On Efficient Spatial Matching

Raymond Chi-Wing Wong (the Chinese University of Hong Kong) Yufei Tao (the Chinese University of Hong Kong) Ada Wai-Chee Fu (the Chinese University of Hong Kong) Xiaokui Xiao (the Chinese University of Hong Kong)

> Presented by Raymond Chi-Wing Wong Presented by Raymond Chi-Wing Wong

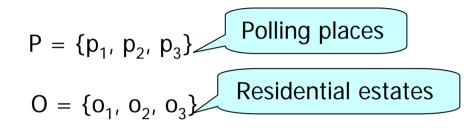
Outline

- 1. Introduction
 - Related work Bichromatic Reverse Nearest Neighbor
- 2. Problem
 - Spatial Matching Problem (SPM)
 - Unweighted SPM
 - Weighted SPM
- 3. Algorithm
 - Chain (for unweighed SPM)
 - Weighted Chain (for weighted SPM)
- 4. Empirical Study
- 5. Conclusion

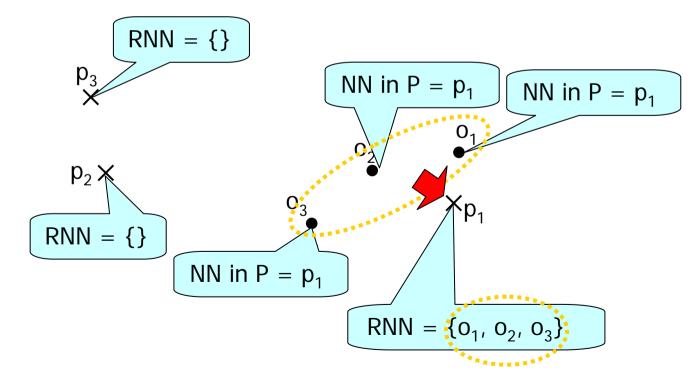
1. Introduction

- Bichromatic Reverse Nearest Neighbor (BRNN)
 - Given
 - P and O are two sets of objects in the same data space
 - Problem
 - Given an object p∈P, a BRNN query finds all the objects o∈O whose nearest neighbor (NN) in P are p.

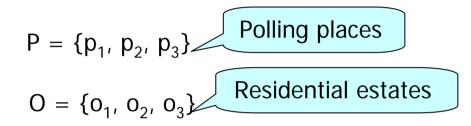
1. Introduction



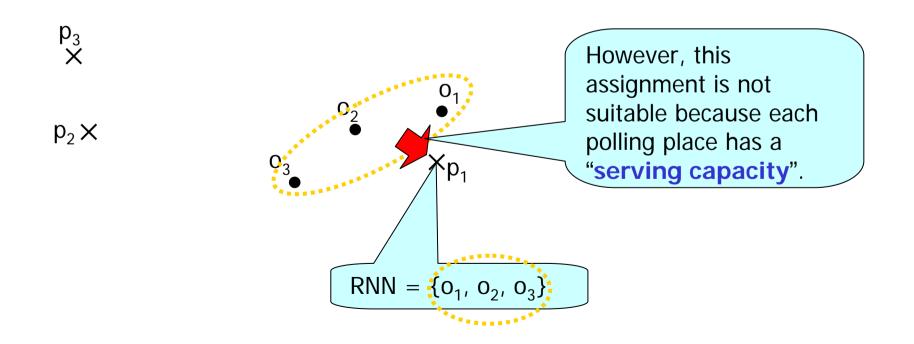
NN: Nearest neighbor RNN: Reverse nearest neighbor



1. Introduction



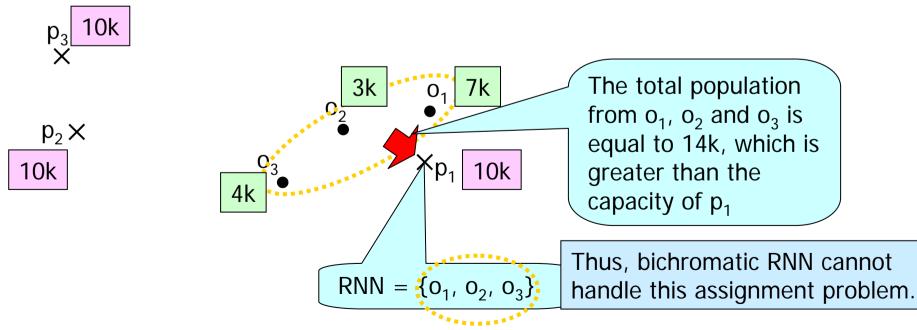
NN: Nearest neighbor RNN: Reverse nearest neighbor



Spatial matching (SPM)

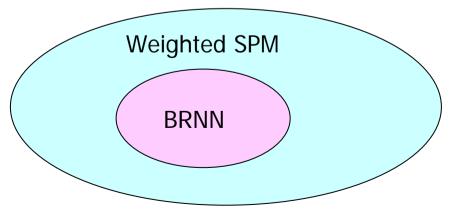
Problem: to find an assignment between P and O with the consideration of the population of $p_i \in P$ and the capacity of $o_i \in O$.

1. Introduction Idea: SPM aims at allocating each estate $o \in O$ to the polling-place $p \in P$ that (i) is as near to o as possible, and (ii) its servicing capacity has not been exhausted in serving other closer estates.

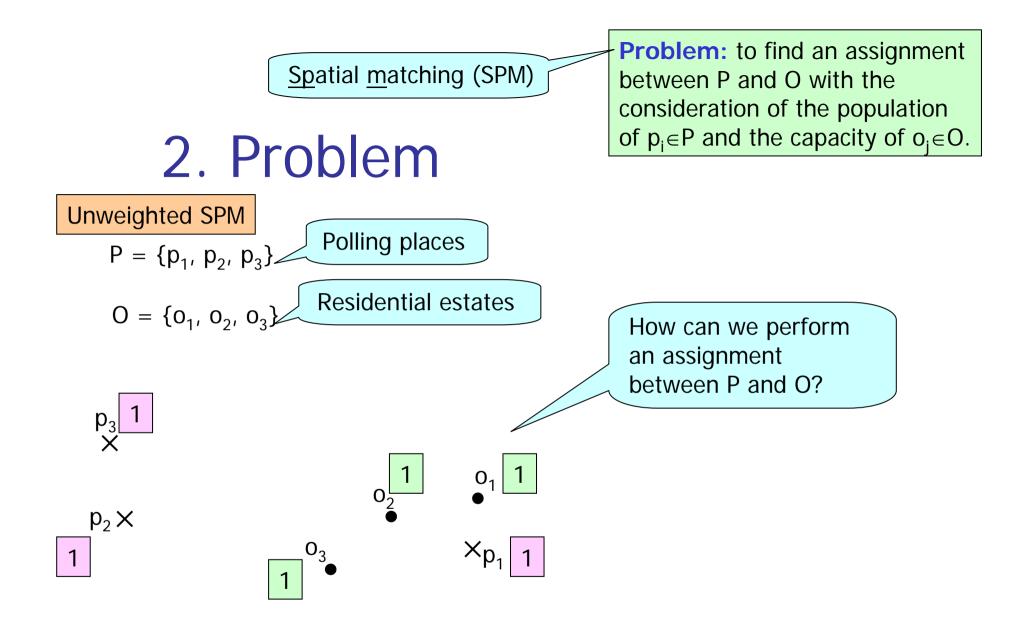


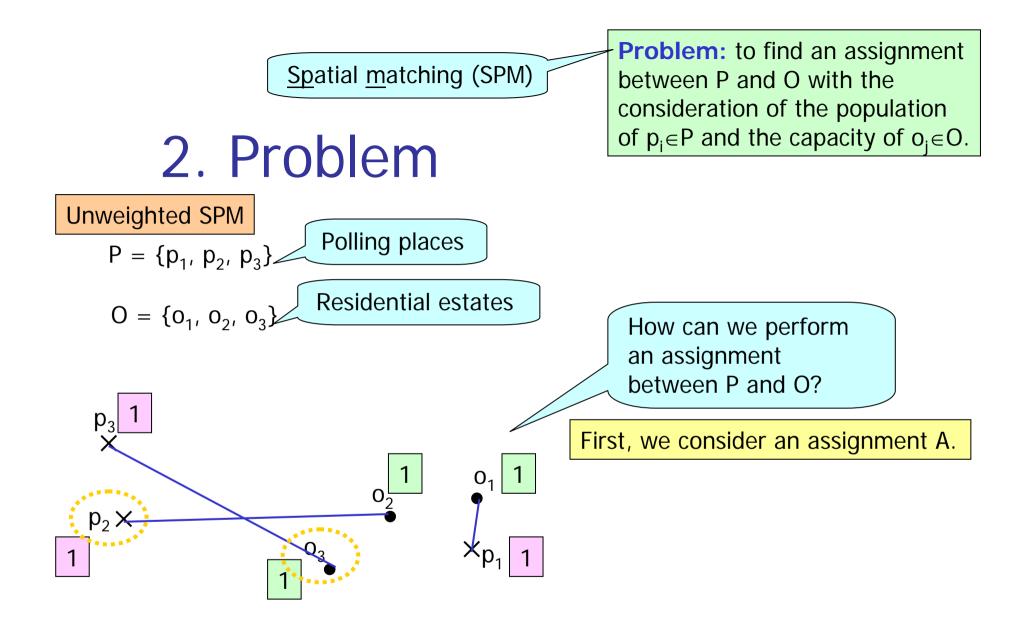
- 1. Unweighted SPM
 - Population of $p_i \in P$ (denoted by $p_i.w$) = 1
 - Capacity of $o_j \in O$ (denoted by $o_j.w$) = 1
- 2. Weighted SPM
 - Population of $p_i \in P$ (denoted by $p_i.w$) ≥ 1
 - Capacity of $o_j \in O$ (denoted by $o_j \cdot w$) ≥ 1

