Efficient Processing of Top-k Dominating Queries on Multi-dimensional Data

M. L. Yiu

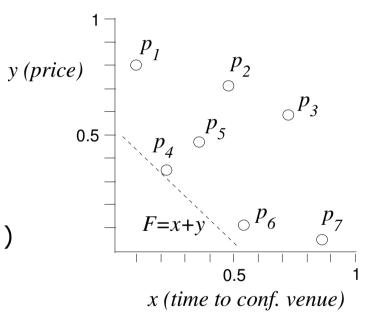
N. Mamoulis Aalborg University University of Hong Kong

Outline

- Motivations and applications
- Background
- Eager approach
- Lazy approach
- Experimental results
- Conclusions

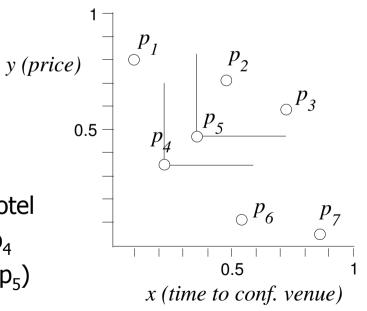
Top-k Query, Skyline Query

- D: set of points in multi-dimensional space \Re^d
- Top-k query
 - k points with the lowest F values
 - Top-2: p₄, p₆
 - Require a ranking function
 - Result affected by scales of dimensions
- Skyline query
 - p>p': (\exists i, p[i] < p'[i]) ∧ (\forall i, p[i] ≤ p'[i])
 - Points not dominated by any other point
 - Skyline: p₁, p₄, p₆, p₇
 - Uncontrolled result size (8)



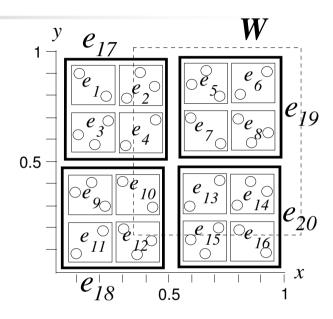
Top-k Dominating Query

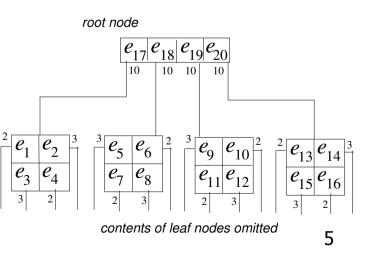
- Intuitive score function: $\mu(p) = | \{ p' \in D, p > p' \} |$
- Top-k dominating query
 - Also called k-dominating query [Papadias et. al. 2005]
 - Returns k points with the highest μ values
 - Top-2 dominating points: p₄(3), p₅(2)
- Advantages 🙂
 - Control of result size
 - No need to specify ranking function
 - Result independent of scales of dimensions
- Application: decision support
 - The query captures the most `significant' hotel
 - A conference participant attempts to book p₄
 - If p_4 is fully booked, then try the next one (p_5)



Related Work

- Spatial aggregation processing
 - E.g., count the number of points in a region
 - Aggregate R-trees [Papadias et. al. 2001]
 - Example: COUNT R-tree
 - Each entry is augmented with the COUNT of points in its subtree
 - Query: find the number of points in W
 - W contains the entry e₁₉
 - Increment the answer by COUNT(e₁₉), without accessing its subtree
 - Augmented values speed up the counting the process



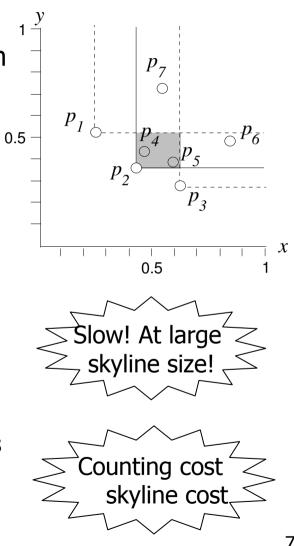


Top-k Dominating Query

- Processing of the top-k dominating query
- Naïve solution: Block Nested Loop join, compute the score of every point
 - Quadratic cost of input size
- Goal: develop efficient algorithm on indexed multi-dimensional points (R-tree)
 - Eager approach
 - Lazy approach

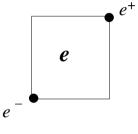
Existing Skyline-based Solution

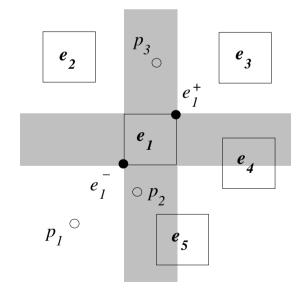
- [Papadias et. al. 2005] Apply a skyline algorithm iteratively to obtain k-dominating points
- Example: top-2 dominating query
- Iteration 1
 - Property: $\forall p,p' \in D, p > p' \Rightarrow \mu(p) > \mu(p')$
 - Find the skyline points
 - Count their scores (by accessing the tree)
 - Report the first result: p₂ (4)
- Iteration 2
 - Find the constrained skyline (gray region)
 - Region dominated by p₂ but not others (p₁, p₃)
 - Count their scores and compare them with points in all previous iterations
 - Report the next result: p₄ (2)



