Mining Approximate Top-K Subspace Anomalies in Multi-Dimensional Time-Series Data

Xiaolei Li, Jiawei Han University of Illinois at Urbana-Champaign

VLDB 2007

Time Series Data

• Many applications produce time series data

Time Series Data

• Many applications produce time series data

Time Series Data

Many applications produce time series data

Compare time series to gather differences

Apple stock has a very different "trend"

2006	Intel stock had	200
Time	different magnitude	

Find anomalies in a data cube of multi-dimensional time series data

Table of Contents

- 1. Time Series Examples
- 2. Problem Statement 🖜
- 3. Related Work
- 4. Observed/Expected Time Series and Anomaly Measure
- 5. Subspace Iterative Search
 - i. Generating candidate subspaces
 - ii. Discovering top-k anomaly cells
- 6. Experiments
- 7. Conclusion

Multi-Dimensional Attributes

- Time series are not flat data; contains multi-dimensional attributes
- Stock example
 - Apple and Intel are a part of the NASDAQ Computers Index unter an apple and Intel are a part of the NASDAQ Computers Index
 - Apple is hardware/software; Intel is hardware
 - Related to NASDAQ-100 Technology Stock Index
- Sales example

- Multi-dimensional information collected for every sale (e.g., buyer age, product type, store location, purchase time)
- Compare sales by any combination of categories or sub-categories: "sales of sporting apparel to <u>males with 3+ children</u> have been declining compared to <u>overall male</u> sporting apparel sales"

Multi-Dimensional Attributes

- Time series are not flat data; contains multi-dimensional attributes
- Stock example
 - Apple and Intel are a part of the NASDAQ Computers Index LINGUELATING
 - Apple is hardware/software; Intel is hardware
 - Related to NASDAQ-100 Technology Stock Index
- Sales example

- Multi-dimensional information collected for every sale (e.g., buyer age, product type, store location, purchase time)
- Compare sales by any combination of categories or sub-categories: "sales of sporting apparel to <u>males with 3+ children</u> have been declining compared to <u>overall male</u> sporting apparel sales"

subset

- Find anomalies in the data cube of multi-dimensional time series data
- Input data: relation **R** with a set of time series **S** associated with each tuple
 - Attributes of R form a data cube C_R
 - Each s_i is a time series
 - Each u_i is a scalar indicating the count of the tuple

Gender	Education	Income	Product	Profit	Count
Female	Highschool	35k-45k	Food	S ₁	U1
Female	Highschool	45k-60k	Apparel	S ₂	U ₂
Female	College	35k-45k	Apparel	S 3	U ₃
Female	College	35k-45k	Book	S 4	U4
Female	College	45k-60k	Apparel	S_5	U5
Female	Graduate	45k-60k	Apparel	S 6	U ₆
Male	Highschool	35k-45k	Apparel	S 7	U7
Male	College	35k-45k	Food	S ₈	U ₈

- Find anomalies in the data cube of multi-dimensional time series data
- Input data: relation **R** with a set of time series **S** associated with each tuple
 - Attributes of R form a data cube C_R
 - Each s_i is a time series
 - Each u_i is a scalar indicating the count of the tuple

Gender	Education Income Product		Profit	Count	
Female	Highschool	35k-45k	Food	S 1	U1
Female	Highschool	45k-60k	Apparel	S 2	U ₂
Female	College	35k-45k	Apparel	S 3	U ₃
Female	College	35k-45k	Book	S 4	U4
Female	College	45k-60k	Apparel	S 5	U_5
Female	Graduate	45k-60k	Apparel	S 6	U ₆
Male	Highschool	35k-45k	Apparel	S 7	U7
Male	College	35k-45k	Food	S ₈	U ₈

- Find anomalies in the data cube of multi-dimensional time series data
- Input data: relation **R** with a set of time series **S** associated with each tuple
 - Attributes of R form a data cube C_R
 - Each s_i is a time series —
 - Each u_i is a scalar indicating the count of the tuple

				7	
Gender	Education	Income	Product	Profit	Count
Female	Highschool	35k-45k	Food	S ₁	U1
Female	Highschool	45k-60k	Apparel	S 2	U ₂
Female	College	35k-45k	Apparel	S 3	U ₃
Female	College	35k-45k	Book	S 4	U4
Female	College	45k-60k	Apparel	S_5	U_5
Female	Graduate	45k-60k	Apparel	S_6	U ₆
Male	Highschool	35k-45k	Apparel	S ₇	U ₇
Male	College	35k-45k	Food	S ₈	U ₈

