BP-Mon:

Monitoring Business Processes
with Queries

Catriel Beeri, Anat Eyal, Tova Milo, Alon Pilberg
H_/ N —— _

Hebrew University Tel-Aviv University

= |[ntroduction to Business Processes
= Overview of BP-Mon by example

= Formal model

* Implementation & experiments

= Summary

Monitoring Business Processes with Queries

Introduction and

SIS Business Processes

3 Monitoring Business Processes with Queries

Introduction and !
BPEL in a Nutshel

Business Processes Execution Language (BPEL)

Process spec. represented in XML

« operations (atomic/ compound activities)

 flow and data

Designed using visual tools
« graphs of nodes and edges

Compiled into executable code &
run on any BPEL application server

high-level & portable

4 Monitoring Business Processes with Queries

e
&

Visual BPEL editor
deploy

Business process

process/invocation
\4

Process instance —‘
[

BPEL Application Server

Introduction and . .
The Need for Monitoring

Imagine you run an auction service...

" Guarantee fair play: notify on too many cancels
" Maintain SLA: monitor response time
" Promotions: prizes for the x10,000 transaction

" lllegal access: notify on buyers attempt to
confirm bids without registering first

Monitoring is crucial for enforcing business policies and
meeting efficiency & reliability goals

5 Monitoring Business Processes with Queries

Introduction and Background and Cha”enges

Motivation

BPM systems send process traces as events

Very large field: active database, publish-subscribe,
composite events, temporal logic,...

Shortcoming of

current approaches BPEL challenges
Abstraction leve| °Two levels: - Write queries the same
events vs. spec way as the spec
Efficiency «Generic 9Exploi’[knowledge
optimizations of the spec

Implementation & -Propriety language Declarative language
Deployment <Not portable Run everywhere

Monitoring Business Processes with Queries

Introduction and Contributions

Motivation

*High level graphical query language

Abstraction level Tight analogy to the spec

Dedicated efficient automata based Algorithm
EfﬂC'enCy *Novel optimizations based on analysis of spec

*Pruning of redundant monitoring

_ *Compiles a BP-Mon query into a BPEL process
Implementation

-Easy deployment, portability
& deployment

Minimal overhead

7 Monitoring Business Processes with Queries

Introduction and Hunning EXample

Motivation

o))

c
1]
=
=}
=]
I
o
c
0
1]

O,
= OOFl e
@ {,?\ I
o - E] [
- ;
= Eg’] § | I | : -)
& add_item_request | |'% T a) ¥ "
2 ' o | B (= N B {5 |
2 £|8 (= 3§ g . ,
o |m”J S| |'w [cancel_auction_request | || cancel_bid_request I
i —_— = = =1
7| add_item_to_db | ||| & b 2 . |
greree g @ e '
! AL . \ S
|ﬂ] § _éE cancel_auction_from_dk E cancel_bid_from_db ,'
confirm_add_item | L™ E ; b £ 4 : 2] I
o e 1 - =] :
I x‘l confirm_cancel_auction confirm_cancel_bid I
sanal |
track_auction : | : "
\ | ,}

8 Monitoring Business Processes with Queries

Introduction and

Events

@nData> \

Motivation

<header>
<processName> auctionHouse </processName>
= - <instanceld> 517 </instanceld>
I% v <sensorTarget> notify_winner </sensorTarget>
= & ” <timestamp> 2006-05-31T11:32:46.510+00:00 </>
a it J | | — </header>
8 wait_auction_ended
'} <activityData>

<activity Type>invoke </activityType>

! 41’ <evalPoint> completion </evalPoint> ...
Ea B

winner notify_seller

notify

v

get_buyer_conf get_seller_conf
I |

|
]

9 Monitoring Business Processes with Queries

Introduction & .
BP Execution

Nested set of DAGS:

 Nodes

races as DAGs

11:32:00]

= Activation @

= Completion ©
* Timestamps

* Edges
= Flow

= Zoom-in, -»
Zoom-out

10

11:3300 1

11:36:00

—>

11:39:00]

11:40:00

08:00:00
!

