Time Series Compressibility and Privacy

Spiros Papadimitriou* Feifei Li* George Kollios* Philip S. Yu*

*IBM TJ Watson *Boston University

Intuition / Motivation

Introduce uncertainty about individual values, while still allowing interesting pattern mining

Intuition / Motivation

Introduce uncertainty about individual values, while still allowing interesting pattern mining

Random (white noise) ?

- Completely random permutation?
- Cars (typically) don't drive like this ⇒ Noise can be filtered out

Deterministic ?

Completely "deterministic" permutation?

True value leaks

First extreme case

White noise

Summary of extreme cases

Summary of extreme cases

Main challenge

Goals

- Partial "information hiding" via data perturbation, for time series
- Perturbation adapts to data properties
 - Automatically combines "random" and "deterministic" at appropriate scales
- Evaluate against both
 - □ Filtering
 - True value leaks
- Suitable for on-the-fly, streaming perturbation

Overview

Definitions

- Method
- Experiments
- Conclusion

Utility = discord

Published values y_t are (on expectation) within $\pm \sigma$ of the true values x_t :

$$Var[y_t - x_t] = \sigma^2$$

Privacy = final uncertainty

Recovered values $\tilde{x}_t = f(y_t)$ are (on expectation) within $\pm \tilde{\sigma}$ of the true values x_t :

$$\operatorname{Var}[\tilde{x}_t - x_t] = \tilde{\sigma}^2$$

Goal

- Recovery of true values is based on assumptions about attack model, with specific background knowledge
 - □ Linear filtering
 - □ Linear reconstruction (based on true values)

Overview

Definitions

Method

- Experiments
- Conclusion

Wavelet and Fourier representations

One-slide refresher

Our work

Fourier-based perturbation Batch

Wavelet-based perturbation
Batch
Streaming

Fourier-based perturbation

Intuition

Fourier-based perturbation Intuition & Summary

Wavelet-based perturbation Intuition & Summary

Next: How to do this online? (1) Wavelet transform; (2) Noise allocation

Streaming perturbation (1) Wavelet transform—Summary

Forward transform: post-order traversal

O(IgN) spaceO(1) time (amortized)

Streaming perturbation

(2) Noise allocation—Summary

Challenge:

Knowing only the wavelet coefficients up to the current time

□ How can we allocate the noise online so that it is as close as possible to the batch allocation?

Streaming perturbation (1) Wavelet transform—Summary

Inverse transform: pre-order traversal

O(IgN) spaceO(1) time (amortized)

Streaming perturbation (2) Noise allocation—Summary

Per-band lookahead

[see paper for details]

Overview

- Definitions
- Method
- Experiments
 - Conclusion

Experimental overview

Datasets:

Chlorine: Chlorine concentration in drinkable water distribution network

- Light: Light intensity measurements (Intel Berkeley)
- □ SP500: Standards & Poors 500 index

Experimental overview

- Varying
 - Discord levels, and
 - Perturbation methods:
 - IID
 - Fourier-based (FFT)
 - Batch wavelet-based (DWT)
 - Streaming wavelet-based (str. DWT)
- Filter: wavelet shrinkage [Donoho / TOIT95]
- True values: linear regression

Average (over ten runs):

IID noise: excellent resilience to leaks, very poor for filtering

Other methods: comparable

"True" uncertainty

"True" uncertainty

"True" uncertainty

discord s (%)

discord s (%)

5

discord s (%)

Scalability

Constant per measurement

Overview

- Definitions
- Method
- Experiments
- Conclusion

Related work (1/2)

Privacy-preserving data mining

- SMC [Lindel & Pinkas / CRYPTO00], [Vaidya & Clifton / KDD02]
- Partial information hiding
 - Perturbation [Agrawal & Srikant / SIGMOD00], [Du & Zhan / KDD03], [Kargupta, Datta, Wang & Sivakumar / ICDM03], [Agrawal & Aggarwal / EDBT04], [Chen & Liu / ICDM05], [Huang, Du & Chen / SIGMOD05], [Liu, Ryan & Kargupta / TKDE05], [Li et al. / ICDE07]
 - k-anonymity [Sweeney / IJUFKS02], [Aggarwal & Yu / EDBT04], [Bertino, Ooi, Yang & Deng / ICDE05], [Kifer & Gehrke / SIGMOD06], [Machanwajjala, Gehrke & Kifer / ICDE06], [Xiao & Tao / SIGMOD06]
- Interactive privacy [Blum, Dwork, McSherry & Nissim / PODS05], [Dwork, McSherry, Nissim, Smith / TCC06]
 - SSDBs [Denning / TODS80]
- Wavelets in DM [Gilbert, Kotidis, Muthukrishnan & Strauss / VLDB01], [Garofalakis & Gibbons / SIGMOD02], [Bulut & Singh / ICDE03], [Papadimitriou, Brockwell & Faloutsos / VLDB04], [Lin, Vlachos, Keogh & Gunopulos / EDBT04], [Karras & Mamoulis / VLDB05]
- **Compression and DM** [Keogh, Lonardi & Ratanamahatana / KDD04]

Related work (2/2)

- Correlated perturbation [Kargupta, Datta, Wang & Sivakumar / ICDE03], [Huang, Du & Chen / SIGMOD05], for streams [Li et al. / ICDE07]
- L-diversity [Machanwajjala, Gehrke & Kifer / ICDE06] and personalized privacy [Xiao & Tao / SIGMOD06]
- Dimensionality curse and privacy [Aggarwal / VLDB05]
- Watermarking [Sion, Attalah & Prabhakar / TKDE06]
- Compressed sensing [Donoho / TOIT06], [Candés, Romberg & Tao / TOIT06]

Conclusion

- Partial information hiding via data perturbation
- User-defined discord (utility)
- Adapts to data properties
 - Automatically combines "random" and "deterministic" at appropriate scales
 - Additionally preserves spectral properties
- Evaluate against both
 - Filtering
 - True value leaks
- Suitable for on-the-fly, streaming perturbation

Perturbing data objects with any "structure" is non-trivial, even under fixed attack model(s)

Spiros Papadimitriou* Feifei Li* George Kollios* Philip S. Yu*

*IBM TJ Watson *Boston University

Per-band allocation

BACKUP

Per-band allocation

BACKUP

Marginals

