
On the Correctness
Criteria of Fine-Grained
Access Control in
Relational Databases

Qihua Wang, Ting Yu, Ninghui Li

Jorge Lobo, Elisa Bertino

Keith Irwin, Ji-Won Byun

Outline

� Introduction

� Correctness Criteria

� A Fine-Grained Access Control Solution

� Implementation and Experiments

� Conclusions

Introduction

� What is fine-grained access control?
� Row-level or cell-level access control

� In contrast to table-level

� Why fine-grained access control?
� Privacy: access respects individual preferences

� How to implement?
� Application-level

� Database-level
� Hard to bypass

� Consistency between various applications

Database

Applications

Introduction

� Existing DB-Level approaches

� VPD in Oracle

� Label-based access control in DB2

� Limiting disclosure in Hippocratic databases

� Fine-grained access control affects query results

� No formal notion of correctness

� Could lead to incorrect or misleading query results

Example

� Q1 = SELECT Name, Phone FROM T

� Q2 = SELECT Name, Phone FROM T WHERE Age≥25

� Q = Q1 – Q2

� Select information of customers younger than 25

30 Mary C005

44444 21 Jack C004

33333Nick C003

2222229 Mary C002

11111 32 Linda C001

PhoneAgeNameID

34

55555

NULL

NULL

Example

� Q1 = SELECT Name, Phone FROM T

NULLMary

44444 Jack

33333Nick

22222Mary

11111 Linda

PhoneName

Example

� Q2 = SELECT Name, Phone FROM T WHERE Age≥25

NULLMary

22222Mary

11111Linda

PhoneName

NULL30 Mary C005

44444 21 Jack C004

33333NULLNick C003

22222 29 Mary C002

11111 32 Linda C001

PhoneAgeNameID

Example

� Q = Q1 – Q2

NULLMary

44444 Jack

33333 Nick

22222 Mary

11111 Linda

PhoneName

_

NULLMary

22222Mary

11111Linda

PhoneName

=
44444 Jack

33333 Nick

PhoneName

Example

� Q1 = SELECT Name, Phone FROM T

� Q2 = SELECT Name, Phone FROM T WHERE Age≥25

� Q = Q1 – Q2

� Select information of customers younger than 25

5555530 Mary C005

4444421JackC004

33333Nick C003

22222 29 Mary C002

11111 32 Linda C001

PhoneAgeNameID

34

Example

� Without fine-grained access control

� With fine-grained access control

44444 Jack

33333 Nick

PhoneName

44444 Jack

PhoneName

Outline

� Introduction

� Correctness Criteria

� A Solution

� Implementation and Experiments

� Conclusions

Intuitive Explanation

� Sound

� Be consistent with when there is no access control

� Secure

� Do not leak information not allowed by policy

� Maximum

� Return as much correct information as allowed by policy

Formal Definitions

� D: Database

� P: Disclosure policy

� Determine what information may be disclosed

� Defines an equivalence relation among database states

� D ≡P D’

30

25

Age

888Bob

111Alice

PhoneName

≡
P

30

33

Age

666Bob

111Alice

PhoneName

Formal Definitions

� R: Relation

� A cell may take the value unauthorized

� A tuple is subsumed by another: t1 t2
� <x1…xn > <y1…yn > if and only if

xi = yi or xi = unauthorized

� E.g. <Alice, unauthorized> <Alice, 28>

� A relation is subsumed by another: R1 R2

� Exists a mapping f: R1 R2

� For every tuple t in R1, t f(t)

Formal Definitions

� R: Relation

� Q: Query

� A: Query processing algorithm that takes

disclosure policy into account

� A(D,P,Q): Answer to Q on D with policy P

� S: Standard query processing algorithm

� S(D,Q): Answer to Q on D without access

control

Sound

� May return less information due to access control

� Should not return wrong information that is not in

standard answer

44444 Jack

PhoneName

44444 Jack

NULL Nick

PhoneName

Secure

� Answer does not depend on information that is

not disclosed by policy

� Implies stronger security guarantee

� Multi-user collusion resistance

� Multi-query resistance

Maximum

� No other sound and secure answer that contains

more information than the answer returned by A

Given any (D, P, Q), for any relation R such that

We have

Correctness Criteria

� Any query processing algorithm that provides

fine-grained access control should be sound and

secure, and strive to be maximum.

� Many existing approaches are

� Secure

� Not sound

� Not maximum

� Too little information is returned in certain cases

Outline

� Introduction

� Correctness Criteria

� A Solution

� Implementation and Experiments

� Conclusions

Solution

� A sound query evaluation algorithm

� Low evaluation Q– : tuples definitely correct

� High evaluation Q– : tuples possibly correct

� Q1 – Q2 is evaluated as Q1– – Q2
–

� A variable-based labeling mechanism

� Use variables instead of NULL to hide information

� Secure

� Preserves more information

Variable-Based Labeling Mechanism

� Existing approaches: replace every piece of

unauthorized information with NULL

� Too much information is lost

� Unknown: NULL = 100?, NULL = NULL?

