Reasoning About the Behavior
of Semantic Web Services
with Concurrent Transaction Logic

33rd International Conference on Very Large Data Bases (VLDB)
September 23-27 2007, Vienna, Austria

Dumitru Roman?! and Michael Kifer?

IUniversity of Innsbruck / DERI Innsbruck, Austria
2State University of New York at Stony Brook, New York, U.S.A.
dumitru.roman(@deri.at, kifer@cs.sunysb.edu

STONY
BREWSK

UNIVERSITY

mailto:dumitru.roman@deri.at
mailto:kifer@cs.sunysb.edu

Semantic Web Services

o " Describe service
N =TI formally
Invoke & - -

Monitor services

R - Publish service

Service

description
Description
Service
Enactment &
Monitoring
Locate
services
Service
Composition
Service N~ @00
Combine TR . e
services N Egl_ltlﬂ tion & eRIITILILIIT T - Choose service,

agree on details

Contractin

SWS Approaches: OWL-S, SWSF, WSMO, SAWSDL, etc.

26.09.2007

Outline

* Motivation
— Service behavior: modeling, reasoning, and enactment

e Introduction to Concurrent Transaction Logic (CTR)
(we use it to do stuff)

* Service modeling with CTR

— Control Flow

— Events and Constraints

— Data Flow and Conditional Control Flow

* Reasoning about choreography and contracts

— Phase 1: Transformation
— Phase 2: Extended Proof Theory

 Related Work
 (Conclusions

26.09.2007

Outline

e Motivation

— Service behavior: modeling, reasoning, and
enactment

26.09.2007

Modeling & Reasoning About
Service Behavior

Service
Provider
) . T TN
Service Behavior f Service
Cli ™ Reasoner |Choreography
ient
N Contracting
| Contract i
| reqmrememi Enactment

. /

26.09.2007

Example: (Conditional) Control and Data Flow
Graphs & Constraints

Service
Provider
. . - T TN
Service Behavior [Service
Reasoner |Choreography

Client

3 Contracting
| Contract
|requirements Enactment
— A — /

;l—/

-

\
Service ‘

Policy
v

P o
7
7
7/

possible?

Client contract requirements

4. The interaction of accepting delivery must precede pay_chq

26.09.2007

Is this contract’s execution

/ delivery
4

return——®-partial refund
e N
VA

OR

give guarantor:

\ pay pay CC —
C#
< Order #
N ~ Order # cC#
N
N Order #
N
N -~
N
N
N
N
N

Service policy

. If pay_CC (pay by credit card) takes place after accepting
delivery then giving security must precede delivery

. If pay_chq takes place after accepting delivery then
pay_chq (paying by cheque) immediately follows delivery

. If rebate is given then pay must precede accepting delivery

Outline

e Introduction to Concurrent Transaction
Logic (CTR)

26.09.2007

Introduction to CTR

* An extension of the classical predicate logic to program and
reason about state changes
— Reduces to classical logic when no state transitions
— Atomic formulas of CTR are 1dentical to those of the classical logic:

e p(t;, 15 ..., t,) — where p is a predicate symbol, the #'s are function terms
« More complex formulas are built using connectives and quantifiers

* Informal semantics
— A set of database states
e E.g.5, 82 ..., Sy
— A collection of paths (sequences of states)
e E.g. <s;> <s§y 85>, <882 .., Sp >
— Truth value of CTR formulas is determined over paths, not at states

« E.g.if a formula a is true over a path < s, s», ..., 5, >, it means that a can
“execute’ starting at state s;, change to state s, 53 ..., etc. Will terminate at
state s,

26.09.2007

CTR Syntax

* Countable sets of symbols
— predicate symbols

function symbols
variables

* Logical connectives

a ® b —execute a then execute b

a | b — a and b must both execute concurrently in an interleaved fashion.
a /\ b — a and b must both execute along the same path

a \/ b — execute a or execute b non-deterministically

—a — execute in any way, provided that this will not be a valid execution
of a

©a - execute a in 1solation execution i.e., without interleaving with
other concurrently running activities

« Example: a® (b |(c®(dv(e®f)))®g

26.09.2007

Concurrent-Horn Subset of CTR

Concurrent-Horn goals:
— Any atomic formula is a concurrent-Horn goal

— a®b,a|b, and a\V b are concurrent-Horn goals, if so are a
and b

— @a 1s a concurrent-Horn goals, if so 1s a

Concurrent-Horn rules

— CTR formulas of the form head <- body (i.e. head \/ — body),
where head 1s an atomic formula and body is a concurrent-
Horn goal

* head can be viewed as a subroutine name:
one way to execute head is to execute its definition, body

Example:

Process <+ a® (b | Subproc) ® g
Subproc « (c® (dv (e®f)))

An SLD-like proof procedure proves concurrent Horn
formulas and executes them at the same time

26.09.2007 10

CTR - Elementary State Transitions

* Propositions that represent “built-in” state
transitions

— Usually we use the following elementary state
transitions: insert.p and delete.p

* insert.p: add fact p to the current state
e delete.p: delete fact p from the current state

— We also use elementary transitions to represent
events that happen during workflows: place order,
delivery, €tC.