11:34.00 1

11:3500 1

11:37.00

11:38.00 1

wait_auction_ended

1 wait_auction_ended
flow
%¬ify winner oo
= - "] notify_seller
LT3 notify_seller

2get_seller_ack
L

rtiget_seller_ack

% notify_winner
rajget_winner_ack

-

L
Lo

_H'ﬁet_winner_ack
= flow

Monitoring Business Processes with Queries

Query Example (1)

_Too many ?anoe > Use execution patterns
£) Report
= ! <users sy
% $x {$xlusername} u TranSItlve edgeS
; rer nVoks
@ & {unregister($xiiusername)} ‘ *
%?}
: = Transitive nodes
I
&l : 0 *] = Regular expressions
. 1
cancel_bequest cancel_aun_request '%1 Q @
! = Report/ Report*

11 Monitoring Business Processes with Queries

BP-Mon by
Example

Query Example (2)

Monitor response time

(and notify the process to change the db)

lssnoHuonone

$xiipartnerlink="datasto

r.ell

$viipartnerlink="datastore"

- §-o-e

2
Gira

12

Sliding window
= Time based

Report* Every 1 hrs Range 2 hrs
" Instance based

Every 100 entries Range 200 ...

Report

= Local/Global

= Multiple reports
Output format

= XQuery like

= Group by having

Monitoring Business Processes with Queries

Query Example (3)

X10,000 win

When count{-)mod 10000=0

.
* Report*
@ <win>
!

Loijaone yoe.}

<buyer>={$xliuser}<ibuver=
<seller>{$yiiuser}<iseller>

<sale_no>{count(-)}</sale_no:>
& <hwin>
& R
notify_winner notify_seller

x
* (zloh al

13 Monitoring Business Processes with Queries

Query Example (4)

Static and dynamic analysis

RUN SPEC
2 -
O /a o a
E' . E- .
I
C N C L
in ~ [1] s
m '\.\ m .-..-"

$x & Sy .

bid_request bid_request

14 Monitoring Business Processes with Queries

Formal

Wi Queries: Execution Patterns

« EX-trace: nested DAGs

« EX-pattern: EX- trace without timestamps
transitive edges & nodes
‘any’, ‘or’, ‘rep’

A query defines a set of concrete

Ex-patterns obtained by:
*Rep— replacing with arbitrary
number of copies

= Or — choosing an internal trace
& replacing

15 Monitoring Business Processes with Queries

An Embedding

p concrete EX-pattern, e EX-trace.

Definition: An embedding of p into e is a
homomorphism from the nodes/edges in p to
nodes/edges/paths in e s.t.

= node labels match
= edge (transitive)->edge(path), of the same type
= direct edge of transitive nodes = any type

16 Monitoring Business Processes with Queries

A Greedy Embedding

p EX-pattern, e EX-trace, S a set of embeddings of
patterns in concrete(p) into e

Definition(semi-formal): weS is greedy (in S) if:

There is no other embedding vy’ that
agrees with y on the prefix of nep but matches n
with an earlier timestamp

17 Monitoring Business Processes with Queries

The Algorithm

* Incrementally extends a greedy embedding
to one of a larger prefix

« Automaton with Ex-pattern nodes as states

— Tries to match (concurrently) the concrete
patterns of the given EX-pattern

— Attempts to match events as early as possible
— On failure: backtracks & retries

Complexity: polynomial in the size of the trace
(with the exponent determined by the size of the pattern)

18 Monitoring Business Processes with Queries

The Algorithm (cont)

Non-deterministic automaton Deterministic automaton

« Manage simultaneously alarge + Potential exponential growth in
number of active states the size of the automaton

— We provide a hybrid solution

« Lazy DFA
« Small automaton, same size as the pattern
« Relatively few states are simultaneously active

Issues:
+ Backtracking
* Retaining of events

19 Monitoring Business Processes with Queries

Formal Y .
Optimization: Irrelevance & Inconsistency

Let S be a BP specification, o an activity in S

Definitions (semi-formal):

= Activity ois irrelevant to query node n

« if there is no EX-trace of S where it participates in an
embedding.

= Activity ois inconsistent with EX-pattern p

« if p cannot be embedded into any EX-trace of S that
contains an activation event of o.