Alice

AgeName

Q = SELECT Name FROM T WHERE Age = Age

25NULL

Result is an EMPTY relation!

Variable-Based Labeling Mechanism

� Information useful in query evaluation without

leaking concrete value

� A cell equals to itself

� Cells in primary key take different values

� Certain linkages through foreign key

� Information of the same person stored in two tables so as to
comply with normal forms

� Our approach: replace unauthorized information

with variables

Two Types of Variables

� Type-1 variable: v

� Variable is equivalent to itself

� True: v1 = v1, v2 = v2 (in contrast to NULL ≠ NULL)

� Unknown when compared with other variables or

constants

� Unknown: v1 = v2?, v1 = 100?

� Type-2 variable: <name, domain>

� In the same domain, compare names

� True: <a, 1> = <a, 1>, <a, 1> ≠ <b, 1>

� Otherwise, unknown

� Unknown: <a, 1> = <a, 2>?, <a, 1> ≠ <b, 2>?

� Unknown: <a, 1> = v1?, <a, 1> = 100?

Example

19Carol3333

35Bob2222

19Alice1111

AgeNameSSN

NULLCarolNULL

35BobNULL

NULLAliceNULL

AgeNameSSN

Based tables

Traditional labeling approach

Dancer3333

Secretary3333

Professor2222

Waiter1111

Student1111

OccupationSSN

DancerNULL

SecretaryNULL

ProfessorNULL

WaiterNULL

StudentNULL

OccupationSSN

v2Carol<c,1>

35Bob<b,1>

v1Alice<a,1>

AgeNameSSN

Dancer<c,1>

Secretary<c,1>

Professor<b,1>

Waiter<a,1>

Student<a,1>

OccupationSSN

Our approach

Variable-Based Labeling Mechanism

� Provides security

� Variables hide concrete values

� Makes it possible to return more information

� Strive for maximum

� Does not deal with sound

A Sound Query Evaluation Algorithm

� Low evaluation: Q-

� Contains tuples that are definitely correct

� High evaluation: Q-

� Contains tuples that are possibly correct

� Tuples <x1,…xn> and <y1,…yn> are compatible if

it is possible make to them identical by setting

the values of variables

� Different type-2 variables in the same domain must

have different values

A Sound Query Evaluation Algorithm

� Q = R: Q– = Q– = L(R)

� Q =σcQ1: Q– =σcQ1– and Q– =σc V IsUn(c)Q1
–

� Q =πa1…Q1: Q– = πa1…Q1– and Q– = πa1…Q1
–

� Q = Q1×Q2: Q– = Q1–×Q2– and Q– = Q1
–×Q2

–

� Q = Q1 U Q2: Q– = Q1– U Q2– and Q- = Q1
– U Q2

–

� Q = Q1 – Q2

� Q– contains all tuples t in Q1– such that no tuple in Q2
–

is compatible with t

� Intuitively, Q– = Q1– – Q2
–

� Q– contains all tuples that are in Q1
– but not in Q2–

� Intuitively, Q– = Q1
– – Q2–

A Sound and Secure Solution

� Given any query Q
1. Perform variable-based labeling

2. Compute and return Q–

� Sound and secure

� Returns at least as much information as existing

algorithms for fine-grained access control

Example

� Q1 = SELECT Name, Phone FROM T

� Q2 = SELECT Name, Phone FROM T WHERE Age≥25

� Q3 = SELECT Name, Phone FROM T WHERE Age < 30

� Q = Q1 – (Q2 – Q3)

� Select information of customers younger than 30

30 Mary C005

44444 21 Jack C004

33333Nick C003

22222 29 Mary C002

11111 32 Linda C001

PhoneAgeNameID

34

55555

v1

v3

Example

� Given Q = Q1 – (Q2 – Q3), compute Q–

� Compute Q1–

� Compute (Q2 – Q3)
–

� Compute Q2
– and Q3 –

Example

� Q1 = SELECT Name, Phone FROM T

� Q1– :

v3Mary

44444 Jack

33333Nick

22222 Mary

11111 Linda

PhoneName

Example

� Q2 = SELECT Name, Phone FROM T WHERE Age≥25

� Q2
– :

v3Mary

33333Nick

22222 Mary

11111 Linda

PhoneName

v330 Mary C005

44444 21 Jack C004

33333v1Nick C003

22222 29 Mary C002

11111 32 Linda C001

PhoneAgeNameID

Example

� Q3 = SELECT Name, Phone FROM T WHERE Age < 30

� Q3– :

