 25, 2007
Adaptive Aggregation on Chip

Multiprocessors 18

Modeling Performance
 Sample the input stream
 Add statistics gathering to hybrid approach
 Each thread gathers independent statistics

 No coordination overhead
 Each thread proceeds as fast as possible
 Local decision may not be globally optimal

E.g., “If every thread saw input like mine, there would be
contention.”

September 25, 2007
Adaptive Aggregation on Chip

Multiprocessors 19

Why can’t the optimizer
choose?
 Statistics might be wrong or inadequate
 Static choice cannot adapt to change in

distribution
 Multiple operators to choose from

versus one that works well; reduces
plan space

 Aggregation occurs late in plans, other
operators may have introduced skew

September 25, 2007
Adaptive Aggregation on Chip

Multiprocessors 20

Sampling for Runs
 Count the number of runs seen during the sampling

window, find average run length
 On uniform input, run optimization is beneficial up to

|Group By| = 8
 Expected run length=1+(1/8)2+(1/8)3...=8/7
 Use run optimization if average run length exceeds

8/7

September 25, 2007
Adaptive Aggregation on Chip

Multiprocessors 21

Sampling for Locality
 Count “hits” in the local table

 A “hit” is when a key is found (no insertion)
 Tables sized to fit in L2 (likely to be a $ hit)

 Avoid compulsory misses with “warm-up”
 Locality if miss rate is less than 50%

 Derived by the relative cost of processing a tuple in the local
table compared to the cost of using a global table

September 25, 2007
Adaptive Aggregation on Chip

Multiprocessors 22

Miss rate

September 25, 2007
Adaptive Aggregation on Chip

Multiprocessors 23

Contention
 Often subsumed by locality, except...
 Distributions with “heavy hitters” have

contention without locality
 Global table must be avoided if there is

contention because overhead
dominates execution time

September 25, 2007
Adaptive Aggregation on Chip

Multiprocessors 24

Modeling Contention
 Contention directly related to the proportion of the

input with the same key.
 Contention negligible below a measurable threshold

 See paper for model of contention
 When contention is present,

the penalty per contentious
tuple is linearly related to the
inverse of the key’s
frequency in the input

September 25, 2007
Adaptive Aggregation on Chip

Multiprocessors 25

Sampling for Contention
 Count accesses to each hash bucket
 If any bucket’s access count exceeds a threshold,

mark it as potentially contentious*

 Calculate the penalty due to contention of all marked
contentious buckets*

 If the cumulative contention penalty is sufficiently
high, flag the input as contentious*

*See paper for a full description

September 25, 2007
Adaptive Aggregation on Chip

Multiprocessors 26

MIN, MAX,
Duplicate Elimination
 Contention Free
 Why? Answer: Updates are rare

 E.g., given a uniform input, after 99 inputs
the running minimum is in the first
percentile. The chance that the 100th value
will update the minimum is 1%

 Adversarial distributions exist, but can
be handled with randomization

September 25, 2007
Adaptive Aggregation on Chip

Multiprocessors 27

Adaptive Aggregation

MIN, MAX,
DUPE?

Locality or
Contention?

Hybrid
Aggregation

Global
Aggregation

If runs are present, add run optimization.

YES

YES

NO

NO

September 25, 2007
Adaptive Aggregation on Chip

Multiprocessors 28

Experiments

 224 ≈ 16 Million Input Tuples
 7 Input Distributions, 3 Queries
 Q1: SELECT G, count(*), sum(V), sum(V*V)

 FROM R GROUP BY G

 Q2: SELECT G, max(V), min(V), max(V)
 FROM R GROUP BY G

 Q3: SELECT DISTINCT G FROM R

September 25, 2007
Adaptive Aggregation on Chip

Multiprocessors 29

Q1 (sum & count):
Uniform Input

Contention
L2 Cache Size
(locality)

Runs

Th
ro

ug
hp

ut

September 25, 2007
Adaptive Aggregation on Chip

Multiprocessors 30

Time Breakdown (Uniform Input)

Runs Hyb
rid

, L
1

Hyb
rid

, L
2

Global, L
2

Global, R
AM

September 25, 2007
Adaptive Aggregation on Chip

Multiprocessors 31

Q2 (min & max): Uniform Input
Th

ro
ug

hp
ut

September 25, 2007
Adaptive Aggregation on Chip

Multiprocessors 32

Q3 (DISTINCT): Uniform Input
Th

ro
ug

hp
ut

September 25, 2007
Adaptive Aggregation on Chip

Multiprocessors 33

Q1 (sum & count): Self-similar
Th

ro
ug

hp
ut

Contention

No Contention

September 25, 2007
Adaptive Aggregation on Chip

Multiprocessors 34

See the paper for…
 The full contention model
 Results with other input distributions
 The impact of resampling the input stream

 Able to adapt to changes in the distribution

 Scales with the number of computed aggregates
 Global table with mutex / lock eventually out performs atomic

instructions

September 25, 2007
Adaptive Aggregation on Chip

Multiprocessors 35

Conclusion
 Investigated aggregation performance

on a real chip multiprocessor
 Identified locality and contention as key

performance issues
 Introduced an adaptive aggregation

operator that uses lightweight sampling
to choose the best aggregation strategy

September 25, 2007
Adaptive Aggregation on Chip

Multiprocessors 36

Das Ende

Contention
L2 Cache Size
(locality)

Runs

Th
ro

ug
hp

ut