- Find anomalies in the data cube of multi-dimensional time series data
- Input data: relation **R** with a set of time series **S** associated with each tuple
 - Attributes of R form a data cube C_R
 - Each s_i is a time series
 - Each u_i is a scalar indicating the count of the tuple ____

Gender	der Education Income Product		Profit	Count	
Female	Highschool	35k-45k	Food	S 1	U1
Female	Highschool	45k-60k	Apparel	S 2	U ₂
Female	College	35k-45k	Apparel	S 3	U ₃
Female	College	35k-45k	Book	S 4	U4
Female	College	45k-60k	Apparel	S_5	U_5
Female	Graduate	45k-60k	Apparel	S 6	U ₆
Male	Highschool	35k-45k	Apparel	S 7	U ₇
Male	College	35k-45k	Food	S 8	U ₈

- Given a relation R, a data cube (denoted as C_R) is the set of aggregates from all possible group-by's on R
- In a *n*-dimensional data cube, each cell has the form c = (a₁, a₂, ..., a_n : m) where each a_i is the value of ith attribute and m is the cube measure (e.g., profit)
- A cell is k-dimensional if there are exactly k (\leq n) values amongst a_i which are not * (i.e., all)
 - 2-dimensional cell: (Female, *, *, Book: x)
 - 3-dimensional cell: (*, College, 35k-45k, Apparel: y)
 - Base cell: none of a_i is *
- Parent, descendant, sibling relationships

- Given a relation R, a data cube (denoted as C_R) is the set of aggregates from all possible group-by's on R
- In a *n*-dimensional data cube, each cell has the form c = (a₁, a₂, ..., a_n : m) where each a_i is the value of ith attribute and m is the cube measure (e.g., profit)
- A cell is k-dimensional if there are exactly k (
 values amongst a_i which are not * (i.e., all)
 - 2-dimensional cell: (Female, *, *, Book: x)
 - 3-dimensional cell: (*, College, 35k-45k, Apparel: y)
 - Base cell: none of a_i is *
- Parent, descendant, sibling relationships

BC

ABC

AC

B

All

AB

A

- Given a relation R, a data cube (denoted as C_R) is the set of aggregates from all possible group-by's on R
- In a *n*-dimensional data cube, each cell has the form c = (a₁, a₂, ..., a_n : m) where each a_i is the value of ith attribute and m is the cube measure (e.g., profit)
- A cell is k-dimensional if there are exactly k (\leq n) values amongst a_i which are not * (i.e., all)
 - 2-dimensional cell: (Female, *, *, Book: x)
 - 3-dimensional cell: (*, College, 35k-45k, Apparel: y)
 - Base cell: none of a_i is *
- Parent, descendant, sibling relationships

- Given a relation R, a data cube (denoted as C_R) is the set of aggregates from all possible group-by's on R
- In a *n*-dimensional data cube, each cell has the form c = (a₁, a₂, ..., a_n : m) where each a_i is the value of ith attribute and m is the cube measure (e.g., profit)
- A cell is k-dimensional if there are exactly k (\leq n) values amongst a_i which are not * (i.e., all)
 - 2-dimensional cell: (Female, *, *, Book: x)
 - 3-dimensional cell: (*, College, 35k-45k, Apparel: y)
 - Base cell: none of a_i is *
- Parent, descendant, sibling relationships

Query Model

- Given R, a probe cell p ∈ C_R, and an anomaly function g, find the anomaly cells among descendants of p in C_R as measured by g
 - Each abnormal cell must satisfy a minimum support (count) threshold
 - Anomaly does not have to hold for entire time series
 - Only the top k anomalies as ranked by g are needed

Query Model

- Given R, a probe cell p ∈ C_R, and an anomaly function g, find the anomaly cells among descendants of p in C_R as measured by g
 - Each abnormal cell must satisfy a minimum support (count) threshold
 - Anomaly does not have to hold for entire time series
 - Only the top k anomalies as ranked by g are needed

Related Work

- Exploratory Data Analysis
 - [Sarawagi SIGMOD'00] explores OLAP anomaly but necessitates full cube materialization
 - [Palpanas SSDBM'01] approximately finds interesting cells in data cube but still requires exponential calculations
 - [Imielinski DMKD'02] requires anti-monotonic measure and does not focus on time series
- Time Series Data Cube [Chen VLDB'02]
 - Only suitable for low-dimensional data
 - Requires user guidance
- General outlier detection, subspace clustering, and time series similarity search does not address OLAP-style data