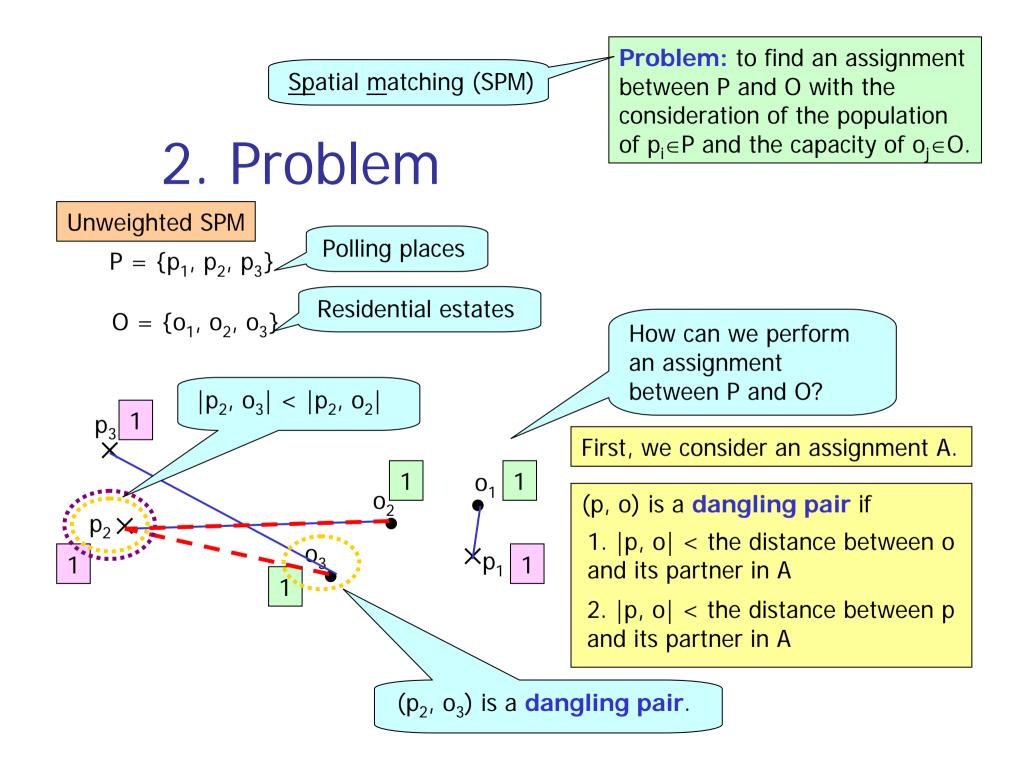
- Theorem: The problem of computing the BRNN set of each object p∈P is an instance of weighted SPM, where
 - p.w = |O| for every $p \in P$ and
 - o.w=1 for every $o \in O$.

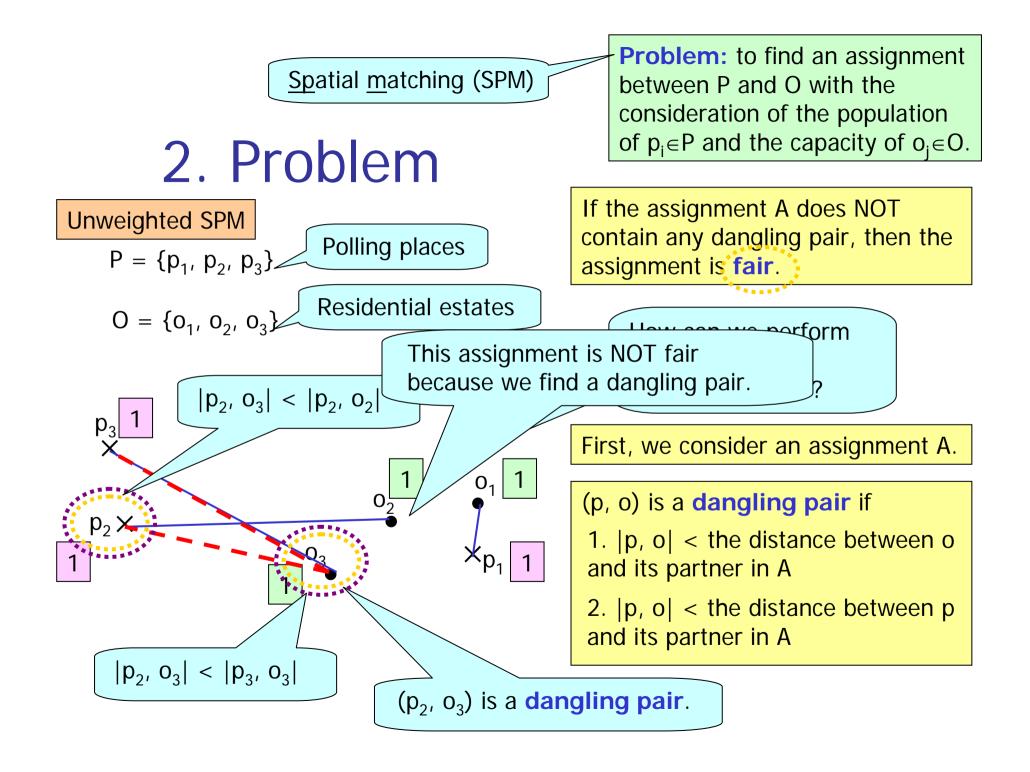


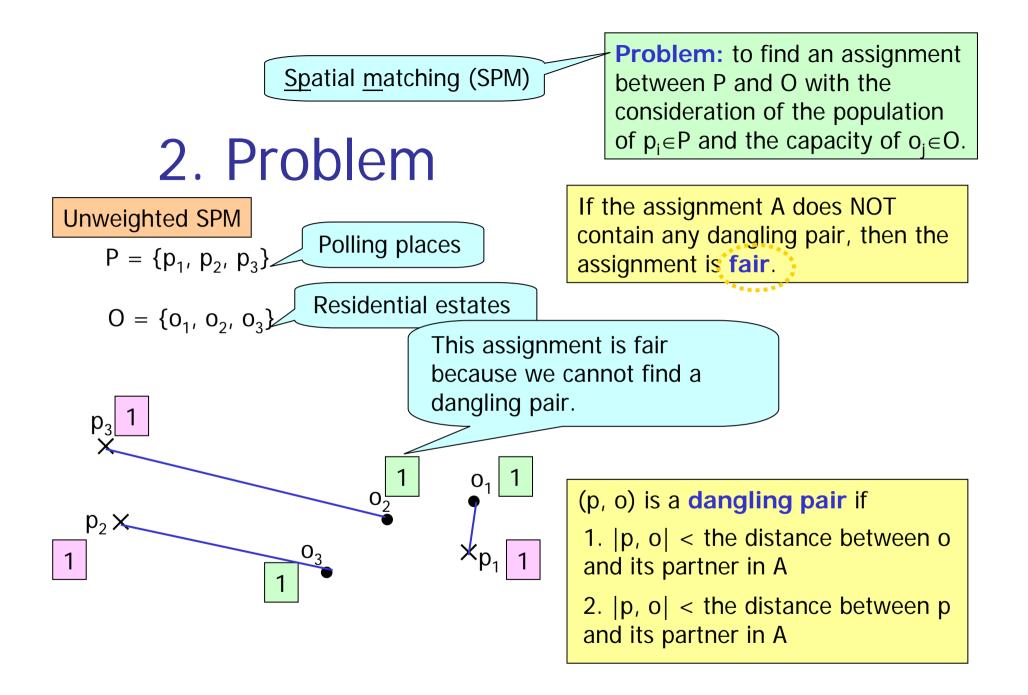
- Related Work
 - Closest Pair
 - Running time = $O(|P| \times |O|^2)$
 - Stable Marriage
 - A classical problem in Computer Science
 - Running time = $O(|P| \times |O|)$
- Our Proposed Algorithm Chain
 - Running time = O($|O| \times \log^{O(1)} |P|$)
 - Significant improvement on running time











Unweighted SPM

- Dangling pair
- Weighted SPM
 - Dangling pair

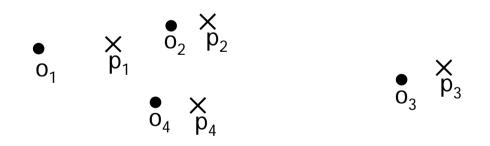
3. Algorithm

Un-weighted SPM problem Algorithm (Un-weighted) Chain

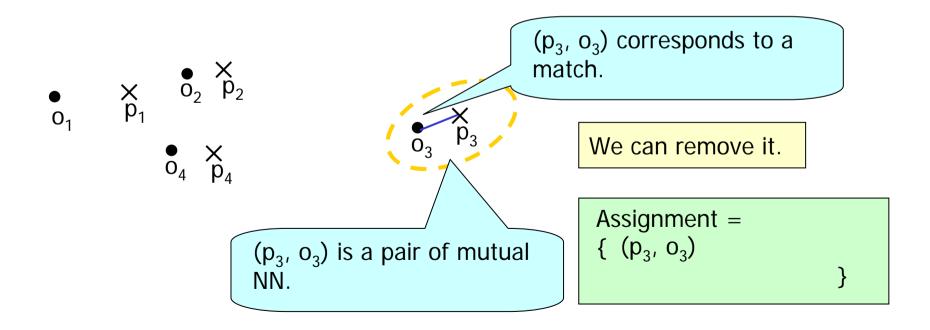
- Weighted SPM problem
 - Algorithm Weighted Chain