26.09.2007 11

Outline

« Service modeling with CTR
— Control Flow

26.09.2007

12

Modeling Service Choreography with CTR
(Control Flow Graphs & Data Flow)

return—®partial_refund
s

delivery
4

\ security

___wpay _chq~
—

\ pay

Order #
Order #

Order #

CC#

26.09.2007

path=% VY
place_order(Order$t, Price) «—
([(delivery(Order#) & (refund{Order#) W path))
| (security(Order#t, Price) V path)
| poy(Orders, Price)
) @ (rebate(Ordergt) v path) @ end
security{Orderds, Price) «—
give_guarantor(Orderdt) W
{ groe_C'C{Order#, CCH#)&
eredit_limit{CCH#, Limit) @ Limit > Price)
pay(Orderdt, Price) «—
4 pay_chq(Ordergt, Price) V pay_CC(Orderst, Price)
/) refund|(Order#t) «—
return{Order#t) @ partial_re fund(Order#t)
partial_re fund(Order#) «—
(payment|{Orderdt, co, CC#)@
refund_amount(Orderdt, Amount)@
issue_credit_C'C(CC#, Amount))

k"

[payment|Orderzt, chegque, Chegues)i
refund_amount(Orderdt, Amount)i
send_check{Orders#t, Amount))

give UC (Orderdt, CUFE) +—
insert.payment|Order#£, co, CC#)
pay_chg(Orderdt, Price) «—
get_chegue| Price, Chequedf)@
insert.payment|Order#£, cheque, Chegquedt)
pay_ OO {(Orderdt, Price) +—
payment(Orderdt, cc, CC#) & charge(CCH#, Price)

13

Outline

* Service modeling with CTR

— Events and Constraints

26.09.2007

14

Constraint Algebra

. e) V a =path ® a ® path
1. Primitive constraints

— Event e must happen ve
— Event e must not happen Ve

2. Immediate serial constraints

— Events ¢e;, ey, ..., e, must happen next to each other with no
other events in-between Vo(e, ®e, ®e, ®... ®Ve,)

3. Sernial constraints

— Events ¢, e, ..., e, must execute (or not execute) in that
order with possible interleaving ve, ®-ve, ®ve, ®-Ve, ®... ®Ve,

4. Complex constraints
— If C,, C; are constraints then so are C;/\ C,, and C,;VC;

26.09.2007 15

Constraints Expressivity Examples

Events e and f must both occur (in any order)
— VeAVf
It is not possible for e and fto happen together
— aVeV-Vf
If event e occurs, then f must also occur (before or after e)
— VeV Vf; Ve— Uf
If event e occurs, then f must occur later
— VeV (Ve@Vf) ; Ve — (Ve @ Vf)
If event f'has occurred, then event e must have occurred some time prior to that
— AVfV(Ve@Vf)
If both e and f occur, then e must come before f
— VeV VEV(Ve®@Vf) ; (VeAVf) — (Ve® Vf)
If event e occurs, then f must occur right after e with no event in-between
— VeV VY& (e@ f)
If k and d both occur then d must happen right after £ with no other event in-between
— vkv-avdvvoekad (O (VEAVD) —=vVe(ked)

26.09.2007 16

Service Constraints: Example

Service policy 1. 3 Ordergt 3 Price |
. If pay_CC (pay by credit card) takes place after accepting ((?dehver.yl:f_?'rder#:‘l & ?Pay_{:_-'{fl:{:'r.der#f P?‘zce].jl -
(Vsecurity(Order#t, Price) @ Vdelivery(Order$)))

delivery then giving security must precede delivery 2. 3 Order# 3 Price
. If pay_chq takes place after accepting delivery then ((?dehvéry(ﬂrder#] @ Vpay_chq(Order#, Price)) —
pay_chq (paying by cheque) immediately follows delivery “ ¥ @ (delivery{Orderdt) @ pay_chg|{Order#, P?‘ice:l:lj
. If rebate is given then pay must precede accepting delivery 3. 4 Orderst J Price

