

VLDB 2007

33rd International Conference on Very Large Data Bases September 23-27 2007, University of Vienna, Austria

Reasoning About the Behavior of Semantic Web Services with Concurrent Transaction Logic

33rd International Conference on Very Large Data Bases (VLDB)

September 23-27 2007, Vienna, Austria

Dumitru Roman¹ and Michael Kifer²

¹University of Innsbruck / DERI Innsbruck, Austria ²State University of New York at Stony Brook, New York, U.S.A. <u>dumitru.roman@deri.at, kifer@cs.sunysb.edu</u>

Semantic Web Services

SWS Approaches: OWL-S, SWSF, WSMO, SAWSDL, etc.

- Motivation
 - Service behavior: modeling, reasoning, and enactment
- Introduction to Concurrent Transaction Logic (CTR) (we use it to do stuff)
- Service modeling with CTR
 - Control Flow
 - Events and Constraints
 - Data Flow and Conditional Control Flow
- Reasoning about choreography and contracts
 - Phase 1: Transformation
 - Phase 2: Extended Proof Theory
- Related Work
- Conclusions

• Motivation

 Service behavior: modeling, reasoning, and enactment

- Introduction to Concurrent Transaction Logic (CTR)
- Service modeling with CTR
- Reasoning about choreography and contracts
- Related Work
- Conclusions

Modeling & Reasoning About Service Behavior

Example: (Conditional) Control and Data Flow Graphs & Constraints

- Motivation
 - Service behavior: modeling, reasoning, and enactment
- Introduction to Concurrent Transaction Logic (CTR)
- Service modeling with CTR
- Reasoning about choreography and contracts
- Related Work
- Conclusions

Introduction to CTR

- An extension of the classical predicate logic to program and reason about state changes
 - Reduces to classical logic when no state transitions
 - *Atomic formulas* of CTR are identical to those of the classical logic:
 - $p(t_1, t_2, ..., t_n)$ where p is a predicate symbol, the t_i 's are function terms
 - More complex formulas are built using connectives and quantifiers
- Informal semantics
 - A set of database *states*
 - E.g. $s_1, s_2, ..., s_n$
 - A collection of *paths* (sequences of states)
 - E.g. $< s_1 >$, $< s_1$, $s_2 >$, $< s_1$, s_2 , ..., $s_n >$
 - Truth value of CTR formulas is determined over paths, *not* at states
 - E.g. if a formula *a* is true over a path < *s*₁, *s*₂, ..., *s*_n >, it means that *a* can "*execute*" starting at state *s*₁, change to state *s*₂, *s*₃ ..., etc. Will terminate at state *s*_n

- Countable sets of symbols
 - predicate symbols
 - function symbols
 - variables
- Logical connectives
 - $-a \otimes b$ execute *a* then execute *b*
 - $-a \mid b a$ and b must both execute concurrently in an interleaved fashion.
 - $-a \wedge b a$ and *b* must both execute along the *same* path
 - $a \lor b$ execute *a* or execute *b* non-deterministically
 - $\neg a$ execute in any way, provided that this will *not* be a valid execution of *a*
 - $\bigcirc a$ execute *a* in isolation execution i.e., without interleaving with other concurrently running activities
- Example: $a \otimes (b \mid (c \otimes (d \lor (e \otimes f)))) \otimes g$

Concurrent-Horn Subset of CTR

- Concurrent-Horn *goals*:
 - Any atomic formula is a concurrent-Horn goal
 - $a \otimes b$, $a \mid b$, and $a \lor b$ are concurrent-Horn goals, if so are a and b
 - $\odot a$ is a concurrent-Horn goals, if so is a
- Concurrent-Horn *rules*
 - CTR formulas of the form *head* <- *body* (i.e. *head* $\lor \neg$ *body*), where *head* is an atomic formula and *body* is a concurrent-Horn goal
 - *head* can be viewed as a subroutine name: one way to execute *head* is to execute its definition, *body*
- Example:

 $Process \leftarrow a \otimes (b \mid Subproc) \otimes g$ $Subproc \leftarrow (c \otimes (d \lor (e \otimes f)))$

• An SLD-like proof procedure proves concurrent Horn formulas and *executes* them at the same time

CTR – Elementary State Transitions

- Propositions that represent "built-in" state transitions
 - Usually we use the following elementary state transitions: insert.p and delete.p
 - insert.p: add fact p to the current state
 - delete.p: delete fact p from the current state
 - We also use elementary transitions to represent events that happen during workflows: *place_order*, *delivery*, etc.