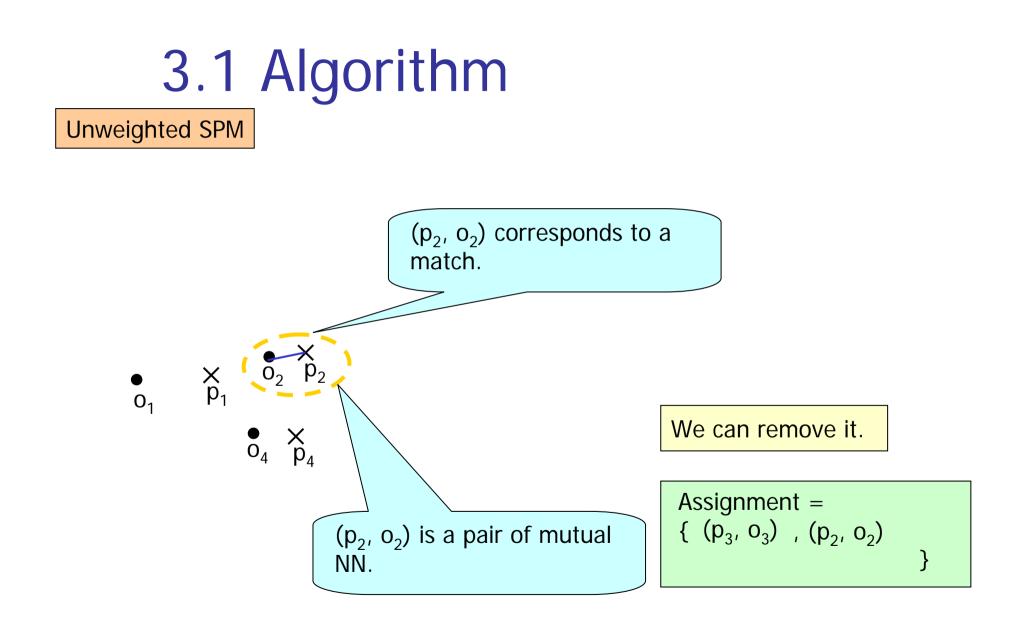
3.1 Algorithm

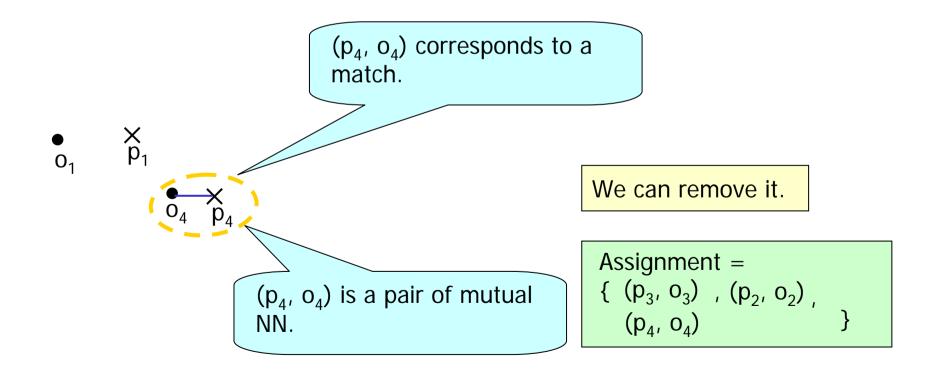
- Algorithm Chain makes use of bichromatic mutual NN to find the fair assignment.
- An object p ∈ P and an object o ∈ O are bichromatic mutual NN if
 - p is the NN of o in P and
 - o is the NN of p in O

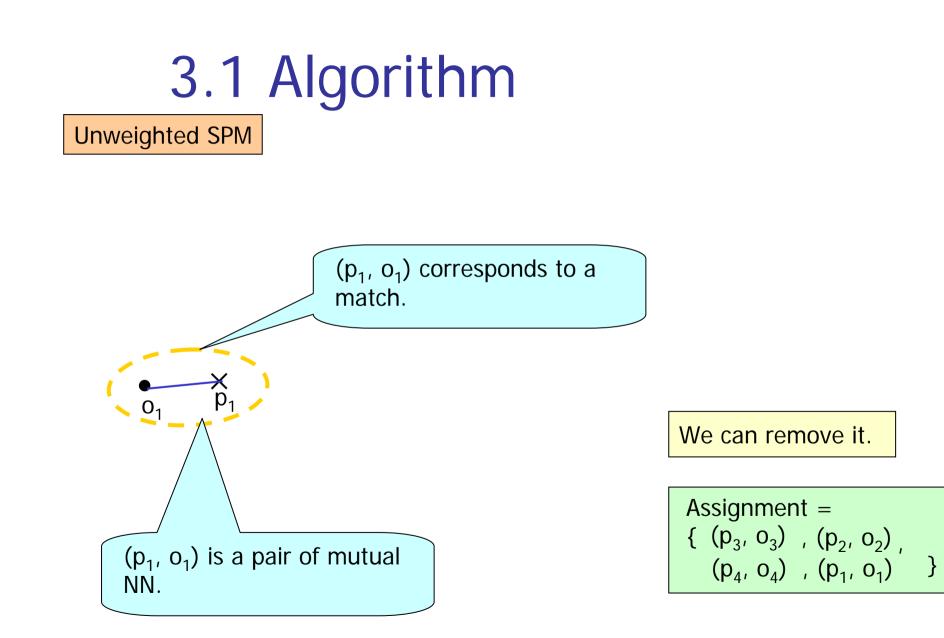


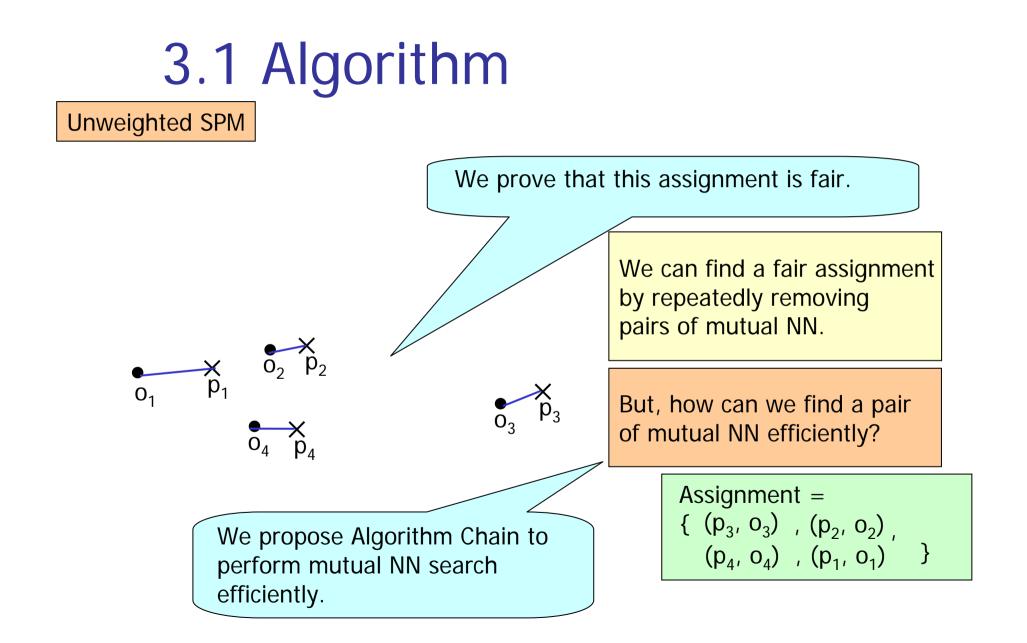
3.1 Algorithm Unweighted SPM







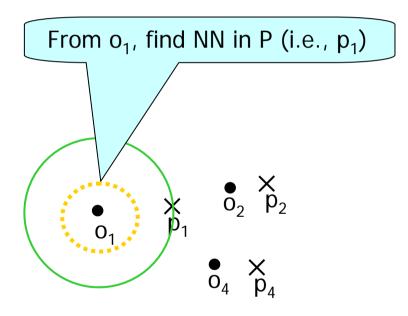




3.1 Algorithm

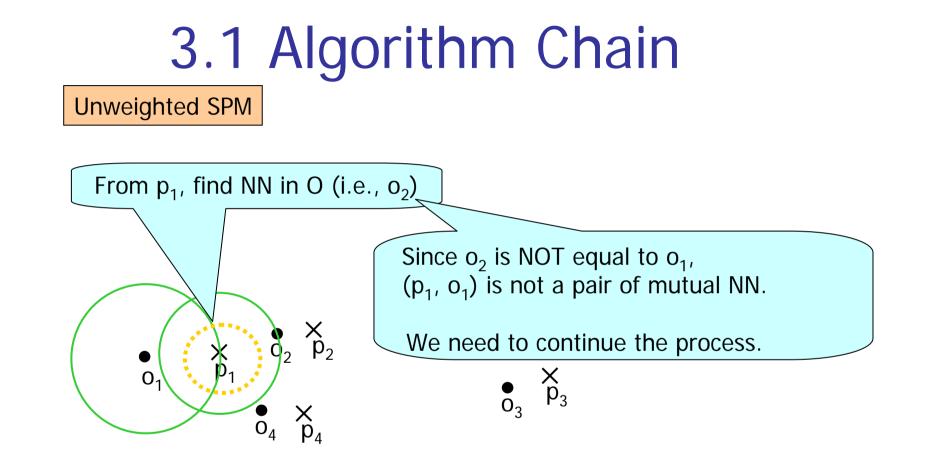
- Find the first mutual NN (nearest neighbor) and remove it
- Find the second mutual NN and remove it
- • •
- Find the n-th mutual NN and remove it