(Vrebate(Order#t) —

e . (Vpay(Orderdt, Price) & ?deiit'eryl:ﬁjrder#jjj
Client contract requirements 4. 3 Order# 3 Price

. The interaction of accepting delivery must precede pay_chq (‘Fdeh very(Orderdt) @ Vpay_chg(Orderdt, P?‘icejj

26.09.2007 17

Outline

e Service modeling with CTR

— Data Flow and Conditional Control Flow

26.09.2007

18

Constraints Implied by Data Flow

C#

Order #

Order # CC#H

1. 4 Order# 4 CC+# 3 Price
((Vgive_ CC(Orderd#, CC#) N Vpay_CC(Order#, Price)) —
(Vgive_CC(Order#,CC#) @ Vpay_CC(Order#, Price)))
2. 34 Order# 3 Price
((Vgive_CC(Order#, Price) A Vpartial_refund(Order#)) —
(Vgive_CC(Order#, Price) @ Vpartial_refund(Order#)))

Order #

26.09.2007

Reduction of Conditional Control Flows

d—X>1
Oor 7R
Y= 17C, Zyme” X =0

b~ SAND X
Ty — N >N
a<\OR g P, =) a »m—JAND _®p >q

~ ’r] T ,K_'__j:: ! 4 :-' X=1 Y=< -(-j--'ig.........
N
X >IN, e S '

Can propagate constraints and reduce control flows by eliminating
(or flagging) impossible parts.

26.09.2007 20

Outline

» Reasoning about choreography and contracts

26.09.2007

21

Reasoning About Service Behavior

* Contracting: determine 1f contracting for the service is
possible

— Find out if there 1s an execution of the CTR formula G \ C
given the set of service choreography definitions R, 1.e.

e Check that there 1s a path s, s, ..., sk such that (|= 1s CTR
entailment)

R, s;, ..., Sk |=G/\ C
e Enactment
— Find a constructive proof that
R, s;, ..., Sk |= G /\ C for some path s, ..., s

» Each such proof 1s a way to execute the choreography so
that all the constraints are satisfied

26.09.2007 22

Solution — Overview

Phase 1

— Aim: get rid of primitive constraints and distribute disjunctions
— Translate the formula G /A C into an equivalent formula
VA G;)\ serialConstr;)

where each serialConstr;;1s either an immediate serial constraint or a
(plain) serial constraint, and G; is a concurrent-Horn goal

» Each step in this transformation can be viewed as an inference rule in a
proof theory

e Phase 2

— Extend the proof theory of Horn CTR to formulas of the form
G /\ serialConstr;

which result from the Phase 1. Then use proof theory on these formulas
 If a proof is found, then enactment of the service is possible

26.09.2007 23

Outline

e Reasoning about choreography and contracts
— Phase 1: Transformation

26.09.2007

24

Phase 1 — Normal Form Transformation

« Applying Complex Constraints

TA(CLVCa) F (TACHV(TAC)
TA(CLACY) b (TACH)V(TAC)

* Applying Primitive Constraints

(Vo) F o

(#Anva) F -path if oo #= 3
(v A Vea) F —path
(Gn-va) F 38 ifa#£4

(T KA Ta F { (T'rna)ya K if o occurs in T
- @R T (KAa) if o occurs in K (T | K)A=Ya F (T A-%a) | (K A-Ya)
TeaKa-va bk (T'A-Va)@ (K A-vVa) oT Mg Foa(T A, T)

(T | K)ra (I'ra) | K ifo occursin T (Tv Kyro F (Tae)v (K Aa)
i ' f | | h- Soor) r'_ll"rr BOCUrs in .ﬁ,—

e The result of the transformation can be one of:

— Tpath, 1.e. Inconsistency
* Enactment is not possible

— A formula of the form V(G; /\; serialConstr; ;)
 Scheduling might be possible; apply Phase 2 for each G; /\; serialConstr;;separately

26.09.2007 25

Outline

e Reasoning about choreography and contracts

— Phase 2: Extended Proof Theory

26.09.2007

26

Phase 2 — Extended Proof Theory

* A proof theory for formulas of the form
G /\; serialConstr;

 Two steps

1. Check constraints for internal consistency and eliminate
redundancy

« If the constraints are consistent, then go to next step, which is
based on inference rules

2. Inference rules

26.09.2007 27

Phase 2, Step 1 — Constraint Graphs

e Constraint graph o N vk
" N 4
a /.‘ ~a [
) c h—?l
1b-’ f . g

{(Violewdwe) . Vo (feae) VauVbaVd,
Vh @ Viw Vk, Ve VT @ Vk}

Inconsistency patterns (capture all inconsistencies)

d C d C d
N AN
4 e 4a c b
\ |
b ