Ranked Subsequence Matching in Time-Series Databases

Wook-Shin Han (Kyungpook National University, Korea) Jinsoo Lee (Kyungpook National University, Korea) Yang-Sae Moon (Kangwon National University, Korea) Haifeng Jiang (Google Inc., USA)

Contents

□ Introduction

- Overview of DTW and Existing Lower Bounds
- □ Basic Ranked Subsequence Matching Algorithms
- Minimum Distance Matching Window Pair (MDMWP) and mdmwp-Distance Based Pruning
- Deferred Group Subsequence Retrieval
- Performance Evaluation
- □ Conclusions

Time-Series Databases [AFS93, FRM94, MWL01]

□ Time-series data

- Sequences of values sampled at a fixed time interval
- Examples: music data, stock prices and network traffic data

Time-series databases

- Data sequence: time-series data stored in a database
- Query sequence: time-series data given by a user for similarity search

Similarity Metric

- Measuring similarity as the distance between a data sequence and a given query sequence
- We use the dynamic time warping (DTW) distance [BC96, SC78]
 - One of most robust similarity measures
 - Widely used for various applications such as query by humming [ZS03], image searching [BCP05], and speech recognition [RJ93]

Motivation

□ Ranked subsequence matching under DTW

- finds top-k similar subsequences to a query sequence from data sequences under DTW
- All the existing methods have been developed only for either *whole* matching or *range subsequence* matching

Category	Range query	k-NN query
Whole matching	[1, 6, 11, 12, 15, 20, 31]	[6, 11, 12]
Subsequence matching	[7, 16, 17, 18, 19, 28]	×

Contributions

Propose the first and foremost approach for ranked subsequence matching

- Propose the concept of *minimum-distance matching-window pair* and pruning with MDMWP distance
- Propose deferred group subsequence retrieval along with another lower bound, window-group distance
- □ Show efficiency of the proposed methods using many real and synthetic datasets

Review of DTW

(a) DTW comparison.

$$DTW(\langle\rangle, \langle\rangle) = 0$$

$$DTW(S, \langle\rangle) = DTW(\langle\rangle, Q) = \infty$$

$$DTW(S, Q) = \sqrt[p]{|S[1] - Q[1]|^p + \min \begin{cases} DTW(Rest(S), Rest(Q)) \\ DTW(Rest(S), Q) \\ DTW(S, Rest(Q)) \end{cases}}$$

경북대학교 Kyungpook National University ba

Query Envelope [Keo02, ZS03]

LB_Keogh [Keo02]

- □ Distance between a query envelope E(Q) and a data sequence *S*
- Lower bounding distance under DTW at the sequence level

Piecewise Aggregate Approximation (PAA) [YF00, Keo02]

LB_PAA [ZS03]

Distance between the PAA of the query envelope *P*(E(*Q*)) and the PAA of the data sequence *P*(*S*)
 Lower bounding distance under DTW at the index level

Lower Boundness of the Two Distances for Whole Matching [Keo02, ZS03]

Lemma 1. Given two subsequence Q and S of the same length and a warping width ρ , the following equation holds:

$$DTW_{\rho}(Q, S) \ge LB_Keogh(\mathbb{E}(Q), S)$$
$$\ge LB_PAA(\mathcal{P}(\mathbb{E}(Q)), \mathcal{P}(S))$$

We can exploit these lower bounds whenever pruning is possible at the index level or at the sequence level.

Related Work

- □ Range Whole Matching [AFC93]
- □ Ranked Whole Matching
 - Under Euclidean Distance [Keo01, Cha03]
 - Under DTW [Keo02]
- □ Range Subsequence Matching
 - Dividing a data sequence into sliding windows, a query sequence into disjoint windows [FRM94]
 - Dual Match: dual approach of FRM [MWL01]
 - General Match [MWH02]

Two Basic Algorithms for Ranked Subsequence Matching

DualMatchTopK

- applies the window construction mechanism of DualMatch [MWL01] to the *ranked whole* matching algorithm [Cha03, Keo02]
- □ RangeTopK
 - Obtains top-k entries at the index level using *DualMatchTopK* and an upper bound *ɛ* by retrieving the corresponding data subsequences for the entries
 - and then finds top-k subsequences using the *range* subsequence matching algorithm with ε

Kyungpook National University

Comments on DualMatchTopK

- Many unnecessary subsequences are likely to be retrieved due to the loose lower bound
- □ To solve this problem, we propose an approach that prunes the index search space leveraging the novel notion of *minimum-distance matching-window pair*

Minimum-Distance Matching-Window Pair

MDMWP Distance

Suppose that MDMWP of $\mathcal{P}(\mathbb{E}(Q))$ and $\mathcal{P}(S[i : j])$ is $(\mathcal{P}(\mathbb{E}(q_m)), \mathcal{P}(s_m))$

 $\square \text{ mdmwp-distance} = \sqrt[p]{r} \times LB_PAA(\mathcal{P}(\mathbb{E}(q_m)), \mathcal{P}(s_m)))$

Lower Boundness of MDMWP-distance

Lemma 3. Given a query envelope $\mathbb{E}(Q)$ and a data subsequence S[i:j], the following Eq. (5) holds: $DTW_{\rho}(Q, S[i:j]) \ge$ $mdmwp-distance(\mathcal{P}(\mathbb{E}(Q)), \mathcal{P}(S[i:j]))$ (5)

We call the algorithm that incorporates *mdmwpdistance* based pruning in DualMatchTopK, AdvTopK

Correctness of AdvTopK

Theorem 1. Suppose that the current popped entry is given by $\langle obj, d, j, sid, off \rangle$ in DualMatchTopK, where obj is a leaf entry and the corresponding subsequence for obj is not yet retrieved. Let δ_{cur} be the DTW_{ρ} distance between the query sequence and the top k-th data subsequence obtained so far. If $\sqrt[p]{r}$ $\times LB_LAA(\mathcal{P}(\mathbb{E}(q_j)), \mathcal{P}(S_{sid}[off : off + \omega - 1]))$ is greater than δ_{cur} , then the corresponding subsequence is not included in the top-k subsequences. Here, q_j is the j-th sliding window of Q, and $r = \lfloor (Len(Q) + 1)/\omega \rfloor - 1$.