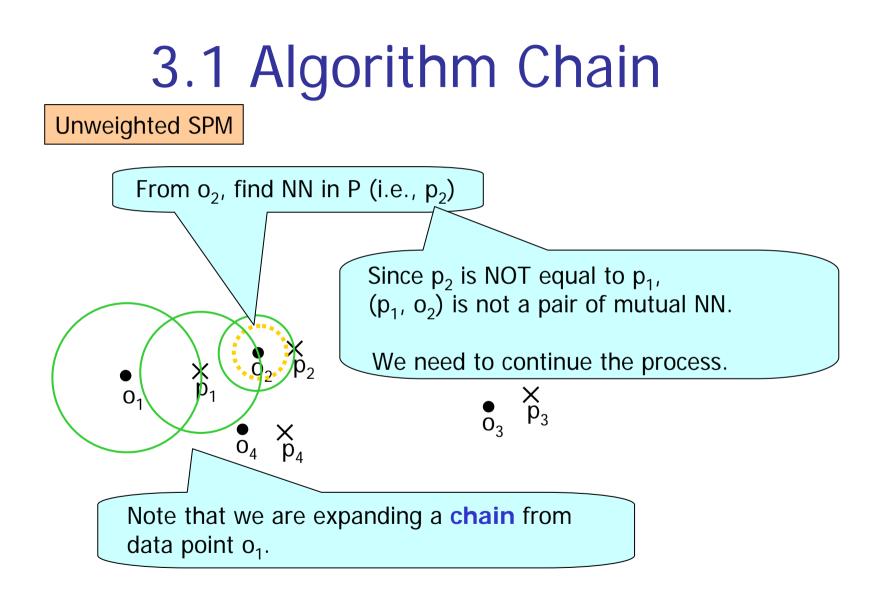
Unweighted SPM

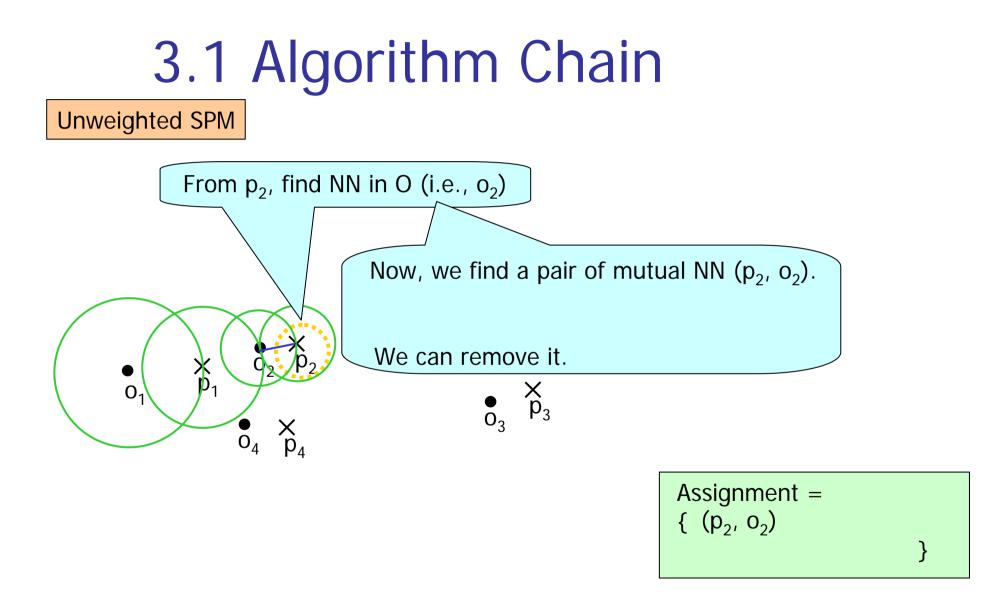


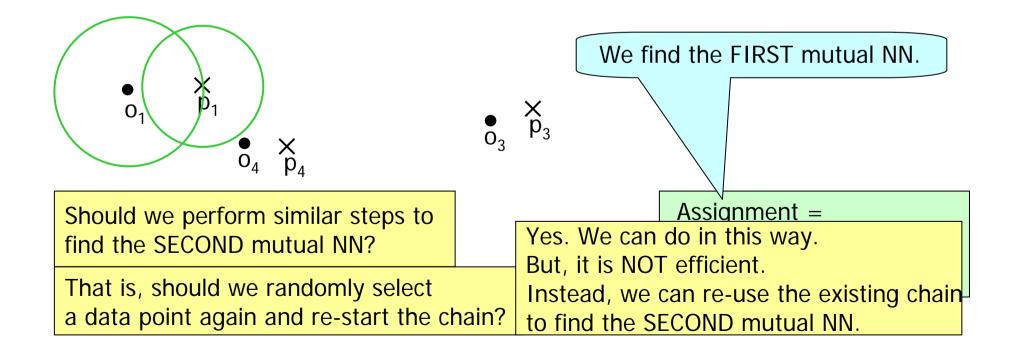
• × p₃

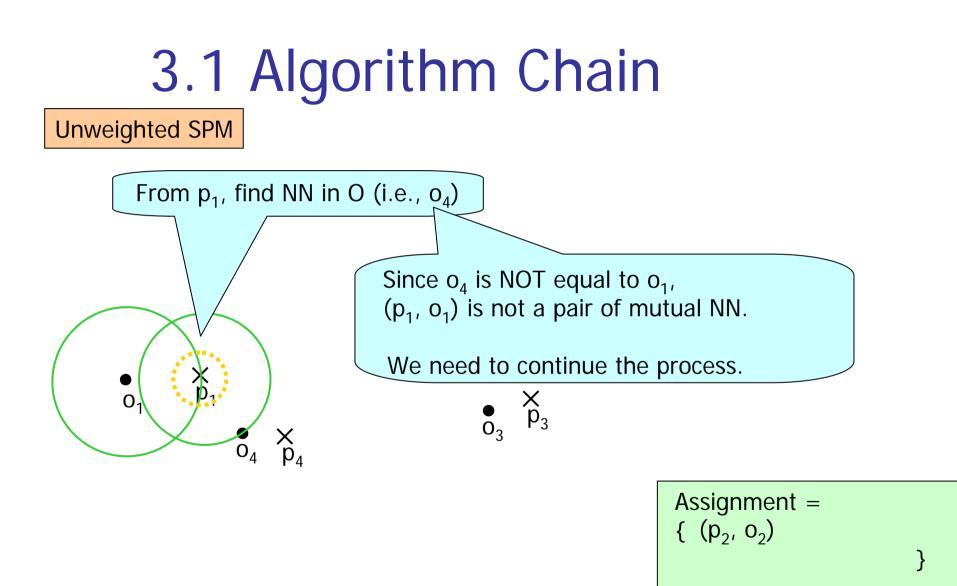
Randomly find a data point o

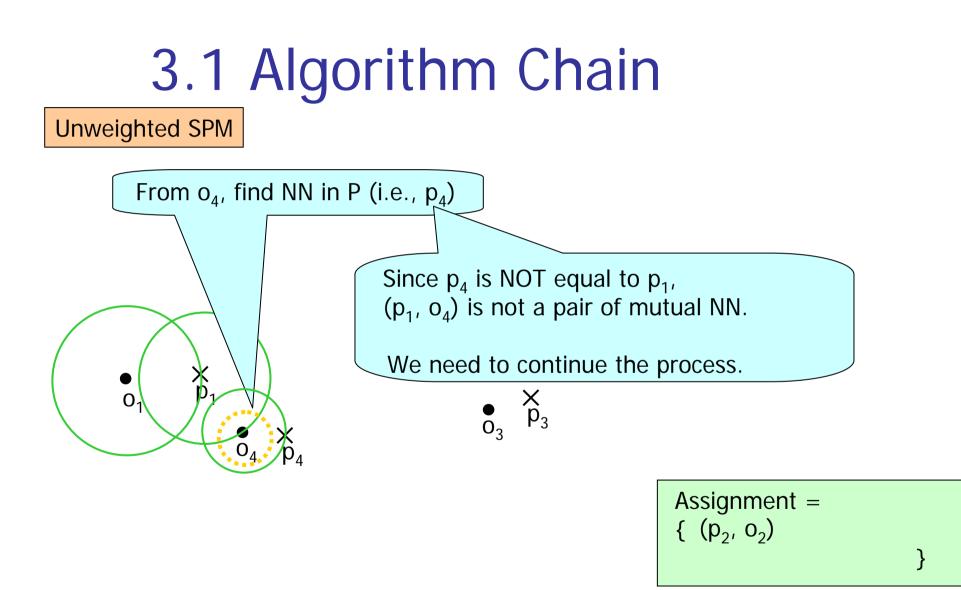


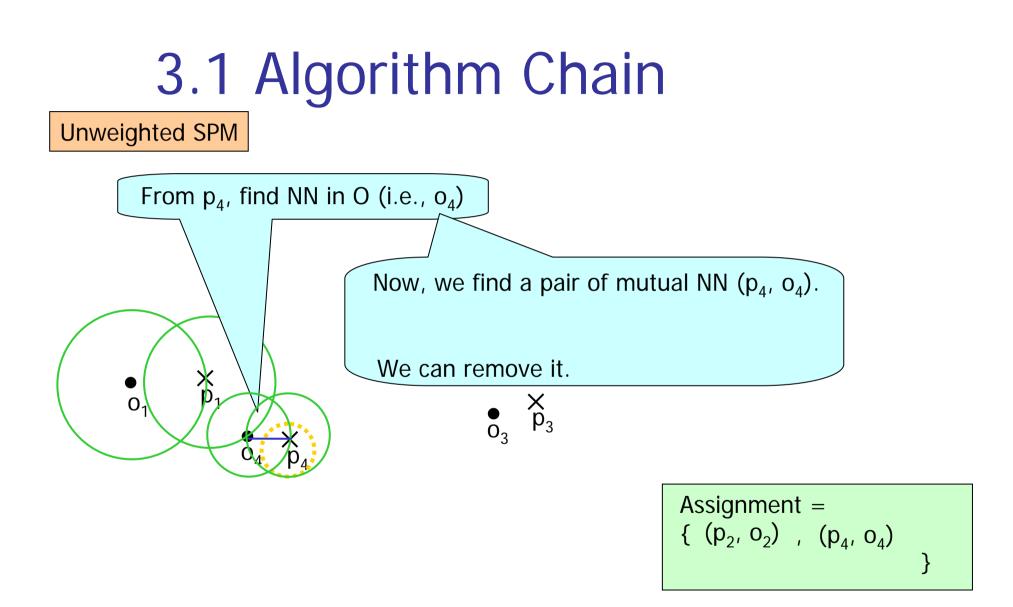


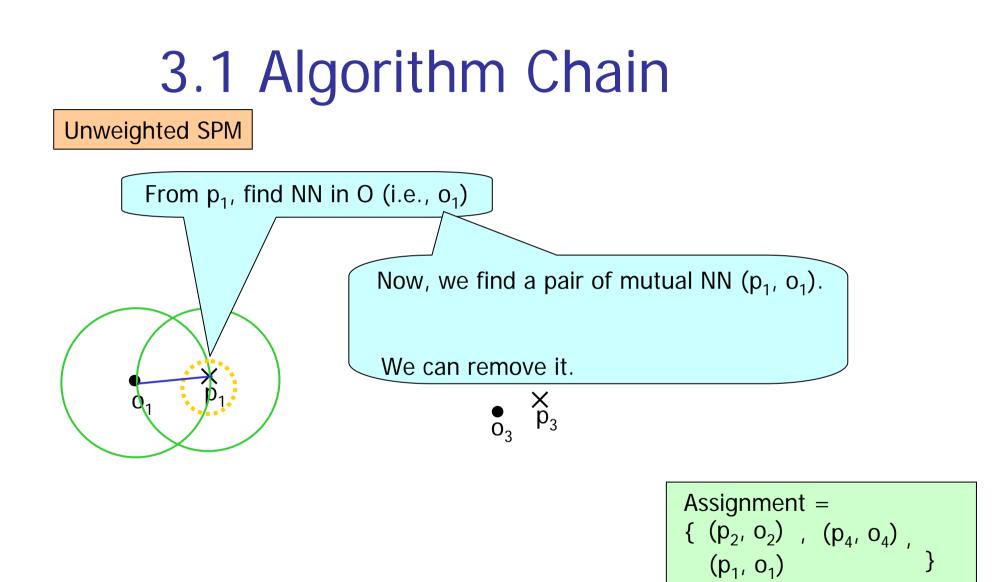


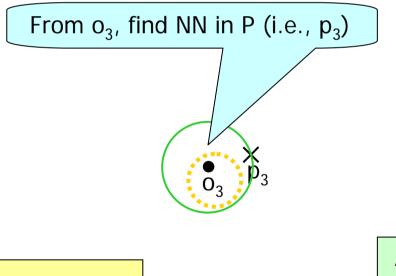






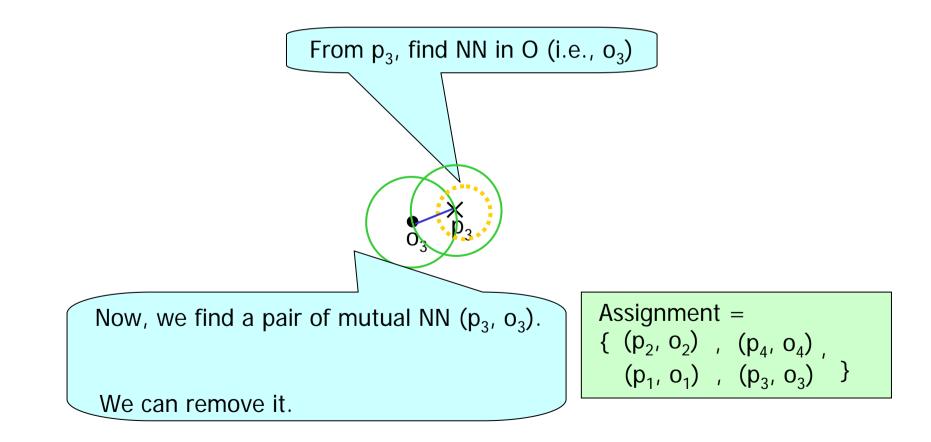






Randomly find a data point o

Assignment = { (p_2, o_2) , (p_4, o_4) , (p_1, o_1) }



Unweighted SPM

 Theorem: (Un-weighted) Chain performs at most 3|0| NN queries and exactly 2|0| object deletions.