v330 Mary C005

44444 21 Jack C004

33333v1Nick C003

22222 29 Mary C002

11111 32 Linda C001

PhoneAgeNameID

44444Jack

22222Mary

PhoneName

Example

� (Q2 – Q3)
–

v3Mary

33333Nick

22222 Mary

11111 Linda

PhoneName

44444Jack

22222Mary

PhoneName

_ =

v3Mary

33333Nick

11111 Linda

PhoneName

Q2
–

Q3–

Example

� Q– = (Q1– (Q2 – Q3))–

v3Mary

44444 Jack

33333Nick

22222 Mary

11111 Linda

PhoneName

_

v3Mary

33333Nick

11111 Linda

PhoneName

=
44444 Jack

PhoneName

(Q2 – Q3)
–

Q1–

Final result

Example

� Without fine-grained access control

� Hippocratic database approach

22222 Mary

44444 Jack

33333Nick

PhoneName

22222 Mary

44444 Jack

PhoneName

Outline

� Introduction

� Correctness Criteria

� A Solution

� Implementation and Experiments

� Conclusions

Implementation Approaches

� Query modification

� Pros: can be applied in existing DBMS

� Cons: performance penalty

� Modify DBMS query evaluation engines

� Pros: better performance

� Cons: require source codes

Query Modification

� Q = SELECT Name, Age FROM T WHERE Age≥25

� Revision:

SELECT Name, Age FROM

(SELECT CASE WHEN Cname

THEN Name ELSE NULL END AS Name,

CASE WHEN Cage

THEN Age ELSE NULL END AS Age

FROM T)

WHERE Age≥25

Query Modification

� Q1 = SELECT a1,…an FROM T1

� Q2 = SELECT a1,…an FROM T2

� Q = Q1 – Q2

� Revision:

SELECT a1,…an FROM T1

MINUS

SELECT a1,…an FROM T1, T2 WHERE

((T1.a1 = T2.a1) OR (T1.a1 IS NULL) OR (T2.a1 IS NULL))

AND … AND

((T1.an = T2.an) OR (T1.an IS NULL) OR (T2.an IS NULL))

Query Modification

� Use CASE statements to replace each piece of

unauthorized information with NULL

� Notice: existing DBMS do not support variables

� Use JOIN operation to handle MINUS

� Tuple compatibility not directly supported by DBMS

Query Modification

� Q1 = SELECT a1,…an FROM T1

� Q2 = SELECT a1,…an FROM T2

� Q = Q1 – Q2

� Revision of Q:

SELECT a1,…an FROM T1

MINUS

SELECT a1,…an FROM T1, T2 WHERE

((T1.a1 = T2.a1) OR (T1.a1 IS NULL) OR (T2.a1 IS NULL))

AND … AND

((T1.an = T2.an) OR (T1.an IS NULL) OR (T2.an IS NULL))

Experiments

� Objectives

� Performance when evaluate queries with minus

� Factors that affect performance

Parameters

� Table size

� Number of tuples

� Selectivity

� Percentage of selected tuples in a table

� Sensitivity

� Number of selected attributes that are governed by policy

� Uniformity

� Expected number of tuples having the same value in an attribute

� Disclosure probability

� Probability that a cell is disclosed by policy

Comparison

� Standard evaluation algorithm

� Without access control

� Limiting disclosure approach in Hippocratic

Databases

� Could return results that are unsound

Experimental Results

� Not as scalable as the other two approaches

� Costly to perform JOIN operation

� Reasonable performance when table size is moderate

� Answer in 2 seconds when table size is 10000

� Perform significantly better when uniformity is small

� Because join operation can be computed faster

� Perform better when disclosure probability is large

� Because conditions are evaluated faster

� Perform significantly better when sensitivity is small

� Because selection conditions are simpler

Experimental Results

� Not as scalable as the other two approaches

� Costly to perform JOIN operation

� Reasonable performance when table size is moderate

� Answer in 2 seconds when table size is 10000

� Performance affected by distribution of data and

disclosure percentage

� Details in paper

Conclusion

� We have

� Pointed out existing fine-grained access control

algorithms may return misleading results

� Formally proposed the notions of sound, secure and

maximum as correctness criteria

� Proposed a variable-based labeling mechanism

� Designed a sound and secure algorithm

� Presented a query-modification approach

� Performed experiments

Relation with Works on Incomplete

Information Databases

� Some ideas and techniques in incomplete information
databases can be applied to fine-grained access control

� New contributions

� Formalize the notion of security

� Propose novel labeling scheme that uses two types of variables

� Design a query modification approach to evaluate queries in a
sound and secure manner

� Study factors that affect performance

Thank you!

End