- Motivation
 - Service behavior: modeling, reasoning, and enactment
- Introduction to Concurrent Transaction Logic (CTR)

• Service modeling with CTR

- Control Flow
- Events and Constraints
- Data Flow and Conditional Control Flow
- Reasoning about choreography and contracts
- Related Work
- Conclusions

Modeling Service Choreography with CTR (Control Flow Graphs & Data Flow)

path $\equiv \Psi \lor \neg \Psi$

- Motivation
 - Service behavior: modeling, reasoning, and enactment
- Introduction to Concurrent Transaction Logic (CTR)
- Service modeling with CTR
 - Control Flow
 - Events and Constraints
 - Data Flow and Conditional Control Flow
- Reasoning about choreography and contracts
- Related Work
- Conclusions

Constraint Algebra

- 1. Primitive constraints
 - Event *e* must happen ∇e
 - Event *e* must not happen $\neg \nabla e$
- 2. Immediate serial constraints
 - Events $e_1, e_2, ..., e_n$ must happen next to each other with no other events in-between $\nabla \odot (e_1 \otimes e_2 \otimes e_3 \otimes ... \otimes \nabla e_n)$
- 3. Serial constraints
 - Events $e_1, e_2, ..., e_n$ must execute (or not execute) in that order with possible interleaving $\nabla e_1 \otimes \neg \nabla e_2 \otimes \nabla e_3 \otimes \neg \nabla e_4 \otimes ... \otimes \nabla e_n$
- 4. Complex constraints
 - If C_1 , C_2 are constraints then so are $C_1 \wedge C_2$, and $C_1 \vee C_2$

 $\nabla a \equiv path \otimes a \otimes path$

Constraints Expressivity Examples

- Events *e* and *f* must both occur (in any order)
 - $\nabla e \wedge \nabla f$
- It is not possible for *e* and *f* to happen together
 - $\neg \neg \nabla e \lor \neg \nabla f$
- If event e occurs, then f must also occur (before or after e)
 - $\neg \ \neg \ \nabla e \lor \nabla f \ ; \ \ \nabla e \to \nabla f$
- If event *e* occurs, then *f* must occur later $\neg \nabla e \lor (\nabla e \otimes \nabla f)$; $\nabla e \to (\nabla e \otimes \nabla f)$
- If event *f* has occurred, then event *e* must have occurred some time prior to that $\neg \nabla f \lor (\nabla e \otimes \nabla f)$
- If both e and f occur, then e must come before f
 - $\neg \nabla e \vee \neg \nabla f \vee (\nabla e \otimes \nabla f) \quad ; \quad (\nabla e \wedge \nabla f) \rightarrow (\nabla e \otimes \nabla f)$
- If event *e* occurs, then *f* must occur right after *e* with no event in-between $- \neg \nabla e \lor \nabla \odot (e \otimes f)$
- If k and d both occur then d must happen right after k with no other event in-between
 - $\neg \nabla k \vee \neg \nabla d \vee \nabla \odot (k \otimes d) \quad \left(\text{or} \quad (\nabla k \wedge \nabla d) \to \nabla \odot (k \otimes d) \quad \right)$

Service Constraints: Example

Service policy

- 1. If pay_CC (pay by credit card) takes place after accepting delivery then giving security must precede delivery
- If pay_chq takes place after accepting delivery then pay_chq (paying by cheque) immediately follows delivery
- 3. If rebate is given then pay must precede accepting delivery

Client contract requirements

4. The interaction of accepting delivery must precede pay_chq

- 1. $\exists Order # \exists Price$
 - $((\nabla delivery(Order\#) \otimes \nabla pay_CC(Order\#, Price)) \rightarrow (\nabla security(Order\#, Price) \otimes \nabla delivery(Order\#)))$
- 2. ∃ Order# ∃ Price ((\not delivery(Order#) \otimes \not pay_chq(Order#, Price)) → \not \otimes (delivery(Order#) \otimes pay_chq(Order#, Price)))
- 3. $\exists Order \# \exists Price$ $(\nabla rebate(Order \#) \rightarrow (\nabla pay(Order \#, Price) \otimes \nabla delivery(Order \#)))$
- 4. ∃ Order# ∃ Price (∇delivery(Order#) ⊗ ∇pay_chq(Order#, Price))

- Motivation
 - Service behavior: modeling, reasoning, and enactment
- Introduction to Concurrent Transaction Logic (CTR)
- Service modeling with CTR
 - Control Flow
 - Events and Constraints
 - Data Flow and Conditional Control Flow
- Reasoning about choreography and contracts
 - Phase 1: Transformation
 - Phase 2: Extended Proof Theory
- Related Work
- Conclusions

Constraints Implied by Data Flow

Reduction of Conditional Control Flows

Can propagate constraints and reduce control flows by eliminating (or flagging) impossible parts.