 $\alpha(n)$: worst case complexity of an NN query on dataset of size n $\beta(n)$: worst case complexity of an object deletion on dataset of size n

Theorem: The running time of (Un-weighted)
Chain is O(|O| x (α(|P|)+β(|P|)))

 $\alpha(n)$ and $\beta(n)$ can be accomplished in O(log^{O(1)}(n)).

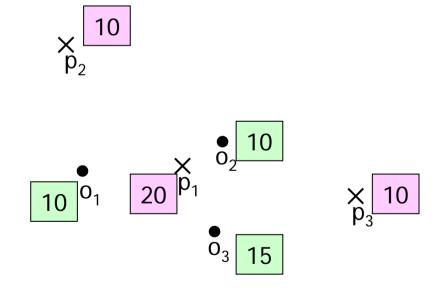
Thus, the running time is O($|O| \times \log^{O(1)} |P|$)

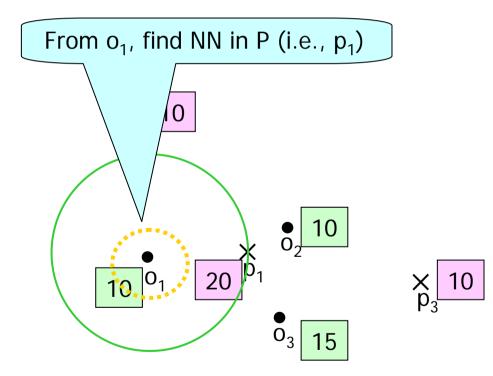
T.M. Chan, A Dynamic Data Structure for 3-d Convex Hulls and 2-d Nearest Neighbor Queries, SODA 2006

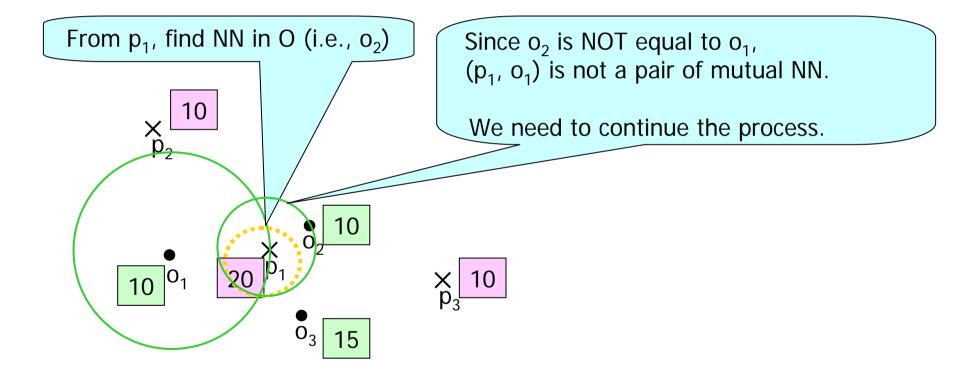
3.2 Algorithm Weighted Chain

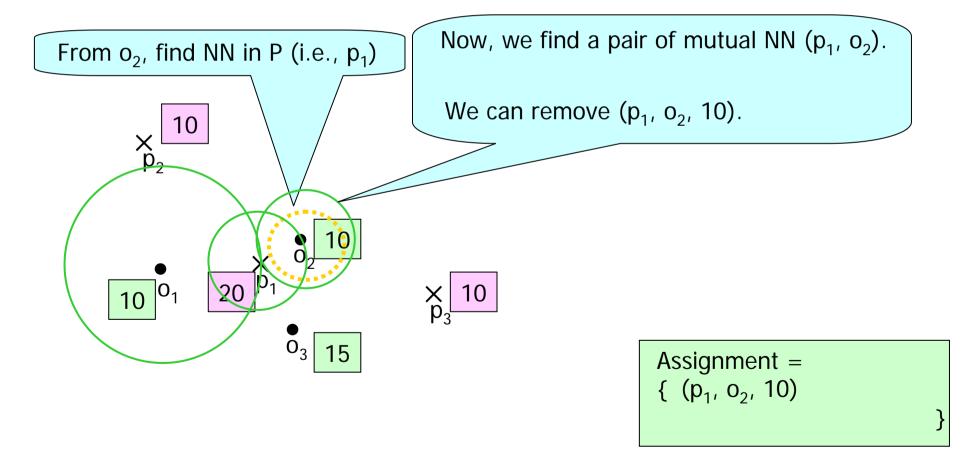
Similar to (Unweighted) Chain

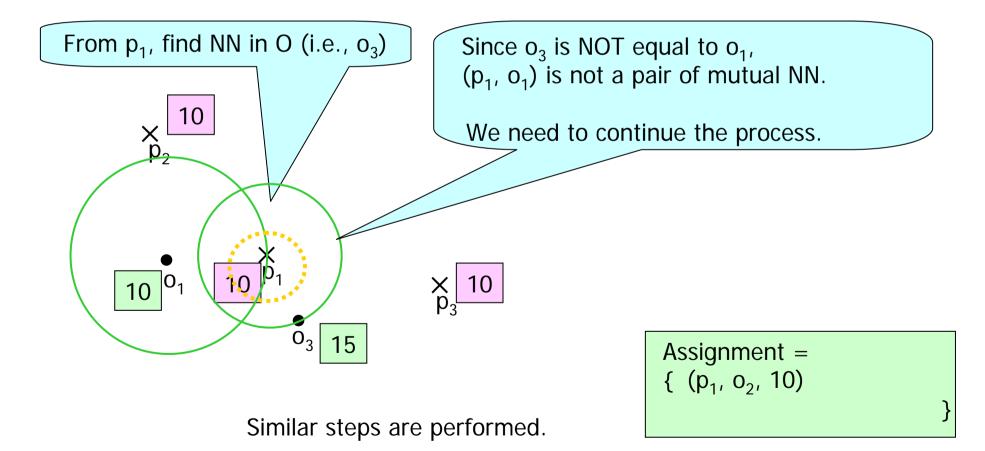
Consider the population and the capacity of each point











