Materialized Views in Probabilistic Databases for Information Exchange and Query Optimization

Christopher Re and Dan Suciu University of Washington

Motivating Example: Optimization

Single Slide Summary

- Renewed interest in probabilistic data
- Trio, MayBMS, Maryland, Purdue, UW
- Classical: Integration, record linkage, etc.
- Emeraina-ilike "Similaritv Scores"
- To When can we get the benefits DBs
- F of materialized views in prob
- BeDBs?
- The Catch: Every view using lineage, but...
- Correlations cause lineage to become large

Overview

- Motivation and Background
- Technical Meat
- Experiments
- Conclusion

Probabilistic DBs Restaurant Example

- Block Independent Disjoint (BID)
- Popular: Barbara92, Trio, Mystiq, Green et al.
- Query Evaluation
- Safe Queries
- Multisimulation

Chef	Dish	Rate	P
TD	Crab	High	0.8
		Med	0.1
		Low	0.1
TD	Lamb	High	0.3
		Low	0.7

Rating(Chef,Dish; Rating)

Value Attributes

Restaurant Example

Chef	Restaurant	P	
TD	D. Lounge	0.9	p1
TD	P.Kitchen	0.7	p2

Chef	Dish	Rate	P	
TD	Crab	High	0.8	q1
TD	Lamb	High	0.3	q2

W(Chef,Restaurant) WorksAt Lineage could be large

Restaurant	Dish
D. Lounge	Crab
P. Kitchen	Crab
P. Kitchen	Lamb

S(Restaurant,Dish) Serves

Understand w.o. "lineage"?

Reprocessing lineage is expensive
"Chefs who serve a highly rated dish"

Chef	Restaurant	p	
TD	D. Lounge	0.72	$\mathrm{p} 1 \times \mathrm{q} 1$
TD	P.Kitchen	0.602	$\mathrm{p} 2 *(1-(1-\mathrm{q} 1)(1-\mathrm{q} 2))$

Views and Query Semantic

Views: Conjunctive, Constants $V(H):-g_{1}, \ldots, g_{n}$
DB Semantics: Possible Worlds

$$
\mathcal{W}=\left\{W_{1}, \ldots, W_{n}\right\} \quad \mu: \mathcal{W} \rightarrow[0,1] \sum_{W \in \mathcal{W}} \mu(W)=1
$$

View Semantics

$$
\begin{gathered}
\mu(V(t)) \stackrel{\text { def }}{=} \sum_{W: W \equiv V(t)} \mu(W) \quad \text { Add worlds, if } V \text { is true } \\
O(V)=\{(t, p) \mid \mu(V(t))=p>0\} \quad \text { Output of } V
\end{gathered}
$$

Overview

- Motivation and Background
- Technical Meat
- Experiments
- Conclusion

Technical Question: Representation

- Is output of $\mathrm{V}(\mathrm{H})$ on any BID database a BID table?
- Represent with Schema + marginal probs.
- Yes, if there is $K \subseteq H$ s.t.
$\cdot \mathrm{V}$ is K-"block independent" this talk
- V is K-"disjoint in blocks"

K-"block Independence"

-All tuples from distinct "blocks" Multiply probs p 1 * q 2

Intuition: Fails if tuples in different blocks depend on same tuple

$$
I \subseteq O(V) \text { s.t. } s, t \in I s[K]=t[K] \Longrightarrow s=t
$$

$$
\mu\left(\bigwedge_{s \in I} V(s[H])\right)=\prod_{s \in I} s[P]
$$

Critical tuples

- Preliminary notion
all tuples are disjoint critical
- Def: t is a disjoint critical tuple for a Boolean view $\mathrm{V}($) if exists W

$$
W \vDash V() \text {, but } W-\{t\} \not \models V()
$$

V() :- W(TD','DL'),S('DL',d),R('TD',d,'High')

Chef	Rest	Rest	Dish	Chef	'ic'	Rate
TD	DL	D. L	Crab	TD	ra	High
W(Chef, Restaurant)		S(Restaurant,Dish)		R(Chef, Dish,Rate)		

Doubly Critical tuples

- property of view V on any $D B$
- Exists t 1 critical for $\mathrm{V}(\mathrm{a})$ \& t 2 critical for $\mathrm{V}(\mathrm{b})$
- t1 and t2 in same block in a prob. relation

Thm: A conjunctive view V is K-Block independent iff no K-doubly critical tuples

Complexity...and a Practical test

- Thm: Deciding if a view is block independent is decidable and Π_{2}^{P} - Complete

In wild, practical test almost always works

$$
\begin{array}{ll}
V(c):-W(\underline{c}, r), S(r, d), R\left(\underline{c}, d,{ }^{\prime} H^{\prime}\right.
\end{array}
$$

- Test: "Can a prob tuple unify with different heads?"
- If so, not block independent
- Thm: If view has no self-joins, test is complete.

Additional Results

- How to pick K in the view
- Dealing with disjointness
- "Disjoint in blocks"
- Partial representability.
- Some views not representable,
- But a query on a view is still correct
- In general, hard, but practical test
- Sets of Views

Overview

- Motivation and Background
- Technical Meat
- Experiments
- Conclusion

Experiments: Wild Queries, \% rep.

- Three Datasets
- iLike
- SQL Server
- Adventure works
- Northwinds

96\% partially 63\% representable
99.5\% of iLike workload use representable views

Experiments

- TPC-H data
- Q10

Conclusion

- Materialized views for probabilistic data
- Problem: Retain classical benefits of views
- Contributions
- A complete theoretical solution
- Practical solutions
- Verified Experimentally
- Views exist in practice
- Query processing benefits, as expected

Experiments

- TPC-H data
- Q5 unsafe query.
- Key
- PTPC: w.o prob
- MC: Monte Carlo
- LIN: w. lineage
- NOLIN: Our technique

NB: LIN not an End-to-End running time. So needs another ~MC additional seconds!

Information Exchange

Chef	Restaurant	P
TD	D. Lounge	0.9
TD	P.Kitchen	0.7
MS	C.Bistro	0.8
W(Chef, Restaurant)		WorksAt

Chef	Dish	Rate	P
TD	Crab	High	0.8
		Med	0.1
		Low	0.1
TD	Lamb	High	0.3
		Low	0.7
MS	Fish	High	0.6
		Low	0.3

R(Chef,Dish,Rate) Rated

P. Kitchen	Lamb
C. Bistro	Fish

V(c,r) :- W(c,r),S(r,d),R(c,d,’High’)

S(Restaurant,Dish) Serves

Technical Question 2: Partially representable

- Question 2: Given a BID database, a view V and a query Q , can we answer the result of $V(D)$ from Q ?
- Show a query that is partially representable and one that correctly uses it, and one that does not.
- Does not define a unique probability distribution