- Motivation
 - Service behavior: modeling, reasoning, and enactment
- Introduction to Concurrent Transaction Logic (CTR)
- Service modeling with CTR
 - Control Flow
 - Events and Constraints
 - Data Flow and Conditional Control Flow

Reasoning about choreography and contracts

- Related Work
- Conclusions

Reasoning About Service Behavior

- *Contracting*: determine if contracting for the service is possible
 - Find out if there is an execution of the CTR formula $G \land C$ given the set of service choreography definitions R, i.e.
 - Check that there is a path s_1 , s_2 , ..., s_k such that (\models is CTR entailment)

$$R, s_1, \ldots, s_k \models G \land C$$

- Enactment
 - Find a constructive proof that

 $R, s_1, ..., s_k \models G \land C$ for some path $s_1, ..., s_k$

• Each such proof is a way to execute the choreography so that all the constraints are satisfied

Solution – Overview

- Phase 1
 - Aim: get rid of primitive constraints and distribute disjunctions
 - Translate the formula $G \wedge C$ into an equivalent formula

 $\bigvee_i (G_i \land_j serialConstr_{i,j})$

where each $serialConstr_{i,j}$ is either an immediate serial constraint or a (plain) serial constraint, and G_i is a concurrent-Horn goal

- Each step in this transformation can be viewed as an inference rule in a proof theory
- Phase 2
 - Extend the proof theory of Horn CTR to formulas of the form

 $G \wedge_j serialConstr_j$

which result from the Phase 1. Then use proof theory on these formulas

• If a proof is found, then enactment of the service is possible

- Motivation
 - Service behavior: modeling, reasoning, and enactment
- Introduction to Concurrent Transaction Logic (CTR)
- Service modeling with CTR
 - Control Flow
 - Events and Constraints
 - Data Flow and Conditional Control Flow
- Reasoning about choreography and contracts
 - Phase 1: Transformation
 - Phase 2: Extended Proof Theory
- Related Work
- Conclusions

Phase 1 – Normal Form Transformation

• Applying Complex Constraints

 $\begin{array}{rcl} T \wedge (C_1 \vee C_2) & \vdash & (T \wedge C_1) \vee (T \wedge C_2) \\ T \wedge (C_1 \wedge C_2) & \vdash & (T \wedge C_1) \vee (T \wedge C_2) \end{array}$

• Applying Primitive Constraints

$(\alpha \land \nabla \alpha) \vdash$	α				
$(\beta \land \nabla \alpha) \vdash$	$\neg \texttt{path}$	if $\alpha \neq \beta$			
$(\alpha \land \neg \nabla \alpha) \vdash$	$\neg \texttt{path}$				
$(\beta \land \neg \nabla \alpha) \vdash$	β	if $\alpha \neq \beta$			
$(T \otimes K) \land \nabla \alpha$ $T \otimes K \land \neg \nabla \alpha$	$\vdash \begin{cases} (T \land \alpha) \\ T \otimes (K) \end{cases}$ $\vdash (T \land \neg \nabla \alpha)$	$\otimes K$ if α occurs in T $\wedge \alpha$) if α occurs in K $\otimes (K \wedge \neg \nabla \alpha)$	$(T \mid K) \land \neg \nabla \alpha$	+	$(T \land \neg \nabla \alpha) \mid (K \land \neg \nabla \alpha)$
$(T \ \ K) \wedge \alpha$	$\vdash \begin{cases} (T \land \alpha) \\ T \mid (K) \end{cases}$	$ K if \alpha \text{ occurs in } T$ $\wedge \alpha) if \alpha \text{ occurs in } K$	$\odot T \land \sigma$ $(T \lor K) \land \sigma$	F	$\odot(T \land \sigma, T)$ $(T \land \sigma) \lor (K \land \sigma)$

- The result of the transformation can be one of:
 - $\neg path$, i.e. inconsistency
 - Enactment is not possible
 - A formula of the form $\bigvee_i (G_i \land_j serialConstr_{i,j})$
 - Scheduling might be possible; apply Phase 2 for each $G_i \wedge_j serialConstr_{i,j}$ separately

- Motivation
 - Service behavior: modeling, reasoning, and enactment
- Introduction to Concurrent Transaction Logic (CTR)
- Service modeling with CTR
 - Control Flow
 - Events and Constraints
 - Data Flow and Conditional Control Flow
- Reasoning about choreography and contracts
 - Phase 1: Transformation
 - Phase 2: Extended Proof Theory
- Related Work
- Conclusions