3.2 Algorithm Weighted Chain

 Theorem: Weighted Chain performs at most 3(|P| + |O|) NN queries and at most |P| + |O| object deletions

 $\alpha(n)$: worst case complexity of an NN query on dataset of size n $\beta(n)$: worst case complexity of an object deletion on dataset of size n

• Theorem: The running time of Weighted Chain is $O((|P| + |O|) \times (\alpha(|P|) + \beta(|P|) + \alpha(|O|) + \beta(|O|)))$

 $\alpha(n)$ and $\beta(n)$ can be accomplished in O(log^{O(1)}(n)).

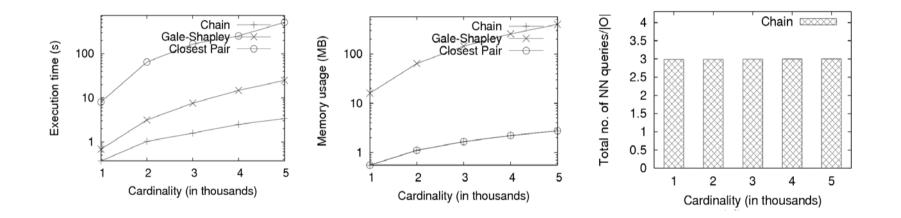
Thus, the running time is O((|P| + |O|) x ($\log^{O(1)} |P| + \log^{O(1)} |O|$))

- Synthetic Dataset
 - P: Gaussian distribution
 - O: Zipfian distribution
- Real Dataset
 - Rtree Portal <u>http://www.rtreeportal.org/spatial.html</u>
 - CA (62,556)
 - LB (53,145)
 - GR (23,268)
 - GM (36,334)
 - P: one of the above datasets
 - O: one of the above datasets

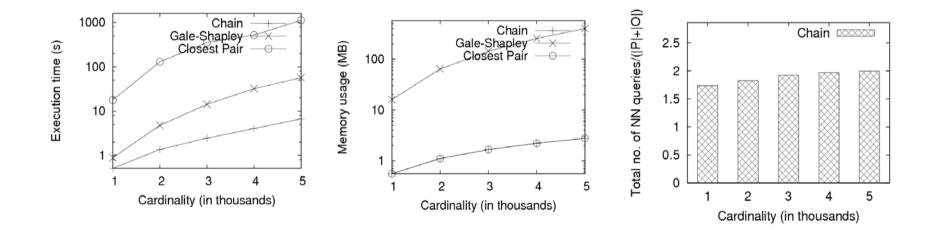
- NN query in Chain
 - Build R*-tree on P
 - Build R*-tree on O

- Measurements
 - Execution Time
 - Memory Usage
 - Total no. of NN queries/|O|
 - Total no. of NN queries/(|P| + |O|)
- Comparison with adapted algorithms
 - Gale-Shapley
 - Closest Pair

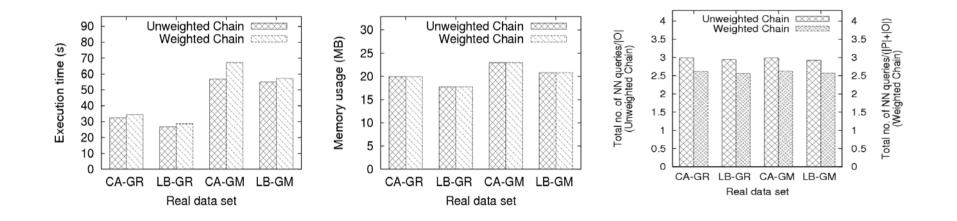
Un-weighted SPM



Weighted SPM



Real Data Set



5. Conclusion

- Un-weighted and Weighted Spatial Matching Problem
 - A general model of BRNN
- Algorithm Chain
 - Theoretical Analysis of Running Time
 - Significant Improvement on Running Time
- Experiments

FAQ

Stable Marriage

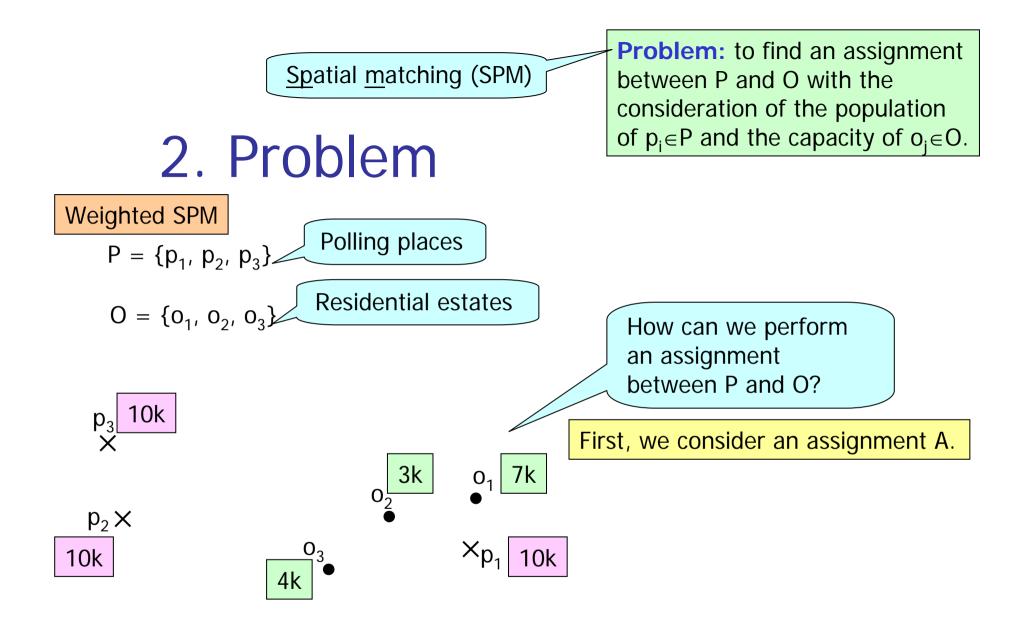
- Two sets O (for woman) and P (for man)
- For each woman $o \in O$,
 - there is a preference list which sorts the men in descending order of how much o loves them.
- For each man $p \in P$,
 - there is a preference list which sorts the women in descending order of how much p loves them.

