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Problem definition
Given a rank k and a finite data set D (each 
data point in D maps to a real value)

Problem:

Can we use a random sample without 
replacement from D to predict the kth

largest/smallest value in the entire 
data set?
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Problem definition (cont.)
Running Example:

k=2; D={1,2,3,4…79…98,105,106}

S={1, 3,79}

Can we use S to predict 105?

� Very hard when D is a query result set, 
which is produced by applying a selection 
predicate and an arbitrary scoring 
function to each record in a database

2nd
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Example Applications

� Data mining 

� Outlier detection

� Top-k patterns mining

� Database management

� Min/max online aggregation

� Top-k query processing

� Query optimization

� Distance join

� Any research with keywords

� Top/kth/max/min/rank/extreme…
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A Natural Estimator

Running Example:

k=2; D={1,2,3,4…79…98,105,106}

S={1, 3,79}

Can we use S to predict 105?
� Best “guess” with just S.

2nd
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Our estimator is the (k’)th largest value in the sample S
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A Natural Estimator (cont.)

� In general, (k’)th largest in S may be much 
smaller (or even larger) than kth largest in D
� The relationship between (k’)th largest in S 
and kth largest in D varies from data set to data 
set
� Key strategy is that we want to characterize

the distribution of ratio kth/ (k’)th



10

� Given distribution on the ratio of kth/ (k’)th , 
deriving bounds on kth largest value in D becomes 
easy

� For example, if there is 95% chance the ratio is between l 
and h, then there is 95% chance the kth largest in D is 
between l x (k’)th and h x (k’)th

A Natural Estimator (cont.)
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Characterize the Ratio kth/ (k’)th

Running Example:

k=2; D={1,2,3,4…79…98,105,106}

k’=1; S={1, 3,79}

� Imagine D is the query result set obtained by 
applying an arbitrary function f() to a database 
� Impossible to predict the ratio of 105/79 
� Without any knowledge about f(), we can’t bias 79 
to larger values
� But with some domain (prior) knowledge and a 
sample of f(), we may reasonably guess the 
behaviors of f()

2nd
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Characterize the Ratio kth/ (k’)th (cont.)

� Workload in DB gives abundant domain 
knowledge

� each query corresponds to a data set in the same 
domain

� some queries may result in f() values that are 
typically small, with few outliers boost kth largest

� some queries may result in f() values  that are 
tightly distributed around  its mean; kth and (k’)th

are very close

� When a new query is asked, we guess which 
type of “typical” queries by a few f() samples

� A model is needed to classify the queries

Key Question:

What aspect of the queries we want to 
model, in order to describe different 
distributions of kth/ (k’)th ?
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Importance of the Histogram Shape of a Query Result Set

Setup: 4 data sets with different histogram shapes; |D|=10,000, k=1
Experiment: repeat sampling 500 times, sample size 100, k’=1, get 
the avg ratio kth/(k’)th

Ratio:  3.07 Ratio:  1.06

Ratio:  4.45
Ratio:  1.01

Conclusion: We need to 
model the histogram shape!

� Histogram shape of the query 
result set affects the ratio of 
kth/ (k’)th

� Scale does not matter
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First Step to Define the Model

� Now, we want a model to capture the 
histogram shape of a query result set

� Before deriving the math, it is beneficial to 
think how the model will work
� Since if we know how the model works, we can 

find an appropriate probability density function to 
describe the model
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Our Generative Model

� Assume there is a set of histogram shapes; 
each shape has a weight , where 

� To generate a data set

1. A biased die (   s) is rolled to determine by which 
shape pattern the new data set will be generated

2. An arbitrary scale is selected to define the 
magnitude of the items in the data set

3. The shape and the scale are used to instantiate a        
distribution and we repeatedly 

sample from this distribution to produce the data 
set
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Our Generative Model (cont.)

