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Introduction and

SIS Business Processes
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Introduction and !
BPEL in a Nutshel

Business Processes Execution Language (BPEL)

Process spec. represented in XML

« operations (atomic/ compound activities)

 flow and data

Designed using visual tools
« graphs of nodes and edges

Compiled into executable code &
run on any BPEL application server

high-level & portable
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Introduction and . .
The Need for Monitoring

Imagine you run an auction service...

" Guarantee fair play: notify on too many cancels
" Maintain SLA: monitor response time
" Promotions: prizes for the x10,000 transaction

" lllegal access: notify on buyers attempt to
confirm bids without registering first

Monitoring is crucial for enforcing business policies and
meeting efficiency & reliability goals
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Introduction and Background and Cha”enges

Motivation

BPM systems send process traces as events

Very large field: active database, publish-subscribe,
composite events, temporal logic,...

Shortcoming of

current approaches BPEL challenges
Abstraction leve| °Two levels: - Write queries the same
events vs. spec way as the spec
Efficiency «Generic 9Exploi’[ knowledge
optimizations of the spec

Implementation & -Propriety language Declarative language
Deployment <Not portable Run everywhere
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Introduction and Contributions

Motivation

*High level graphical query language

Abstraction level Tight analogy to the spec

Dedicated efficient automata based Algorithm
EfﬂC'enCy *Novel optimizations based on analysis of spec

*Pruning of redundant monitoring

_ *Compiles a BP-Mon query into a BPEL process
Implementation

-Easy deployment, portability
& deployment

Minimal overhead

7 Monitoring Business Processes with Queries



Introduction and Hunning EXample

Motivation
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Introduction and

Events

@nData> \

Motivation

<header>
<processName> auctionHouse </processName>
= - <instanceld> 517 </instanceld>
I% v <sensorTarget> notify_winner </sensorTarget>
= & ” <timestamp> 2006-05-31T11:32:46.510+00:00 </>
a it J | | —  </header>
8 wait_auction_ended
'} <activityData>

<activity Type>invoke </activityType>

! 41’ <evalPoint> completion </evalPoint> ...
Ea B

winner notify_seller

notify

v

get_buyer_conf get_seller_conf
I |

|
]
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Introduction & .
BP Execution

Nested set of DAGS:

 Nodes

races as DAGs

11:32:00 ]

= Activation @

= Completion ©
* Timestamps

* Edges
= Flow

= Zoom-in, -»
Zoom-out
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Query Example (1)

_Too many ?anoe > Use execution patterns
£ ) Report
= ! <users sy
% $x {$xlusername} u TranSItlve edgeS
; rer nVoks
@ & {unregister($xiiusername)} ‘ *
%?}
: = Transitive nodes
I
&l : 0 * ] = Regular expressions
. 1
cancel_bequest cancel_aun_request '%1 Q @
! = Report/ Report*
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BP-Mon by
Example

Query Example (2)

Monitor response time

(and notify the process to change the db)

lssnoHuonone

$xiipartnerlink="datasto

r.ell

$viipartnerlink="datastore"

- §-o-e

2
Gira

12

Sliding window
= Time based

Report* Every 1 hrs Range 2 hrs
" Instance based

Every 100 entries Range 200 ...

Report

= Local/Global

= Multiple reports
Output format

= XQuery like

= Group by having
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Query Example (3)

X10,000 win

When count{-)mod 10000=0

.
* Report*
@ <win>
!

Loijaone yoe.}

<buyer>={$xliuser}<ibuver=
<seller>{$yiiuser}<iseller>

<sale_no>{count(-)}</sale_no:>
& <hwin>
& R
notify_winner notify_seller

x
* (zloh al
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Query Example (4)

Static and dynamic analysis

RUN SPEC
2 -
O /a o a
E' . E- .
I
C N C L
in ~ [ 1] s
m '\.\ m .-..-"

$x & Sy .

bid_request bid_request
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Formal

Wi Queries: Execution Patterns

« EX-trace: nested DAGs

« EX-pattern: EX- trace without timestamps
transitive edges & nodes
‘any’, ‘or’, ‘rep’

A query defines a set of concrete

Ex-patterns obtained by:
*Rep— replacing with arbitrary
number of copies

= Or — choosing an internal trace
& replacing

15 Monitoring Business Processes with Queries



An Embedding

p concrete EX-pattern, e EX-trace.

Definition: An embedding of p into e is a
homomorphism from the nodes/edges in p to
nodes/edges/paths in e s.t.

= node labels match
= edge (transitive)->edge(path), of the same type
= direct edge of transitive nodes = any type
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A Greedy Embedding

p EX-pattern, e EX-trace, S a set of embeddings of
patterns in concrete(p) into e

Definition(semi-formal): weS is greedy (in S) if:

There is no other embedding vy’ that
agrees with y on the prefix of nep but matches n
with an earlier timestamp
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The Algorithm

* Incrementally extends a greedy embedding
to one of a larger prefix

« Automaton with Ex-pattern nodes as states

— Tries to match (concurrently) the concrete
patterns of the given EX-pattern

— Attempts to match events as early as possible
— On failure: backtracks & retries

Complexity: polynomial in the size of the trace
(with the exponent determined by the size of the pattern)
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The Algorithm (cont)

Non-deterministic automaton Deterministic automaton

« Manage simultaneously alarge + Potential exponential growth in
number of active states the size of the automaton

— We provide a hybrid solution

« Lazy DFA
« Small automaton, same size as the pattern
« Relatively few states are simultaneously active

Issues:
+ Backtracking
* Retaining of events
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Formal Y .
Optimization: Irrelevance & Inconsistency

Let S be a BP specification, o an activity in S

Definitions (semi-formal):

= Activity ois irrelevant to query node n

« if there is no EX-trace of S where it participates in an
embedding.

= Activity ois inconsistent with EX-pattern p

« if p cannot be embedded into any EX-trace of S that
contains an activation event of o.

Algo uses BP-QL [VLDBO06] for spec analysis
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Formal

Wi Optimization (example)
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Architecture

A monitoring query is compiled into a BPEL process

Visual query editor

Optimizer
(BP-QL) Query translator

deploy

subscription

requests v
Business process | Query process
process|invocation Dispatcher ::\;?ak:czew
events il
Process instance ——la{=Tolo] 4
| events BT 3 generator
BPEL Application Server streams
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implementation Visual Interface
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Experiments F

esults
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InlJEgClellal Experiments Results: Queries Overhead

Each process: 200 activities, 40% queried
Query: report*, 3 reports
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Conclusion

= User friendly query language for monitoring BPs:
* Graphical and intuitive (wizard)

= Semantics:

* Early match (greedy), all matches
= Algorithm

* Lazy DFA

* |rrelevancy & inconsistency

" Implementation
* Compiles into BPEL=>
Easy deployment, portability, and minimal overhead
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Ongoing and Future Work

" Querying/mining logs
* Incomplete information

= Application to software monitoring and
verification

" More optimization
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Thank you !



