
1

Efficient Processing of Top-k Dominating
Queries on Multi-dimensional Data

M. L. Yiu

Aalborg University

N. Mamoulis

University of Hong Kong

2

Outline

� Motivations and applications

� Background

� Eager approach

� Lazy approach

� Experimental results

� Conclusions

3

Top-k Query, Skyline Query

� D: set of points in multi-dimensional space ℜd

� Top-k query

� k points with the lowest F values

� Top-2: p4, p6
� Require a ranking function �

� Result affected by scales of dimensions �

� Skyline query

� p>p’: (∃ i, p[i] < p’[i]) ∧ (∀ i, p[i] ≤ p’[i])

� Points not dominated by any other point

� Skyline: p1, p4, p6, p7
� Uncontrolled result size �

p

x (time to conf. venue)

0.5 1

0.5

1

y (price)

F=x+y

1 p
2

p
3

p
4

p
5

p
6

p
7

4

Top-k Dominating Query

� Intuitive score function: µ(p) = | { p’∈D, p>p’ } |

� Top-k dominating query

� Also called k-dominating query [Papadias et. al. 2005]

� Returns k points with the highest µ values

� Top-2 dominating points: p4 (3), p5 (2)

� Advantages ☺

� Control of result size

� No need to specify ranking function

� Result independent of scales of dimensions

� Application: decision support

� The query captures the most `significant’ hotel

� A conference participant attempts to book p4
� If p4 is fully booked, then try the next one (p5)

p

x (time to conf. venue)

0.5 1

0.5

1

y (price)
1 p

2

p
3

p
4

p
5

p
6

p
7

5

Related Work

� Spatial aggregation processing
� E.g., count the number of points in a region

� Aggregate R-trees [Papadias et. al. 2001]

� Example: COUNT R-tree

� Each entry is augmented with the COUNT of
points in its subtree

� Query: find the number of points in W

� W contains the entry e19
� Increment the answer by COUNT(e19),
without accessing its subtree

� Augmented values speed up the counting
the process

x
0.5 1

0.5

1

y

e
1 e

2

e
3 e

4

e
5

e
6

e
7

e
13e

9

e
10

e
11

e
12

e
14

e
15 e

16

e
8

e17

e18

e19

e20

W

e
1

e
2

contents of leaf nodes omitted

10

e
3

e
4

e
5

e
6

e
7

e
8

e
9

e
10

e
11

e
12

e
13

e
14

e
15

e
16

e
17

e
18

e
19

e
20

10 10 10

2 3

3 2

3 2

2 3

3 2

2 3

2 3

3 2

root node

6

Top-k Dominating Query

� Processing of the top-k dominating query

� Naïve solution: Block Nested Loop join,
compute the score of every point
� Quadratic cost of input size

� Goal: develop efficient algorithm on indexed
multi-dimensional points (R-tree)
� Eager approach

� Lazy approach

7

Existing Skyline-based Solution

� [Papadias et. al. 2005] Apply a skyline algorithm
iteratively to obtain k-dominating points

� Example: top-2 dominating query

� Iteration 1

� Property: ∀ p,p’∈D, p>p’ ⇒ µ(p)>µ(p’)

� Find the skyline points

� Count their scores (by accessing the tree)

� Report the first result: p2 (4)

� Iteration 2

� Find the constrained skyline (gray region)

� Region dominated by p2 but not others (p1, p3)

� Count their scores and compare them with points
in all previous iterations

� Report the next result: p4 (2)

x
0.5 1

0.5

1

y

p
2

p
3

p
1 p

6

p
7

p
4

p
5

Slow! At large
skyline size!

Counting cost
� skyline cost

8

Our Observation

� The counting operation is the most important

� Index the dataset by a COUNT R-tree

� Corner locations of an entry e

� Lower corner e–, upper corner e+

� Three possible dominance relationships

� Full dominance: p1 ≻ e1
–

� p1 dominates all points in e1

� Partial dominance: p2 ≻ e1
+ and p2 ⊁ e1

–

� p2 may dominate some points in e1

� No dominance: p3 ⊁ e1
+

� p3 dominates no points in e1

� Similar dominance relationships between entries

� e1 fully dominates e3
� e1 partially dominates e4

e+

e
_

e

+

_

p
1

p
3

p
2

e
1

e
2

e
3

e
4

e
5

e
1

e
1

9

Our Eager Approach

� Tight-most upper-bound score of an entry e: µ(e–)

