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Time-Series Databases [AFS93, FRM94, 
MWL01]

Time-series data
Sequences of values sampled at a fixed time interval
Examples: music data, stock prices and network traffic 
data

Time-series databases
Data sequence: time-series data stored in a database
Query sequence: time-series data given by a user for 
similarity search
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Similarity Metric

Measuring similarity as the distance between a data 
sequence and a given query sequence
We use the dynamic time warping (DTW) distance 
[BC96, SC78]

One of most robust similarity measures
Widely used for various applications such as query by 
humming [ZS03], image searching [BCP05], and speech 
recognition [RJ93]
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Motivation

Ranked subsequence matching under DTW
finds top-k similar subsequences to a query sequence 
from data sequences under DTW

All the existing methods have been developed only 
for either whole matching or range subsequence
matching



6

Contributions

Propose the first and foremost approach for ranked 
subsequence matching
Propose the concept of minimum-distance 
matching-window pair and pruning with MDMWP 
distance 
Propose deferred group subsequence retrieval along 
with another lower bound, window-group distance
Show efficiency of the proposed methods using 
many real and synthetic datasets
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Review of DTW

Warping width

Sakoe-Chiba
Band
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Query Envelope [Keo02, ZS03]

U
Q
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LB_Keogh [Keo02 ]

Distance between a query envelope E(Q) and a data 
sequence S
Lower bounding distance under DTW at the 
sequence level

Q

S
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Piecewise Aggregate Approximation (PAA) 
[YF00, Keo02]

Dimension reduction: N dimension → f dimension

S = (PAA(S))
S
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PAA(ENV(Q))

PAA(U)
Q
PAA(L)
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LB_PAA [ZS03]

Distance between the PAA of the query envelope 
P(E(Q)) and the PAA of the data sequence P(S)
Lower bounding distance under DTW at the index 
level

Q

S
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Lower Boundness of the Two Distances for 
Whole Matching  [Keo02, ZS03]

Lemma 1. Given two subsequence Q and S of the same 
length and a warping width ρ, the following equation holds:

We can exploit these lower bounds whenever pruning is possible
at the index level or at the sequence level.
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Related Work

Range Whole Matching [AFC93]
Ranked Whole Matching

Under Euclidean Distance [Keo01, Cha03] 
Under DTW [Keo02]

Range Subsequence Matching
Dividing a data sequence into sliding windows, a query 
sequence into disjoint windows [FRM94]
Dual Match: dual approach of FRM [MWL01]
General Match [MWH02]
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Two Basic Algorithms for Ranked 
Subsequence Matching

DualMatchTopK 
applies the window construction mechanism of 
DualMatch [MWL01] to the ranked whole matching 
algorithm [Cha03, Keo02]

RangeTopK
Obtains top-k entries at the index level using 
DualMatchTopK and an upper bound ε by retrieving the 
corresponding data subsequences for the entries 
and then finds top-k subsequences using the range
subsequence matching algorithm with ε
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Pruning at the index level

Pruning at the sequence level
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Comments on DualMatchTopK

Many unnecessary subsequences are likely to be 
retrieved due to the loose lower bound
To solve this problem, we propose an approach that 
prunes the index search space leveraging the novel 
notion of minimum-distance matching-window pair
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Minimum-Distance Matching-Window Pair
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MDMWP Distance

Suppose that MDMWP of P(E(Q))and P(S[i:j))  is 
(P(E(qm), P(sm))
mdmwp-distance = 
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Lower Boundness of MDMWP-distance

We call the algorithm that incorporates mdmwp-
distance based pruning in DualMatchTopK, AdvTopK
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Correctness of AdvTopK
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Deferred Group Subsequence Retrieval

I/O optimization over AdvTopK
avoid excessive random disk I/Os
maximize buffer utilization

Delay a fixed size set of subsequence retrieval 
requests and enables batch retrieval in a sequential 
access manner
Introduce the group subsequence access list for 
storing all requests delayed for the next bulk access
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Example of Group Subsequence Access List
Window Request Group
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Window-Group Distance
Derived by exploiting both delayed matching windows in each 
group and the largest distance in the group subsequence access 
list
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Experimental Setup
Algorithms compared

DualMatchTopK, RangeTopK, AdvTopK, DeferredTopK
SeqTopK: sequential scan based algorithm exploiting LB_Keogh

Datasets used
UCR-DATA (33 data sets of different characteristics in the UCR time-
series archive, 1,055,525 entries)
WALK-DATA (random walk data consisting of one million entries)
STOCK-DATA (real data set consisting of 329,112 entries)
MUSIC-DATA (pitch data set consisting of 2,373,120 entries extracted 
from 500 MIDI files )

Linux Kernel 2.6 PC with 512 Mbytes RAM and Pentium IV 
2.8 GHz CPU
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Experimental parameters
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In terms of # of candidates, AdvTopK/DeferredTopK significantly
outperform RangeTopK and SeqToK due to MDMWP-distance 
and WG-distance based pruning.

In terms of # of page accesses, for small k, all index-based 
algorithms perform much better than SeqTopK and RangeTopK.  
As k increases, # of page access of  all the index-based algorithms 
increase.

Effect of k Using UCR-DATA

We see similar trends in terms of  wall clock time.
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Effect of Buffer Size Using UCR-DATA

As the buffer size increases, both the number of page accesses 
and wall clock time decrease for all the index-based algorithms.
DeferredTopK shows almost constant performance and much 
better performance with a very small buffer size.
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Effect of Window Size Using UCR-DATA

As the window size increases, all three measures of 
these index-based algorithms decrease due to window size effect.
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Effect of Query Length Using UCR-DATA

As the query length increases, the relative size of 
the corresponding window decreases, and thus, 
more candidates occur due to the window size effect.
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Experimental Results for WALK-DATA by 
Varying k

The trend is similar to that for UCR-DATA.
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Experimental Result for MUSIC-DATA by 
Varying k

Again, similar trend for MUSIC-DATA!
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Conclusions
proposed a novel notion of the minimum-distance matching-
window pair and derived a lower bound, mdmwp-distance
proposed the deferred group subsequence retrieval to avoid 
excessive random disk I/Os and bad buffer utilization
derived another lower bound window-group distance that 
can be used together with deferred group subsequence 
retrieval
proposed four ranked subsequence matching methods, 
DualMatchTopK, RangeTopK, AdvTopK, and 
DeferredTopK
Extensive experiments showed that our advanced methods 
outperform competing methods by up to orders of 
magnitude
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Thank You Very Much!

Any Questions?
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Appendix
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RangeTopK
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