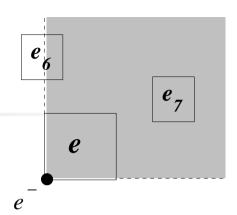
Our Observation

- The counting operation is the most important
 - Index the dataset by a COUNT R-tree
- Corner locations of an entry e
 - Lower corner e⁻, upper corner e⁺
- Three possible dominance relationships
 - Full dominance: $p_1 > e_1^-$
 - p₁ dominates all points in e₁
 - Partial dominance: $p_2 > e_1^+$ and $p_2 > e_1^-$
 - p₂ may dominate some points in e₁
 - No dominance: $p_3 \ge e_1^+$
 - p₃ dominates no points in e₁
- Similar dominance relationships between entries
 - e₁ fully dominates e₃
 - e₁ partially dominates e₄





Our Eager Approach



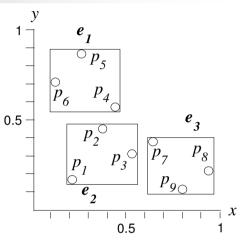
- **Tight-most** upper-bound score of an entry e: $\mu(e^{-})$
 - Tight-most in the sense that the subtree content of e is not used
 - Compute $\mu(e^-)$ by visiting nodes in the tree
- Traverse the nodes in the tree, in **descending order** of their upper bound scores
 - Use a max-heap H for organizing the entries to be visited in descending order of their *upper bound* scores
 - For each encountered entry e, compute its $\mu(e^-)$ immediately \checkmark
 - Keep the best-k points (with the highest scores) found so far
 - Terminates when the top entry of H has upper-bound score smaller than the current best-k points
- No need to compute the whole skyline!

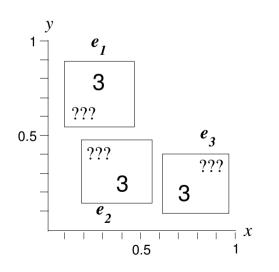
9

eager

Tight-most Upper-bound Score Necessary?

- It suffices to derive a loose upper-score bound μ^u(e), for a non-leaf entry e
- Eager algorithm is correct, as long as $\mu^{u}(e) \ge \mu(e^{-})$
- Develop the lightweight counting technique to compute µ^u(e), without accessing leaf nodes
 - Based on dominance relationships between entries
 - Much lower cost, relatively tight bound ©
- Comparison on the example
 - Tight-most bounds: $\mu(e_1^-)=3$, $\mu(e_2^-)=7$, $\mu(e_3^-)=3$
 - Loose bounds: $\mu^{u}(e_1)=3$, $\mu^{u}(e_2)=9$, $\mu^{u}(e_3)=3$
 - The child node of e₂ will still be accessed first
 - Ordering of entries approximately preserved (i.e., effective search ordering) ⁽²⁾





Our Lazy Approach

- Problem of the Eager approach
 - Some tree nodes may be visited multiple times (due to explicit counting of upper score bounds of entries)
- We then propose a Lazy approach
 - Visit each tree node at most **ONCE**!
 - Maintain lower μ^l(e) bound and upper μ^u(e) bound for each visited entry, initially μ^l(e)=0 and μ^u(e)=N
 - When a node is accessed, we refine the bounds of visited entries

Lazy Approach: Example

- Traversal order: assume that the node with highest upper bound is visited first
- Update bounds only based on visited entries –
- Access root node
 - $\mu(e_1) = [0,3], \ \mu(e_2) = [0,9], \ \mu(e_3) = [0,3]$
 - S={e₁, e₂, e₃}
- Access the child node of e₂
 - $\mu(p_1) = [1,7], \ \mu(p_2) = [0,3], \ \mu(p_3) = [0,3]$
 - Score bounds of e₃ unchanged
- S={e₃, p₁, p₂, p₃}

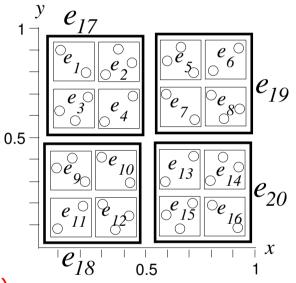
• •••••

 $\rightarrow \mu^{l}(e)$ and $\mu^{u}(e)$ both added by COUNT(e') [2] e partially dom. e': \rightarrow only $\mu^{u}(e)$ added by COUNT(e') e_1 \overline{op}_5 p_6 0.5 12 0.5