� Tight-most in the sense that the subtree content of e is not used

� Compute µ(e–) by visiting nodes in the tree

� Traverse the nodes in the tree, in descending order of their
upper bound scores

� Use a max-heap H for organizing the entries to be visited in
descending order of their upper bound scores

� For each encountered entry e, compute its µ(e–) immediately

� Keep the best-k points (with the highest scores) found so far

� Terminates when the top entry of H has upper-bound score
smaller than the current best-k points

� No need to compute the whole skyline!

e
_

e

e
6

e
7

eager

10

Tight-most Upper-bound Score
Necessary?

� It suffices to derive a loose upper-score bound
µu(e), for a non-leaf entry e

� Eager algorithm is correct, as long as µu(e) ≥ µ(e–)

� Develop the lightweight counting technique to
compute µu(e), without accessing leaf nodes

� Based on dominance relationships between entries

� Much lower cost, relatively tight bound ☺

� Comparison on the example

� Tight-most bounds: µ(e1
–)=3, µ(e2

–)=7, µ(e3
–)=3

� Loose bounds: µu(e1)=3, µ
u(e2)=9, µ

u(e3)=3

� The child node of e2 will still be accessed first

� Ordering of entries approximately preserved (i.e.,
effective search ordering) ☺

x
0.5 1

0.5

1

y
e

1

e
2

e
3

p
4

p
5

p
6

p
7

p
8

p
9

p
3

p
2

p
1

x
0.5 1

0.5

1

y
e

1

e
2

e
3

3

3
3

???

???
???

11

Our Lazy Approach

� Problem of the Eager approach
� Some tree nodes may be visited multiple times (due to
explicit counting of upper score bounds of entries)

� We then propose a Lazy approach
� Visit each tree node at most ONCE!

� Maintain lower µl(e) bound and upper µu(e) bound for
each visited entry, initially µl(e)=0 and µu(e)=N

� When a node is accessed, we refine the bounds of
visited entries

12

Lazy Approach: Example

� Traversal order: assume that the node with
highest upper bound is visited first

� Update bounds only based on visited entries

� Access root node

� µ(e1)=[0,3], µ(e2)=[0,9], µ(e3)=[0,3]

� S={e1, e2, e3}

� Access the child node of e2
� µ(p1)=[1,7], µ(p2)=[0,3], µ(p3)=[0,3]

� Score bounds of e3 unchanged

� S={e3, p1, p2, p3}

� ……

x
0.5 1

0.5

1

y
e

1

e
2

e
3

p
4

p
5

p
6

p
7

p
8

p
9

p
3

p
2

p
1

[1] e fully dominates e’
� µl(e) and µu(e) both
added by COUNT(e’)

[2] e partially dom. e’:
� only µu(e) added by
COUNT(e’)

13

Traversal Order of Lazy Approach

� Performance of Lazy depends on its traversal order

� Intuitive order: choose the non-leaf entry (in S)
with the highest upper bound score µu(e)

� Is this really the best traversal order?

� Example
� Access ordering: root, e18, ……

� S={e17, e19, e20, e11, e12, e9, e10}

� Current score bounds of e11
� Upper bound=40

� Lower bound=10+2=12 (low, due to partial dominance)

� Current best score=12, only few entries can be pruned!

� Objective of search
� Examine entries of large upper bounds early

� Eliminate partial dominance relationships of entries in S

x
0.5 1

0.5

1

y

e
1 e

2

e
3 e

4

e
5

e
6

e
7

e
13e

9

e
10

e
11

e
12

e
14

e
15 e

16

e
8

e17

e18

e19

e20

14

Analysis of Partial Dominance

� Assume that α and β are two entries

� Let λα be the length projection of α along a dimension

� Pr(α and β do not intersect along a given dimension τ)

= 1 – (λα + λβ)

� Pr(α and β have partial dominance relationship)

= Pr(α and β intersect at least one dimension)

= 1 – (1 – (λα + λβ))
d, where d is the number of dimensions

� Observation: the above probability is low when (λα + λβ) is small,
i.e., both α and β are at low levels