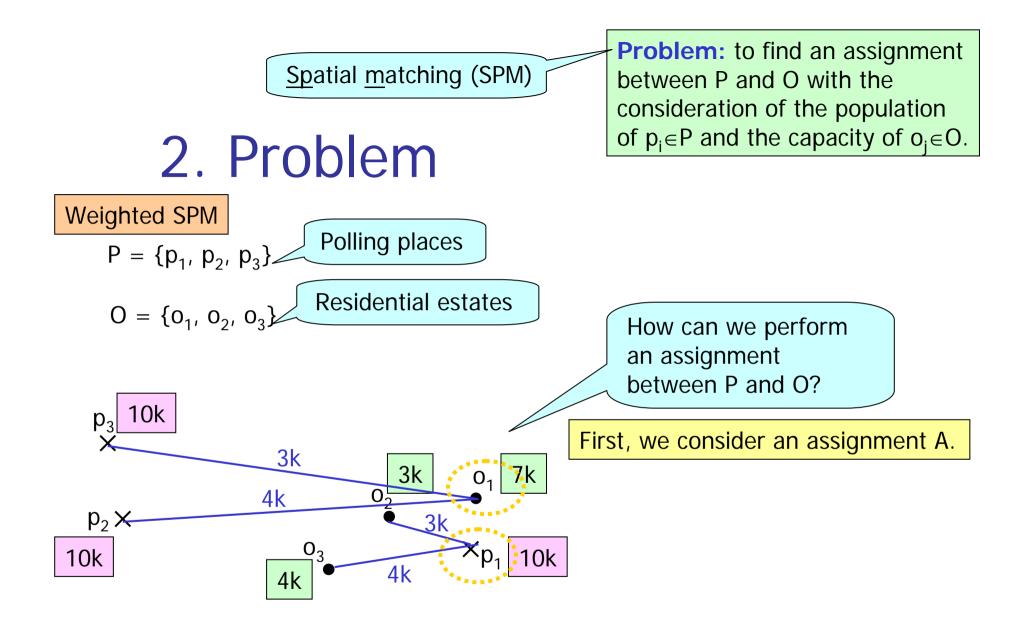
Stable Marriage

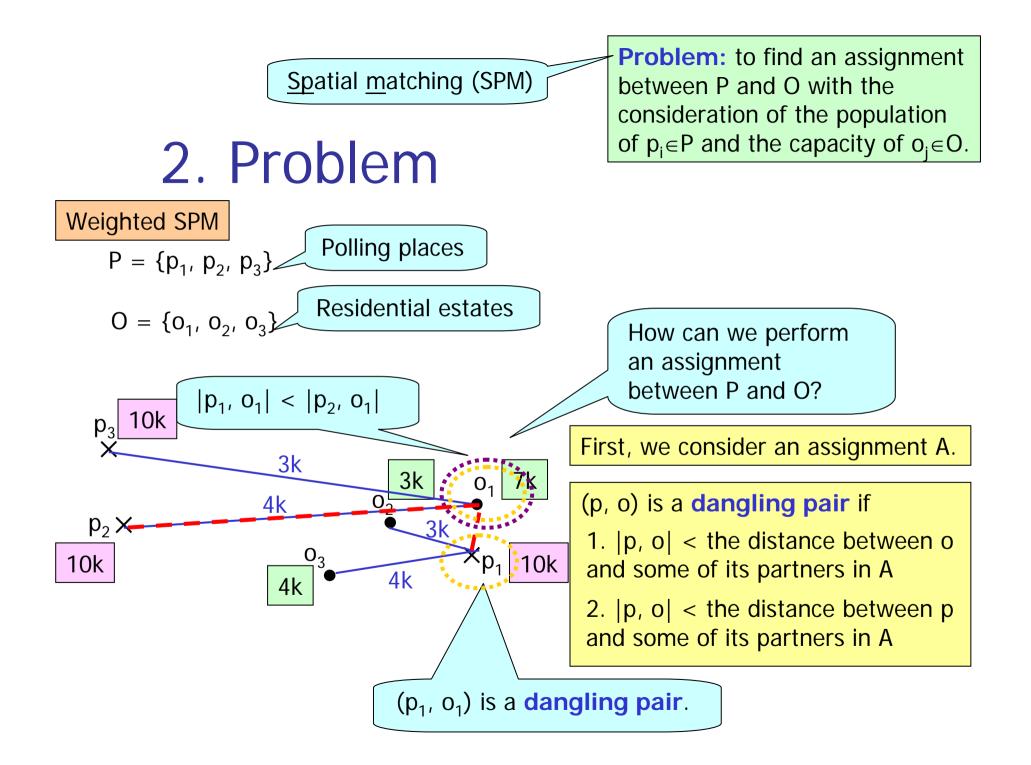
- the absence of a man p and a woman o, such that
 - p loves o more than his current partner, and
 - o loves p more than her current partner.

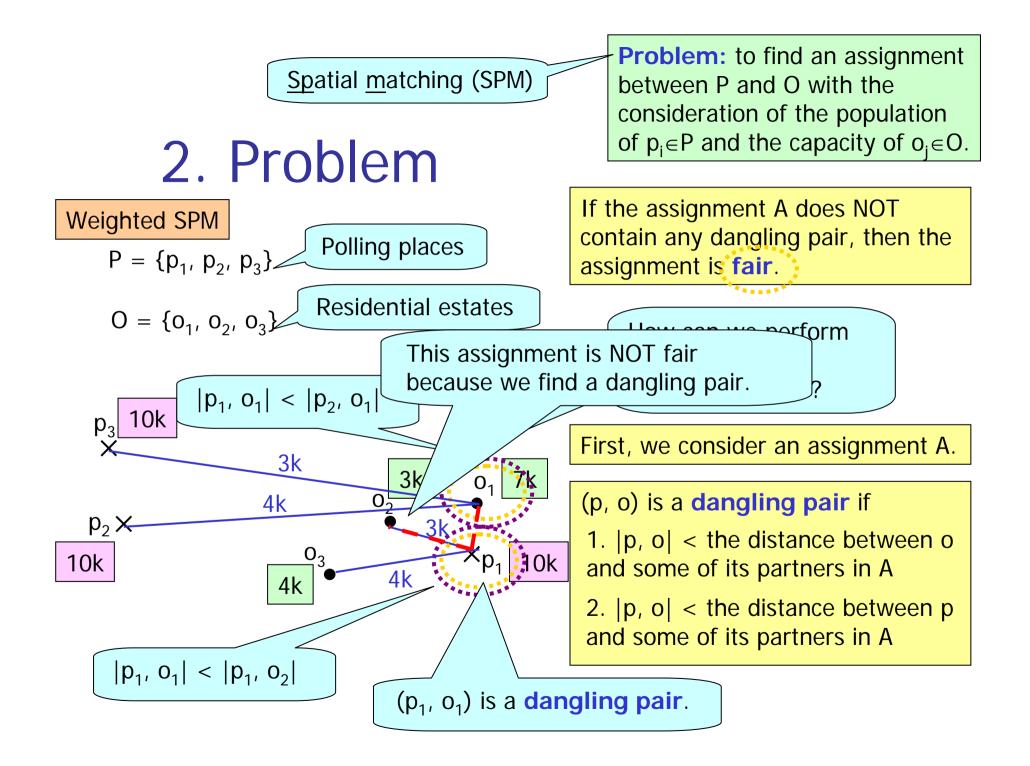
Stable Marriage

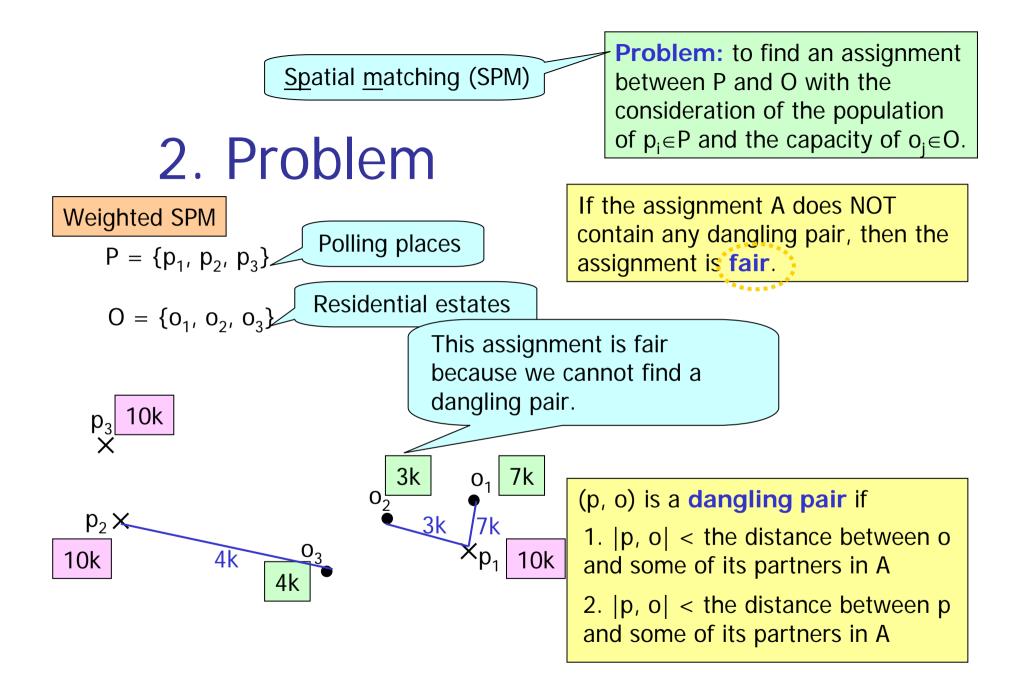
- Reduction to Stable Marriage
 - For each $o \in O$
 - We create a preference list in ascending order of $[o,\,p]$ for all $p\,\in\,P$
 - For each $p \in P$
 - We create a preference list in ascending order of |o, p| for all o ∈ O