[1] e fully dominates e'

Traversal Order of Lazy Approach

- Performance of Lazy depends on its traversal order
- Intuitive order: choose the non-leaf entry (in S) with the highest upper bound score μ^u(e)
- Is this really the best traversal order?
- Example
 - Access ordering: root, e₁₈,
 - S={ e_{17} , e_{19} , e_{20} , e_{11} , e_{12} , e_{9} , e_{10} }
 - Current score bounds of e₁₁
 - Upper bound=40
 - Lower bound=10+2=12 (low, due to partial dominance)
 - Current best score=12, only few entries can be pruned!
- Objective of search
 - Examine entries of large upper bounds early
 - Eliminate partial dominance relationships of entries in S



Analysis of Partial Dominance

- Assume that α and β are two entries
- Let λ_{α} be the length projection of α along a dimension
- Pr(α and β do not intersect along a given dimension τ)

$$= 1 - (\lambda_{\alpha} + \lambda_{\beta})$$

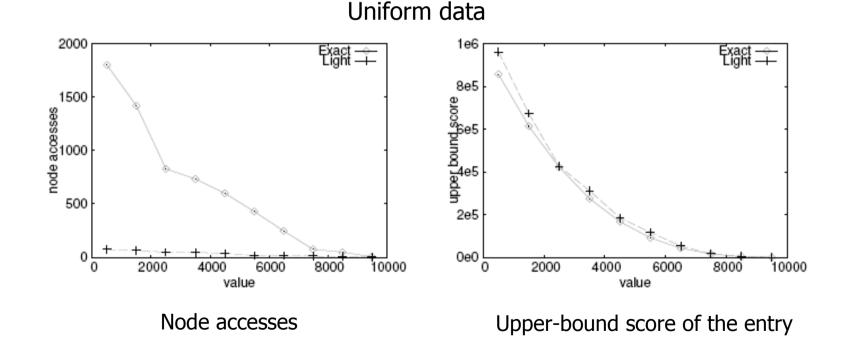
- Pr(α and β have partial dominance relationship)
 - = Pr(α and β intersect at least one dimension)
 - = $1 (1 (\lambda_{\alpha} + \lambda_{\beta}))^d$, where d is the number of dimensions
- Observation: the above probability is low when $(\lambda_{\alpha} + \lambda_{\beta})$ is small, i.e., both α and β are at low levels
- A better traversal ordering
 - Find non-leaf entries (in S) with the highest level
 - Among them, choose the one with the highest upper bound score

Experiments on Synthetic Data

- Algorithms
 - ITD (Existing Skyline-based method, plus optimizations)
 - LCG (Eager approach, with lightweight counting)
 - CBT (Lazy approach, with our novel traversal order)
- Synthetic datasets
 - UI (independent), CO (correlated), AC (anti-correlated)
- Default parameters values
 - Node page size of COUNT R-tree : 4K bytes
 - LRU buffer size (%): 5
 - Datasize N (million): 1
 - Data dimensionality d: 3
 - Result size k: 16

Counting Technique in Eager

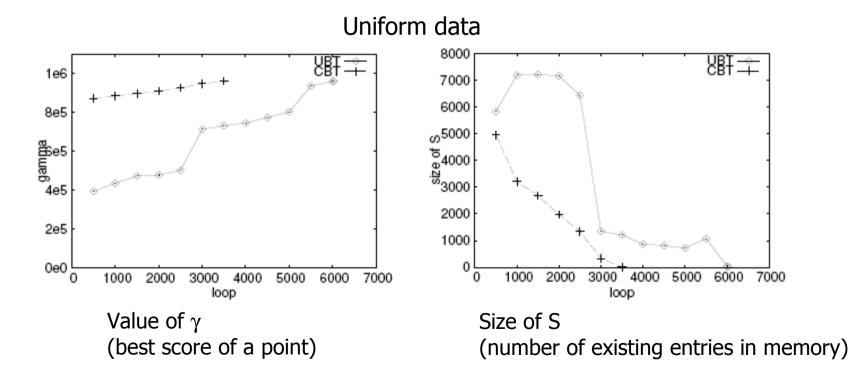
Compare the computation of **exact** upper-bound score and **loose** upper-bound score