Measuring Anomaly: Intuition

1. For every cell, compute the expected time series (with respect to the probe cell)

- 1. For every cell, compute the expected time series (with respect to the probe cell)
- 2. Compare the expected time series vs. the observed time series

- 1. For every cell, compute the expected time series (with respect to the probe cell)
- 2. Compare the expected time series vs. the observed time series
- 3. Rank to get top k

Observed Time Series

- Given any cell *c* in C_R, there is an associated observed time series *s_c*
- In the context of a probe cell *p*, it is computed by aggregating all time series associated with both *c* and *p*

$$s_c = \sum_{tid_i \in (c \cap \sigma_p(R))} s_i$$

Observed Time Series (2)

Gender	Education	Income	Product	Profit	Count
Female	Highschool	35k-45k	Food	S ₁	U1
Female	Highschool	45k-60k	Apparel	S 2	150
Female	College	35k-45k	Apparel	S 3	200
Female	College	35k-45k	Book	S 4	U4
Female	College	45k-60k	Apparel	S_5	600
Female	Graduate	45k-60k	Apparel	S 6	50
Male	Highschool	35k-45k	Apparel	S 7	U ₇
Male	College	35k-45k	Food	S ₈	U ₈

• Example: *p* = (Gender = "Female", Product = "Apparel")

		C	Sc	c	
	Education	Education Income		Count	
0	*	*	$S_2 + S_3 + S_5 + S_6$	1000	
	Highschool	*	S 2	150	
	College	*	$S_3 + S_5$	800	

Expected Time Series

- Given any cell c that is a descendant of p, there is also an expected time series ŝ_c
- Intuition: A descendant cell of p is a subset of p. Assuming that market segments behave proportionally by its size, one can calculate the expected time series from p's time series

$$\hat{s}_c = \left(\frac{|c|}{|p|}\right) s_p$$

С		Sc	Ŝc	c
Education	Income	Prof	Count	
*	*	$S_2 + S_3 + S_5 + S_6 = S_p$	n/a	1000
Highschool	*	S ₂	150 / 1000 x s _p	150
College	*	$S_3 + S_5$	800 / 1000 x s _p	800

Anomaly Definition

• General idea: $g(s_c, \hat{s}_c) \Rightarrow R$

Anomaly Definition

- General idea: $g(s_c, \hat{s}_c) \Rightarrow R$
- Four types of anomalies
 - Trend
 - Magnitude
 - Phase
 - Miscellaneous

Anomaly Definition

- General idea: $g(s_c, \hat{s}_c) \Rightarrow R$
- Four types of anomalies
 - Trend
 - Magnitude
 - Phase
 - Miscellaneous
- Measured via first-order linear regression
 - Simple and efficient (direct cube aggregation of parameters [Chen VLDB'02])
 - Effective at catching obvious anomalies

Mining Top-K Anomalies in Data Cube

Algorithm 1 Naïve Top-k Anomalies

Input: Relation R, time-series data S, query probe cell p, anomaly function g, parameter k, minimum support mOutput: Top-k scoring cells in C_p as ranked by g and satisfies m

- 1. Retrieve data for $\sigma_p(R)$
- 2. Compute the data cube C_p with $\sigma_p(R)$ as the fact table with m as the iceberg parameter
- 3. Return top k anomaly cells in C_p for each g

Mining Top-K Anomalies in Data Cube

Algorithm 1 Naïve Top-k Anomalies

Input: Relation R, time-series data S, query probe cell p, anomaly function g, parameter k, minimum support mOutput: Top-k scoring cells in C_p as ranked by g and satisfies m

- 1. Retrieve data for $\sigma_p(R)$
- 2. Compute the data cube C_p with $\sigma_p(R)$ as the fact table with *m* as the iceberg parameter
- 3. Return top k anomaly cells in C_p for each g

1. Expensive to compute C_p (exponential in number of dimensions)

Mining Top-K Anomalies in Data Cube

Algorithm 1 Naïve Top-k Anomalies

Input: Relation R, time-series data S, query probe cell p, anomaly function g, parameter k, minimum support mOutput: Top-k scoring cells in C_p as ranked by g and satisfies m

- 1. Retrieve data for $\sigma_p(R)$
- 2. Compute the data cube C_p with $\sigma_p(R)$ as the fact table with *m* as the iceberg parameter
- 3. Return top k anomaly cells in C_p for each g

