Materialized Views in Probabilistic Databases for Information Exchange and Query Optimization

Christopher Re and Dan Suciu University of Washington

Motivating Example: Optimization

Single Slide Summary

- Renewed interest in probabilistic data
 - Trio, MayBMS, Maryland, Purdue, UW
 - Classical : Integration, record linkage, etc.
 - Emerging il ike "Similarity Scores"
- To When can we get the benefits

DBs

- F of materialized views in prob
- BedBs?maintainability
- The Catch: Every view using lineage, but...
 Correlations cause lineage to become large

Overview

- Motivation and Background
- Technical Meat
- Experiments
- Conclusion

Probabilistic DBs **Restaurant Example**

- Block Independent Disjoint (BID)
- Popular: Barbara92, Trio, Mystiq, Green et al.
- Query Evaluation
 - Safe Queries
 - Multisimulation

Restaurant Example

Chef	Restaurant	Ρ		Chef	Dish	Rate	Р		
TD	D. Lounge	0.9	p1	TD	Crab	High	0.8	q 1	
TD	P .Kitchen	0.7	p2	TD	Lamb	High	0.3	q2	,
W(<u>Chef,Restaurant</u>) <i>WorksAt</i> Lineage could be large									
Restaurant Dish Reprocessing lineage is expensive									

Crab

Crab

Lamb

"Chefs who serve a highly rated dish" τησι σείνες α πιγπιγ τάτεα αισπ

$V(\underline{c},\underline{r}) := W(\underline{c},\underline{r}), S(\underline{r},\underline{d}), R(\underline{c},\underline{d}, High)$

Chef Restaurant Ρ 0.72 p1³q1 TD D. Lounge 0.602 p2*(1 - (1 -q1)(1-q2)) P.Kitchen TD

S(Restaurant, Dish) Serves

D. Lounge

P. Kitchen

P. Kitchen

Understand w.o.	
"lineage"?	

Views and Query Semantic

<u>Views</u>: Conjunctive, Constants $V(H) := g_1, \ldots, g_n$ <u>DB Semantics</u>: Possible Worlds

$$\mathcal{W} = \{W_1, \dots, W_n\} \quad \mu : \mathcal{W} \to [0, 1] \quad \sum_{W \in \mathcal{W}} \mu(W) = 1$$

View Semantics

 $\mu(V(t)) \stackrel{\text{def}}{=} \sum_{W:W \models V(t)} \mu(W) \qquad \text{Add worlds, if V is true}$

 $O(V) = \{(t, p) \mid \mu(V(t)) = p > 0\}$ Output of V

Overview

- Motivation and Background
- Technical Meat
- Experiments
- Conclusion

Technical Question: Representation

- Is output of V(H) on any BID database a BID table?
 - Represent with Schema + marginal probs.
- Yes, if there is $K \subseteq H$ s.t.
 - V is K-"block independent" (

V is K-"disjoint in blocks"

K-"block Independence"

All tuples from distinct "blocks"

10

Multiply probs p1 * q2

<u>Intuition</u>: Fails if tuples in different blocks *depend* on same tuple

 $I \subseteq O(V) \text{ s.t. } s, t \in I \ s[K] = t[K] \implies s = t$ $\mu(\bigwedge_{s \in I} V(s[H])) = \prod_{s \in I} s[P]$

Critical tuples

Preliminary notion

all tuples are disjoint critical

 <u>Def</u>: t is a *disjoint critical tuple* for a Boolean view
 V() if exists W

$$W \models V()$$
, but $W - \{t\} \not\models V()$

a world, W

V() :- W(<u>'TD','DL'</u>),S('DL',d),R(<u>'TD',d</u>,'High')

Doubly Critical tuples

- property of view V on any DB
- Exists t1 critical for V(a) & t2 critical for V(b)
 t1 and t2 in same block in a prob. relation

<u>Thm</u>: A conjunctive view V is K-Block independent iff no K-doubly critical tuples

Complexity...and a Practical test

• <u>Thm</u>: Deciding if a view is block independent is decidable and Π_2^P – Complete

in whu, practical test almost always	s works
V(c,r) := W(c,r),S(r,a),K(c,a, rigri) K=	={C,F}
V(c) := W(c,r),S(r,d),R(c,d,'High') K=	={C}

- Test: "Can a prob tuple unify with different heads?"
 - If so, not block independent
- <u>Thm</u>: If view has no self-joins, test is complete.

Additional Results

- How to pick K in the view
- Dealing with disjointness
 "Disjoint in blocks"
- Partial representability.
 - Some views not representable,
 - But a query on a view is still correct
 - In general, hard, but practical test
- Sets of Views

Overview

Motivation and Background

- Technical Meat
- Experiments
- Conclusion

Experiments: Wild Queries, % rep.

- Three Datasets
 - iLike
 - SQL Server
 - Adventure works
 - Northwinds

96% partially 63% representable

99.5% of iLike workload use representable views

Conclusion

- Materialized views for probabilistic data
 - Problem: Retain classical benefits of views
- Contributions
 - A complete theoretical solution
 - Practical solutions
- Verified Experimentally
 - Views exist in practice
 - Query processing benefits, as expected

Experiments

- TPC-H data
- Q5 unsafe query.
- Key
 - PTPC: w.o prob
 - MC: Monte Carlo
 - LIN: w. lineage
- NOLIN: Our technique
 NB: LIN not an End-to-End running time. So needs another ~ MC additional seconds!

Information Exchange

Chef	Restaurant	Ρ
TD	D. Lounge	0.9
TD	P.Kitchen	0.7
MS	C.Bistro	0.8

W(Chef,Restaurant) WorksAt

Restuarant	Dish	
D. Lounge	Crab	
P. Kitchen	Crab	
P. Kitchen	Lamb	
C. Bistro	Fish	

Chef Dish Rate Ρ Crab High TD 0.8 Med 0.1 Low 0.1 High 0.3 TD Lamb Low 0.7 Fish High MS 0.6 0.3 Low

21

R(Chef, Dish, Rate) Rated

V(c,r) := W(c,r),S(r,d),R(c,d,'High')

S(Restaurant, Dish) Serves

Technical Question 2: Partially representable

- Question 2: Given a BID database, a view V and a query Q, can we answer the result of V(D) from Q?
- Show a query that is partially representable and one that correctly uses it, and one that does not.
- Does not define a unique probability distribution