� A better traversal ordering

� Find non-leaf entries (in S) with the highest level

� Among them, choose the one with the highest upper bound score

λα λβ

1

15

Experiments on Synthetic Data

� Algorithms
� ITD (Existing Skyline-based method, plus optimizations)

� LCG (Eager approach, with lightweight counting)

� CBT (Lazy approach, with our novel traversal order)

� Synthetic datasets
� UI (independent), CO (correlated), AC (anti-correlated)

� Default parameters values
� Node page size of COUNT R-tree : 4K bytes

� LRU buffer size (%): 5

� Datasize N (million): 1

� Data dimensionality d: 3

� Result size k: 16

16

Counting Technique in Eager

Node accesses Upper-bound score of the entry

Uniform data

value ~ location of the entry e

Compare the computation of
exact upper-bound score and
loose upper-bound score

17

Traversal Order in Lazy

Value of γ
(best score of a point)

Size of S
(number of existing entries in memory)

Uniform data

Compare the traversal of
upper-bound order and
novel order

18

I/O cost vs N

UI data

CO data

AC data

N (million)

ITD

time (s)

I/O

CPU

ITD

ITD

ITD

CBTLCG CBTLCG CBT
LCG

CBT

LCG

605 1261

0

100

200

300

400

500

0.25 0.5 1 2 4

ITD

CBT

LCG

~~ ~~

N (million)

ITD

time (s)

I/O

CPU

ITD

ITD

ITD

CBTLCG
CBTLCG

CBTLCG

CBTLCG

ITD

CBT
LCG

0

20

40

60

80

0.25 0.5 1 2 4

N (million)

ITD

time (s)

I/O

CPU

ITD

ITD
ITD

CBT

LCG

CBT

LCG

CBT

LCG

CBT

LCG

1103 2297

ITD

CBT

LCG

0

100

200

300

400

500

600

0.25 0.5 1 2 4

~~ ~~

19

Application of Top-k Dominating Points

Top-5
dominating
points

� Real datasets (sports statistics)
� NBA: 19112 players; BASEBALL: 36898 pitchers

� Apply top-k dominating queries to discover “top” players,
without using any expert knowledge

� Results match the public’s view of super-star players in
NBA and BASEBALL

Not skyline
points!

AttributesIdentified by player name & year

20

Skyline vs Top-k Dominating points

NBA BASEBALL

� Perform a skyline query, compute top-k dominating points by
setting k to the skyline size (69 for NBA and 50 for BASEBALL)

� Plot their dominating scores in descending order

� Observations
� Top-k dominating points have much higher scores than skyline points

� Top-k dominating points are more informative to users

21

Conclusions

� Recognize the importance of top-k dominating query
as a data analysis tool

� Our algorithms on R-tree

� LCG (Eager approach, with lightweight counting)

� CBT (Lazy approach, with a novel traversal order)

� CBT has the best performance, relatively stable
performance across different data distribution

� Future work
� For non-indexed data, algorithms based on hashing

� Approximate top-k dominating result, with error guarantee

22

References

[Papadias et. al. 2001] D. Papadias, P. Kalnis, J. Zhang,
and Y. Tao. Efficient OLAP Operations in Spatial Data
Warehouses. In SSTD, 2001.

[Papadias et. al. 2005] D. Papadias, Y. Tao, G. Fu, and B.
Seeger. Progressive Skyline Computation in Database
Systems. TODS, 30(1):41–82, 2005.

23

Alternative solutions?

� Pre-computation possible? �

� Materialize the `score’ of every point

� Updates: change the ‘score’ of influenced points

� Update cost is expensive for dynamic datasets

� Approximation by using dominating area? �

� DomArea(pi) = Area dominated by the point pi
� Dominating area cannot provide bounds for µ

� DomArea(p1) > DomArea(p4)

� but µ(p1)=1 < µ(p4)=2 !!!

� Unlike the dominating area, computing µ value (or
even its upper bound) requires accessing data

� Related work on skyline

� Skyline on R-tree: BBS [Papadias et. al. 2005]

� Best-first traversal (from the origin) of R-tree

� Keep found skyline points for pruning others

x
0.5 1

0.5

1
y

p
2

p
3

p
1 p

6

p
7

p
4

p
5