Phase 2 – Extended Proof Theory

- A proof theory for formulas of the form $G \wedge_i serialConstr_i$
- Two steps
 - 1. Check constraints for internal consistency and eliminate redundancy
 - If the constraints are consistent, then go to next step, which is based on inference rules
 - 2. Inference rules

Phase 2, Step 1 – Constraint Graphs

- - Inconsistency patterns (capture all inconsistencies)

Phase 2, Step 1 – Redundancy Elimination & Well Formed Constraint Graphs

Phase 2, Step 2 – Inference Rules

Applying transaction definitions
- if a <- b is in P then

 $\begin{array}{c} P, D \dashrightarrow \vdash (\exists) (\psi' \land C') \sigma \\ \hline P, D \dashrightarrow \vdash (\exists) \psi \land C \end{array}$

 ψ' is ψ with some occurrence of *a* replaced with *b*; *C'* is *C* after deleting *a* and splicing edges adjacent on *a*

- Querying the database
 - if *a* is a database predicate in ψ and *D* | = *a* then

 $\begin{array}{c} P, D \dashrightarrow \vdash (\exists) (\psi' \land C) \sigma \\ \hline P, D \dashrightarrow \vdash (\exists) \psi \land C \end{array}$

 ψ' is ψ with some occurrence of *a* deleted

Phase 2, Step 2 – Inference Rules (Cont'd)

- Executing elementary updates
 - If *a* is an elementary update s.t. $D_1 a > D_2$ then

 $\frac{P, D_2 \dots \vdash (\exists) (\psi' \land C') \sigma}{P, D_1 \dots \vdash (\exists) \psi \land C}$

 ψ' is ψ with some occurrence of *a* deleted *C'* is *C* after deleting some nodes (details omitted)

- Executing atomic transactions
 - If $\odot \alpha$ occurs in ψ then

 $\begin{array}{c} P, D & \dashrightarrow \vdash (\exists) \ (\alpha \otimes \psi') \land C \\ \hline P, D & \dashrightarrow \vdash (\exists) \ \psi \land C \end{array}$

 ψ' is ψ with some occurrence of $\odot \alpha$ deleted

- Motivation
 - Service behavior: modeling, reasoning, and enactment
- Introduction to Concurrent Transaction Logic (CTR)
- Service modeling with CTR
 - Control Flow
 - Events and Constraints
 - Data Flow and Conditional Control Flow
- Reasoning about choreography and contracts
 - Phase 1: Transformation
 - Phase 2: Extended Proof Theory

Related Work

• Conclusions

Related Work

- Service contracting
 - Existing work focuses on defining frameworks, models, and architectures different aspects and phases of e-contracting (negotiation, enforcement, violation detection, monitoring, legal aspects)
 - We provide a simple yet realistic and useful framework for e-contracting
 - Solve a *concrete* problem in establishing of contracts and enacting Web services
- Workflow/process modeling
 - Many languages for process modeling, e.g. YAWL, DecSerFlow
 - Ours is as expressive as DecSerFlow, and additionally integrates with conditional control flows, data flows, provides reasoning mechanisms
- Process verification
 - Most of the existing approaches use model checking for verification
 - Complexity exponential in the size of the control graph
 - CTR's integrates several process modeling paradigms: conditional control flows, data flows, hierarchical modeling, constraints
 - *Complexity polynomial in the size of the control graph* and exponential in the size of the constraints (due to better structuring of the problem)

- Motivation
 - Service behavior: modeling, reasoning, and enactment
- Introduction to Concurrent Transaction Logic (CTR)
- Service modeling with CTR
 - Control Flow
 - Events and Constraints
 - Data Flow and Conditional Control Flow
- Reasoning about choreography and contracts
 - Phase 1: Transformation
 - Phase 2: Extended Proof Theory
- Related Work
- Conclusions

Conclusions

- Formulated the problems of choreography, contracting, and enactment for semantic Web services using Concurrent Transaction Logic
 - complex set of constraints
 - data flow and conditional process controls
 - extended CTR proof theory
- Presented reasoning techniques for
 - deciding if automatic contracting for a service is possible
 - finding a choreography that obeys the policy of the service and the user requirements of the contract
 - enacting the service
- Can be extended to multi-party contracts
- Possible extensions
 - more expressive interaction patterns, e.g. loops
 - subsets of constraints for which the verification problem has a better complexity

Very Large Data Bases

VLDB 2007

33rd International Conference on Very Large Data Bases September 23-27 2007, University of Vienna, Austria