Deferred Group Subsequence Retrieval

- □ I/O optimization over AdvTopK
 - avoid excessive random disk I/Os
 - maximize buffer utilization
- Delay a fixed size set of subsequence retrieval requests and enables batch retrieval in a sequential access manner
- □ Introduce the *group subsequence access list* for storing all requests delayed for the next bulk access

Example of Group Subsequence Access List

Window Request Group

Window-Group Distance

Derived by exploiting both <u>delayed matching windows</u> in each group and <u>the largest distance</u> in the group subsequence access list

Experimental Setup

Algorithms compared

- DualMatchTopK, RangeTopK, AdvTopK, DeferredTopK
- SeqTopK: sequential scan based algorithm exploiting LB_Keogh

Datasets used

- UCR-DATA (33 data sets of different characteristics in the UCR timeseries archive, 1,055,525 entries)
- WALK-DATA (random walk data consisting of one million entries)
- STOCK-DATA (real data set consisting of 329,112 entries)
- MUSIC-DATA (pitch data set consisting of 2,373,120 entries extracted from 500 MIDI files)
- Linux Kernel 2.6 PC with 512 Mbytes RAM and Pentium IV
 2.8 GHz CPU

Experimental parameters

Parameter	Default	Range
k	25	$5\sim 50$
Buffer size	5%	$1\%\sim 10\%$
Len(Q)	384	256, 384, 512
ω (window size)	64	32, 64, 128

Effect of Buffer Size Using UCR-DATA

DeferredTopK shows almost constant performance and much better performance with a very small buffer size

Effect of Window Size Using UCR-DATA

As the window size increases, all three measures of

these index-based algorithms decrease due to window size effect.

Effect of Query Length Using UCR-DATA

As the query length increases, the relative size of the corresponding window decreases, and thus, more candidates occur due to the window size effect.

Experimental Results for WALK-DATA by Varying *k*

Experimental Result for MUSIC-DATA by Varying k

Conclusions

- proposed a novel notion of the *minimum-distance matching-window pair* and derived a lower bound, *mdmwp-distance*
- proposed the *deferred group subsequence retrieval* to avoid excessive random disk I/Os and bad buffer utilization
- derived another lower bound window-group distance that can be used together with deferred group subsequence retrieval
- proposed four ranked subsequence matching methods, DualMatchTopK, RangeTopK, AdvTopK, and DeferredTopK
- Extensive experiments showed that our advanced methods outperform competing methods by up to orders of magnitude

Thank You Very Much!

Any Questions?

Appendix

RangeTopK

Algorithm 3 RangeTopK		
Input: Q, k, ρ		
Output: results (k-nearest data subsequences for Q)		
1: Va	riable queue : Minimum priority queue;	
2: Va	riable max_queue : Maximum priority queue;	
3: Va	riable candidates : List;	
4: Va	riable ϵ ;	
5: for	r each <i>i</i> -th sliding window $\mathbb{E}(q_i)$ in $\mathbb{E}(Q)$ do	
6: 0	$queue.Push(\langle RootNode, MINDIST(\mathcal{P}(\mathbb{E}(q_i)), RootNode), i, -1, -1 \rangle)$	
7: wh	nile not queue.IsEmpty() do	
8:	$\langle obj, d, j, sid, off \rangle \leftarrow $ queue.Pop();	
9: i	if <i>obj</i> is a leaf entry then	
10:	$soff \leftarrow off - j + 1; /*start offset*/$	
11:	$eoff \leftarrow soff + Len(Q) - 1$; /*end offset*/	
12:	max_queue.Push(Sub, $DTW_{\rho}(Q, Sub), -1, sid, soff)$;	
13:	if max_queue.Size() = k then	
14:	$\langle obj2, d2, j2, sid2, off2 \rangle \leftarrow \max_queue.Top();$	
15:	$\epsilon \leftarrow d2;$	
16:	break;	
17:	else if <i>obj</i> is a leaf node <i>LN</i> then	
18:	for each leaf entry $E \langle \text{Point } P, \text{SeqID } sid2, \text{ offset } off2 \rangle$ in LN do	
19:	queue.Push($\langle E, LB_PAA(\mathcal{P}(\mathbb{E}(q_j)), P), j, sid2, off2 \rangle$);	
20:	else if <i>obj</i> is a non-leaf node then	
21:	for each child node $E \langle MBR M, Child ptr \rangle$ in <i>obj</i> do	
22:	queue.Push($\langle E, MINDIST(\mathcal{P}(\mathbb{E}(q_j)), M), j, -1, -1 \rangle$);	
23: ca	ndidates $\leftarrow \text{RangeScan}(\mathbb{E}(Q), \epsilon)$	

23: candidates \leftarrow RangeScan($\mathbb{E}(Q), \epsilon$); 24: results \leftarrow Refinement(candidates, k);