1. Expensive to compute C_p (exponential in number of dimensions)

2. Finds all anomalies before collecting top-*k*

• Subspace Iterative Time Series Anomaly Search (SUITS)

• Subspace Iterative Time Series Anomaly Search (SUITS)

• Iteratively select subspaces out of the 2ⁿ total subspaces

• Subspace Iterative Time Series Anomaly Search (SUITS)

- Iteratively select subspaces out of the 2ⁿ total subspaces
- Compute anomalies within subspaces

• Subspace Iterative Time Series Anomaly Search (SUITS)

- Iteratively select subspaces out of the 2ⁿ total subspaces
- Compute anomalies within subspaces
- Combine to form overall anomalies

- Intuition
 - By definition, anomalies are rare and most of the 2ⁿ subspaces do not contain any
 - Descendant cells stemming from the same anomalies (in some ancestor cell) should exhibit similar abnormal behavior
- Procedure

- Intuition
 - By definition, anomalies are rare and most of the 2ⁿ subspaces do not contain any
 - Descendant cells stemming from the same anomalies (in some ancestor cell) should exhibit similar abnormal behavior
- Procedure
 - 1. Search for a group of similar anomalies in the set of base cells

- Intuition
 - By definition, anomalies are rare and most of the 2ⁿ subspaces do not contain any
 - Descendant cells stemming from the same anomalies (in some ancestor cell) should exhibit similar abnormal behavior
- Procedure
 - 1. Search for a group of similar anomalies in the set of base cells
 - 2. Find a subspace correlated with the group

- Intuition
 - By definition, anomalies are rare and most of the 2ⁿ subspaces do not contain any
 - Descendant cells stemming from the same anomalies (in some ancestor cell) should exhibit similar abnormal behavior
- Procedure
 - 1. Search for a group of similar anomalies in the set of base cells
 - 2. Find a subspace correlated with the group
 - 3. Compute the local top-k anomalies in the subspace

• Time Anomaly Matrix

 Table 4: Time Anomaly Matrix

- Partition each observed and expected time series into subsequences and compute anomalies
- Group anomalies by type and also amount
- Iteratively select groups of similar anomaly cells from matrix

• Time Anomaly Matrix

 Table 4: Time Anomaly Matrix

- Partition each observed and expected time series into subsequences and compute anomalies
- Group anomalies by type and also amount
- Iteratively select groups of similar anomaly cells from matrix

• Time Anomaly Matrix

Education	Income	S[1]	S[2]	S[3]	
		Time	Weature	Weenro	
Highschool	45k-60k	None	Magnitude	Magnitude	
		Mature	Weature	Portugation of the second seco	
College	35k–45k	Phase	None	Misc	
		Provide the second seco	Weight	Time	
College	45k-60k	Phase	Magnitude	Magnitude	
		Weature	Weight	Weight	
Graduate	45k-60k	None	Magnitude	Magnitude	

 Table 4: Time Anomaly Matrix

- Partition each observed and expected time series into subsequences and compute anomalies
- Group anomalies by type and also amount
- Iteratively select groups of similar anomaly cells from matrix

- Given a group in the Time Anomaly Matrix, select its correlated subspace
- Rank attribute-value pairs by Anomaly Likelihood (AL) score
 - Attribute values that occur very frequently and within a homogenous dimension have high AL scores
 - ► AL = (Frequency of Attribute-Value) x (Entropy of Attribute)⁻¹
- Select the top few and form the candidate subspace

Education	Income	S[1]	S[2]	S[3]
		Wegerine	european de la company de la c	Weggere
Highschool	45k-60k	None	Magnitude	Magnitude
		W	energy Time	Time
College	35k–45k	Phase	None	Misc
		W	engreger de la construction de l	W
College	45k–60k	Phase	Magnitude	Magnitude
		european de la companya de la compan	Weter	Weget
Graduate	45k-60k	None	Magnitude	Magnitude

 Table 4: Time Anomaly Matrix

- Given a group in the Time Anomaly Matrix, select its correlated subspace
- Rank attribute-value pairs by Anomaly Likelihood (AL) score
 - Attribute values that occur very frequently and within a homogenous dimension have high AL scores
 - ► AL = (Frequency of Attribute-Value) x (Entropy of Attribute)⁻¹
- Select the top few and form the candidate subspace