Algo uses BP-QL [VLDBO06] for spec analysis

20 Monitoring Business Processes with Queries

Formal

Wi Optimization (example)

aucticlnHouse
=0 w _
0 5 ®
} o v
5 I 2
: 2
regjster i register
é
1 Il & g I

7
40
o
I_‘
=
-
=]
0
]
7]
(7]
(=)
(]
I-‘
=
-
=]
0
]
7]
7]

g ' g '
g ' g '
! P ' ! by A '
I:H:Iii I:H:Iii J 1 J 1
g ' g '
P ' L A '

cancel_bid_request cancel_auction_request

A X4

seller_process E

behavior

BP-QL query (on spec)

21 Monitoring Business Processes with Queries

Architecture

A monitoring query is compiled into a BPEL process

Visual query editor

Optimizer
(BP-QL) Query translator

deploy

subscription

requests v
Business process | Query process
process|invocation Dispatcher ::\;?ak:czew
events il
Process instance ——la{=Tolo] 4
| events BT 3 generator
BPEL Application Server streams

22 Monitoring Business Processes with Queries

implementation Visual Interface

£~ BMon perespective - BMon Document Editor - Eclipse Platform E -8l xl
File Edit Mavigate Search Project Runm BPQL Window Help Edit J Deploy & 7 | [BMon perespe...

CYRERNGEE| e occuner soor NG | S—— =
- S =
9
N

& I*O
LT AuctionHouse

BB Auction
=| Auction proj

k=]

wa) ppe
K-

3
W
3
: a : =[]
add_item_request | X | S : _ : £ ; i =
I + Im 5 File Edit Mavigate Search Project Run BPOL ‘Window Help Deploy o E) Il BMan perespe...
0 1
g E @ receive) = = o =
o K g‘ |m cancel auchon TN 8 || 3 BPE L Document Editor RS e m|
C =
=) =[] @« 4 =3 | C
Br x 3| add_jtem_to_db | M | S v C —
E g ¥ L + g g m | } Transition q .
=8 |1 _ Creation o ‘ Report
Property | Yalue 4 |« " T - 5
d CEAEEECH- X =3 | 2 [cancel_auction| = 5 L Siple st #|| | 3. $x- <user>
Mame MANGHE_aU . Ly (C + O AuctionHouse || [0 assi o recaivd {$x.username}
confirm_add_item o - : = < ist -
Type compound — — 3 LT Gueries w register
8 4% invoke hiJ <luser>
E confirm_cance <4 reply @
A | 4 receive %
track_auction @ a
LA wait 1
((williat ol T 2 |
Sp = = 5|l Composit.,, # g
_gﬂ @
B }:b = D@ SCOpe g i
Proéerti I Yalue switch l L ’ —
) while recsivg * ' Hi‘:_iE
@) = cancel_bid_request cancel_auction_request i
pic
12 flow
— v
|~ other obij... # !
@ o :
A ol ©

23 Monitoring Business Processes with Queries

24

Experiments F

esults

Sec
2800
@ 2000 [
N O without
1500
.5 @ processes
§ 1000 B fUeries
2 & 3-queries
3 500 A
D i T T T T T T T T
& 10 15 20 25 30 3% 40 45 A0
number of instances
Queries overhead
sec
2500
e ’
S 2000 4+ I
£ i
.g 1500 4— \ O without
§] B processes
5 00T | W queries
g 50 \
= !
D T T T T T T T T T : T T T T T T T T T T
01 03 05 07 09 11 13 15 1.7 189
average queries’ process

Effect of queries per process

sec
3000

2500

2000 4
1300 +
1000 1
500

query execution time

10 20

J0 40 500 60 TO G0 50 100
% of queried activities

O without
E processes
B gueries

Effect of % of queried activities

execution time

sec

4500
4000

3a00

3000

2500
2000

1300

1000

500 Di
0+

5 10

19 20 25 30 35 40 45 40
number of instances

| optimized
@ non-optimized

Impact of optimization

Monitoring Business Processes with Queries

InlJEgClellal Experiments Results: Queries Overhead

Each process: 200 activities, 40% queried
Query: report*, 3 reports

sec

2500
¢ 2000
,E O without

1500
.E [processes
E 1000 B fUEries
a B 3-gueries
g 500]E :

I:I |_|_EI’7 I I I I 1 1 1 I

5 10 15 20 2% 50 35 40 43 a0
number of instances

25 Monitoring Business Processes with Queries

Conclusion

= User friendly query language for monitoring BPs:
* Graphical and intuitive (wizard)

= Semantics:

* Early match (greedy), all matches
= Algorithm

* Lazy DFA

* |rrelevancy & inconsistency

" Implementation
* Compiles into BPEL=>
Easy deployment, portability, and minimal overhead

26 Monitoring Business Processes with Queries

Ongoing and Future Work

" Querying/mining logs
* Incomplete information

= Application to software monitoring and
verification

" More optimization

27 Monitoring Business Processes with Queries

Thank you !