� The initial set of weights (   s) are our
prior distribution
� Indicating our belief that how likely a new 

query result set’s histogram shape will match 
each shape pattern

iw
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Bayesian Approach

� Problem: prior weights cannot give 
enough info

� One histogram shape may indicate that our 
estimator (k’)th is close to the extreme value 
kth

� One histogram shape may indicate that our 
estimator (k’)th is far from the extreme value 
kth

� Question: How do we determine which 
histogram shape we are experiencing once we 
have sampled S?
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Bayesian Approach (cont.)

� We can rely on a principled Bayesian approach

� Can combine the informative prior with the 
sample taken from the new data set

� After a sample of new data set is taken, we use it 
to update the prior weights, the updated weights 
are our posterior distribution

� Incorporate the new evidence to determine the 
current histogram shape

� Place more weight on the most probably shape

� The updated weights     s  are used for 
bounding extreme value 

'iw
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Overview of Bayesian Framework

1. Build Prior Model: a set of weighted histogram 
shapes 

2. Update Prior Model with Sample: adjusting prior 
weight of each shape to better describe the new 
data set’s histogram shape

3. Use the Updated Model to Confidence Bound on 
the Ratio of kth/ (k’)th
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Bayesian Framework
Step 1:Prior Shape Model

� Modified mixture of Gamma(x|α,β) distribution

� Treat scale parameter β as a random variable; 
integrate β, the result:

� Each mixture component probability density function (pdf) 
p is indexed by a shape parameter α

� The above  pdf’s input only requires 

• M is the productivity 

• S is the sum

• N is the cardinality
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Bayesian Framework
Step 1:Prior Shape Model

� Use 

� The probability density function of our model 
becomes

� We use EM algorithm to learn this model from 
historical workload
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Bayesian Framework Step 1
Why Gamma distribution?

� Gamma(α,β) distribution can produce shape with 
arbitrary right leaning skew
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� Aggregate sample to the form 

� Apply Bayes rule to update weights

� The resulting pdf
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Bayesian Framework
Step 2:Update Prior Weights
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Bayesian Framework
Step 3:Confidence Bound Extreme Value

� Recall that each histogram shape characterizes a 
ratio distribution of kth/(k’)th
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Bayesian Framework
Step 3:Confidence Bound Extreme Value(cont.)

� Each shape has a corresponding ratio distribution

� Step 2 gives the posterior weight      for each 
shape pattern

� Our model now can be perceived as someone 
choose a shape with a die roll biased by 

� And we do not know which shape the die roll has 
chosen

� Then, the resulting ratio distribution is a mixture 
of each shape pattern’s ratio distribution

� Probability of the ith ratio distribution in the 
mixture is

'iw
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Bayesian Framework
Step 3:Confidence Bound Extreme Value(cont.)

� Now we have  

1. The ratio distribution in a mixture form

2. Our estimator, the (k’)th laregest in the sample

� We can confidence bound the kth largest value
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Bayesian Framework
Step 3:Confidence Bound Extreme Value(cont.)

� Problem left is that for a given shape, how to 
efficiently get its ratio distribution?

� We devised a method called TKD sampling (details 
in the paper) accomplishes this in O(num*k’) time
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� 7 real multi-dimensional data sets

� A query is created by:
1. A tuple t is randomly selected

2. A selectivity s is randomly picked from 5% to 20%

3. s x (DB size) nearest neighbors of t are chosen as the 
query result set

4. The scoring function is the randomly-weighted sum of 
three arbitrary attributes.

� 500 training queries & 500 testing queries

� Confidence level is set to 95%
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Experiment Results

Data sets k=1 k=5 k=10 k=20

Letter 1.00 0.98 0.97 0.94

CAHouse 0.97 0.99 0.97 0.96

El Nino 1.00 1.00 0.99 0.99

Cover Type 1.00 1.00 0.99 0.99

KDDCup 99 0.92 0.91 0.92 0.93

Person 90 0.92 0.94 0.90 0.91

Household 90 0.98 0.97 0.97 0.97

� The Coverage rates for 95% confidence 
bound, with 10% sample for various k.
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Experiment Results

� Increasing sample size for k=1 and k=10
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Conclusion

� Defined the problem of estimating the Kth

extreme value in a data set 

� A Bayesian approach is proposed 

� Experimental verification on real data
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Questions