Education	Income	S[1]	S[2]	S[3]
		AnneeeM	Weather	Wereard
Highschool	4 Attrib	ute Value	Frequency AL	Score
	Incom	e = 45k - 60k	3 Time	Time
College	³ Educa	tion = Highschool	1 None 1.5	8 Misc
	Educa	tion = College	orread	When the second
College	4Educa	tion = Graduate	1 Magnitude 1.5	8 Magnitude
		Time	ernseew	Time
Graduate	45k-60k	None	Magnitude	Magnitude

 Table 4: Time Anomaly Matrix

Table of Contents

- 1. Time Series Examples
- 2. Problem Statement
- 3. Related Work
- 4. Observed/Expected Time Series and Anomaly Measure
- 5. Subspace Iterative Search
 - i. Generating candidate subspaces
 - ii. Discovering top-k anomaly cells 🖜
- 6. Experiments
- 7. Conclusion

Discovering Top-K Anomaly Cells

- Each subspace is small enough (~5 dimensions) for full cube materialization
- Efficient Regression Calculation
 - Linear regression needed for anomaly calculation (comparisons between parameters of observed and expected time series regression)
 - Regression parameters can be **aggregated losslessly** [Chen VLDB'02]
 - Only need to perform regression calculation once in the base cuboid
 - Higher level cuboids' regression parameters can be calculated via simple aggregation

Discovering Top-K Anomaly Cells (2)

- More efficient top-k anomaly detection (i.e., avoid computing the whole data cube)
- Intuition: calculate anomaly upper bounds during cubing and prune branches if upper bound is below current top-k
- Procedure
 - Bottom-up cube calculation [Beyer SIGMOD'99]

SUITS Algorithm in Summary

Algorithm 2 SUITS

Input & Output: Same as Algorithm 1

- 1. Retrieve data for $\sigma_p(R)$
- 2. Repeat until global answer set contains global top-k
- 3. $B \leftarrow \text{candidate attribute values from } \{A_1, \ldots, A_n\}$
- 4. Retrieve top k anomaly cells from C_B using g and m
- 5. Add top k cells to global answer set
- 6. Remove discovered anomalies from input
- 7. Return top k cells in global answer set
- Final top-*k* is approximation of true global top-*k*
- Top-*k* pruning relies on monotonic properties of upper bound. If not satisfied, need to compute full subspace cube

Experiments

- Real market sales data from industry partner
- Time series data from 1999 to 2005
- Nearly 1 million sales and 600 dimensions

Sample Query 1

- **Probe**: Gender = "Male" ^ Marital = "Single" ^ Product = luxury item
- **Greatest anomaly**: <u>Generation = "Post-Boomer" : less than expected</u>
- Explanation: "Post-Boomer" are young and do not have enough money yet to purchase luxury item

Sample Query 2

- **Probe**: Gender = "Female" ^ Education = "Post-Graduate" ^ Product = cheap item
- Greatest anomaly:
 - 1. Employment = "Full-Time" \Rightarrow less
 - 2. Occupation = "Manager/Professional" \Rightarrow less
 - 3. <u>Number of Children Under $16 = 0 \Rightarrow more</u>$ </u>
- **Explanation**: Number of Children Under $16 = 0 \Leftrightarrow$ "Young" \Leftrightarrow not enough accumulated wealth

Query Efficiency

Probe	R	Naïve	S		SUITS		Common Top-10
		Time	Time	% Improve	Time	% Improve	
Male, Single	10	14	5.9	58%	5.4	61%	9
Male, Married	10	299	95	68%	60	80%	10
Male, Divorced	10	3.6	2.8	22%	2.8	22%	10
Female, Single	10	15	8.2	46%	7.0	53%	9
Female, Married	10	114	31.0	73%	23.0	80%	8
Female, Divorced	10	5.5	3.8	31%	3.7	33%	10
Post-Boomer, Children=0	11	68.8	39.6	43%	32.1	53%	10
Post-Boomer, Children=1	11	16.8	5.4	68%	4.8	71%	10
Post-Boomer, Children=2	11	15.5	7.8	50%	6.7	57%	10
Boomer, Children=0	11	108.9	75.7	30%	52.4	52%	10
Boomer, Children=1	11	120.3	68.9	43%	58.0	52%	10
Boomer, Children=2	11	46.6	27.2	42%	23.6	49%	10
Average			48%		55%	9.6	

Table 8: Run times of trend anomaly query with low dimensional data ($10 \le |R| \le 11$)

Dimensionality Efficiency

Figure 9: Running time vs. number of dimensions

Conclusion

- Detecting anomalies in data cube of time series data
- Iterative subspace search
- Efficient top-*k* anomaly detection
- Experiments with real data

Thank You!