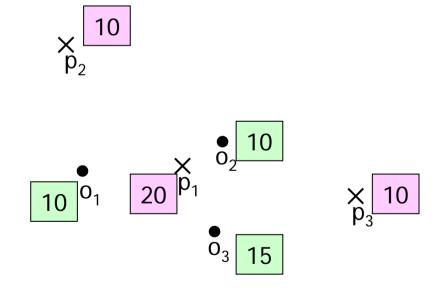


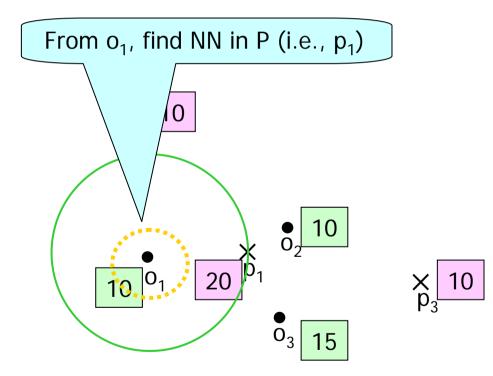


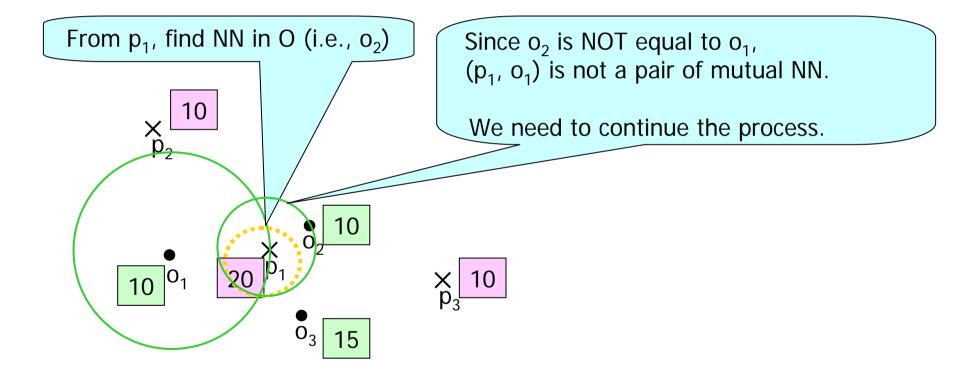


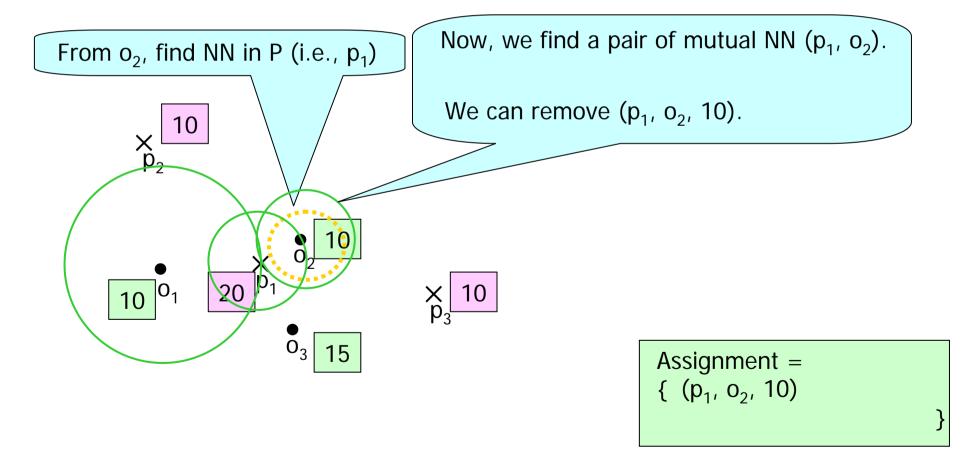




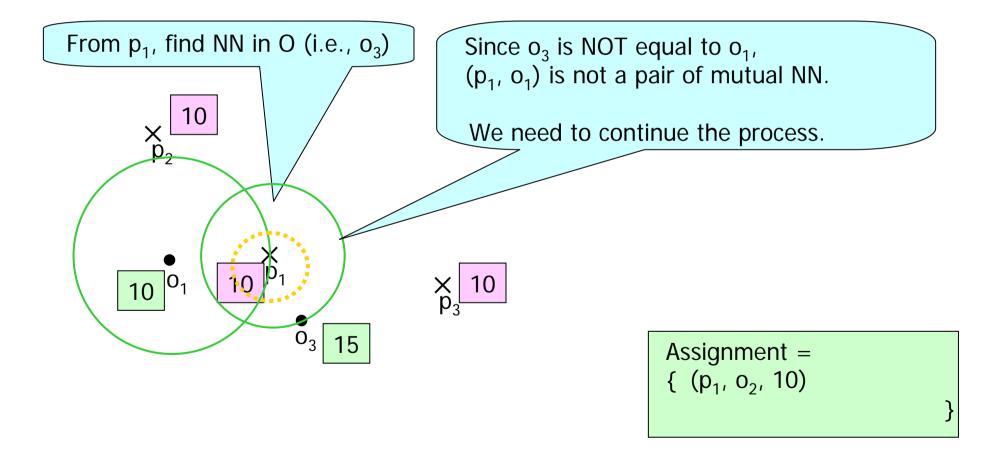




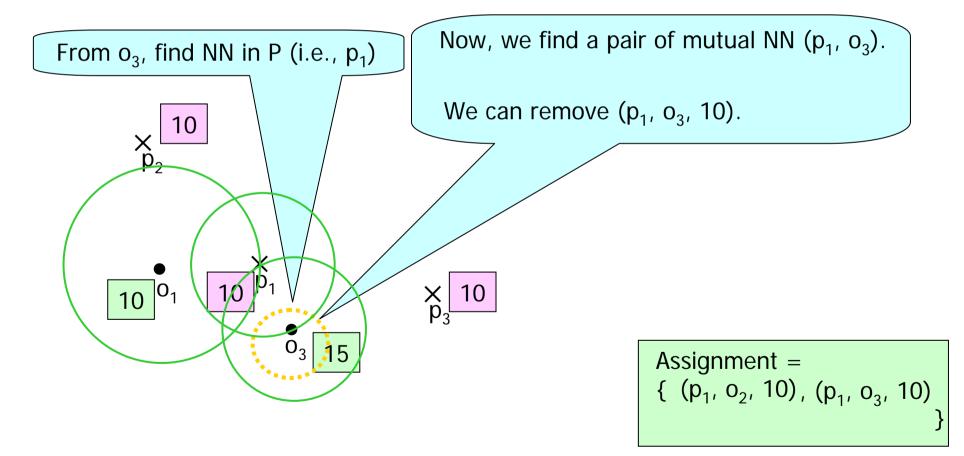


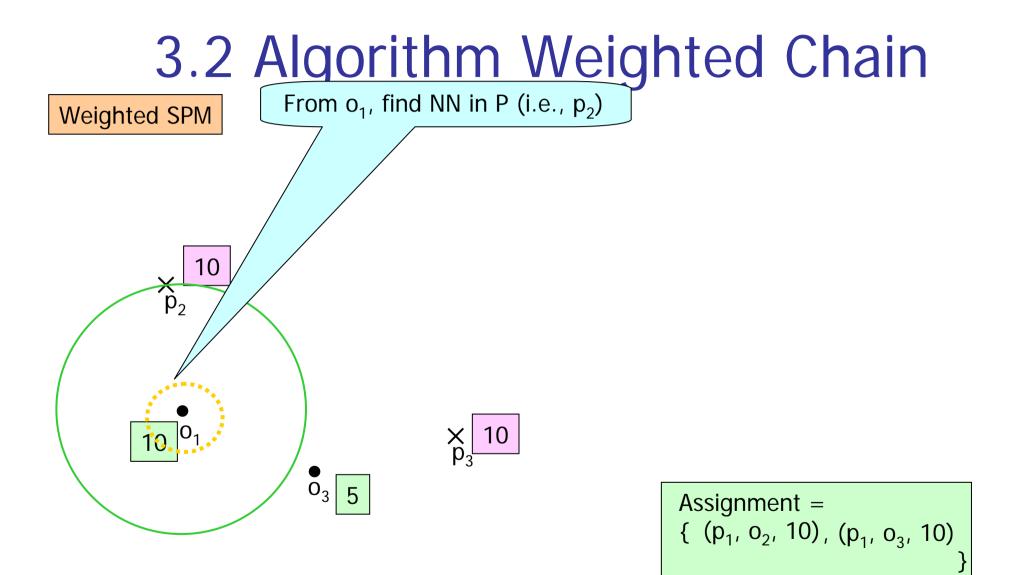


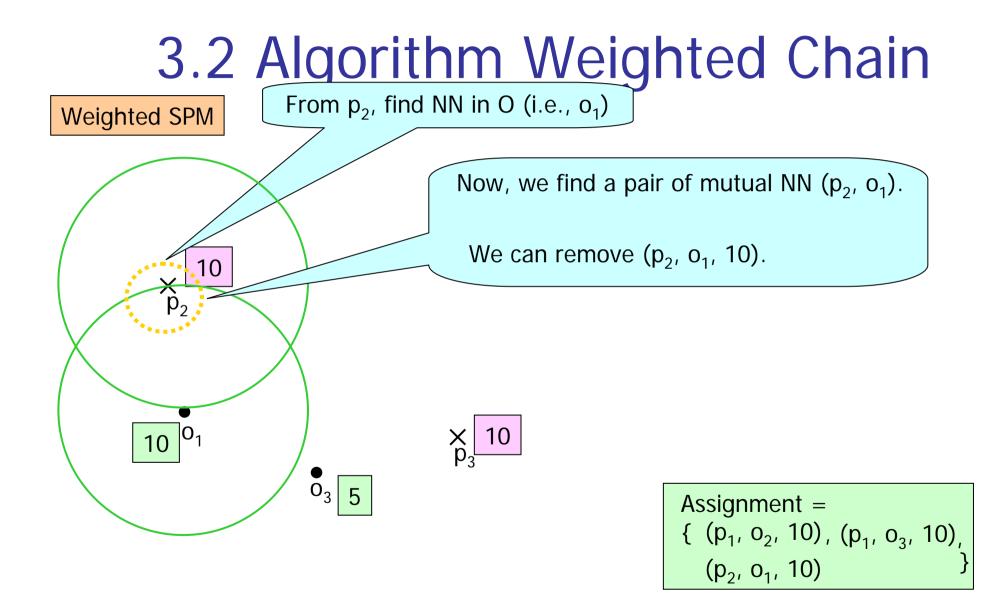
3.2 Algorithm Weighted Chain

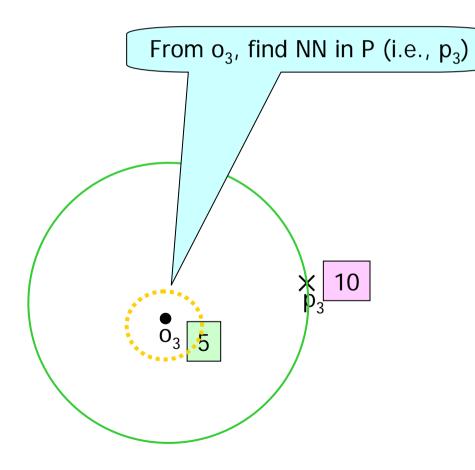


3.2 Algorithm Weighted Chain









Assignment = { $(p_1, o_2, 10), (p_1, o_3, 10), (p_2, o_1, 10)$ }