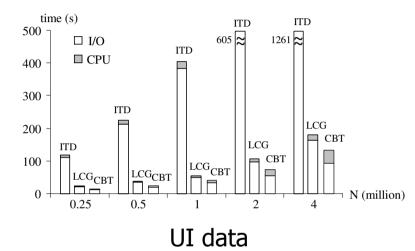


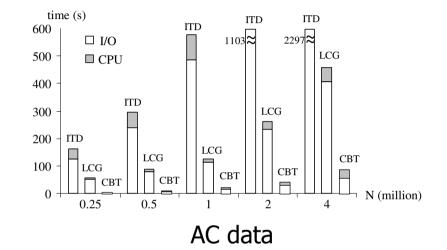
value ~ location of the entry e

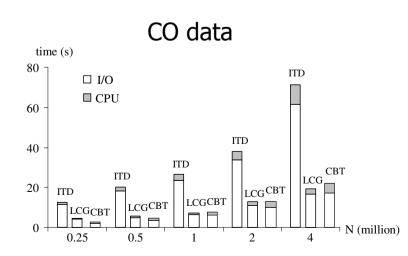
Traversal Order in Lazy

Compare the traversal of **upper-bound** order and **novel** order









Application of Top-k Dominating Points

Real datasets (sports statistics)

Identified by player name & year

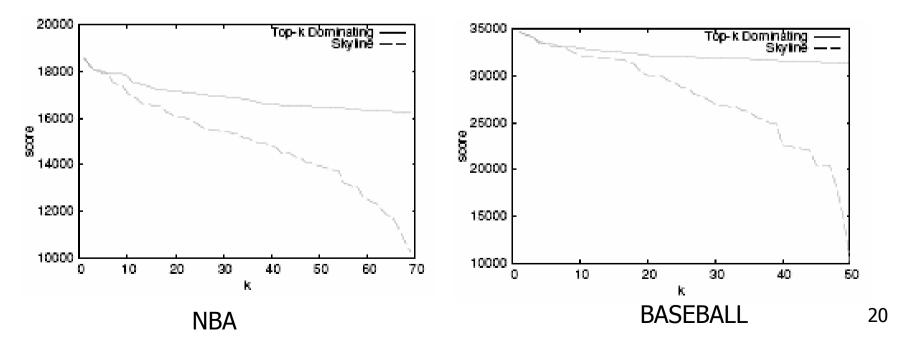
- NBA: 19112 players; BASEBALL: 36898 pitchers
- Apply top-k dominating queries to discover "top" players, without using any expert knowledge
- Results match the public's view of super-star players in NBA and BASEBALL

	Identified by player fiame & year			Att	ributes		
	Score	NBA Player / Year	gp	pts	reb	ast	
Top-5	18585	Wilt Chamberlain / 1967	82	1992	1952	702	
	18299	Billy Cunningham / 1972	84	2028	1012	530	
	18062	Kevin Garnett / 2002	82	1883	1102	495	
	18060	Julius Erving / 1974	84	2343	914	462	
	17991	Kareem Abdul-Jabbar / 1975	82	2275	1383	413	Not skyline points!
dominating							\sim points! \leq
points	Score	BASEBALL Pitcher / Year	w	g	sv	so	
	34659	Ed Walsh / 1912	27	62	10	254	
	34378	Ed Walsh / 1908	40	66	6	269	h /
	34132	Dick Radatz / 1964	16	79	29	181	
	33603	Christy Mathewson / 1908	37	56	5	259	
	33426	Lefty Grove / 1930	28	50	9	209] 19

Attributor

Skyline vs Top-k Dominating points

- Perform a skyline query, compute top-k dominating points by setting k to the skyline size (69 for NBA and 50 for BASEBALL)
- Plot their dominating scores in descending order
- Observations
 - Top-k dominating points have much higher scores than skyline points
 - Top-k dominating points are more informative to users



- Recognize the importance of top-k dominating query as a data analysis tool
- Our algorithms on R-tree
 - LCG (Eager approach, with lightweight counting)
 - CBT (Lazy approach, with a novel traversal order)
- CBT has the best performance, relatively stable performance across different data distribution
- Future work
 - For non-indexed data, algorithms based on hashing
 - Approximate top-k dominating result, with error guarantee

[Papadias et. al. 2001] D. Papadias, P. Kalnis, J. Zhang, and Y. Tao. Efficient OLAP Operations in Spatial Data Warehouses. In SSTD, 2001.

[Papadias et. al. 2005] D. Papadias, Y. Tao, G. Fu, and B. Seeger. Progressive Skyline Computation in Database Systems. TODS, 30(1):41–82, 2005.

Alternative solutions?

- Pre-computation possible?
 - Materialize the `score' of every point
 - Updates: change the 'score' of influenced points
 - Update cost is expensive for dynamic datasets
- Approximation by using dominating area?
 - DomArea(p_i) = Area dominated by the point p_i
 - Dominating area cannot provide bounds for μ
 - DomArea(p₁) > DomArea(p₄)
 - but $\mu(p_1)=1 < \mu(p_4)=2 !!!$
- Unlike the dominating area, computing µ value (or even its upper bound) requires accessing data
- Related work on skyline
 - Skyline on R-tree: BBS [Papadias et. al. 2005]
 - Best-first traversal (from the origin) of R-tree
 - Keep found skyline points for pruning others

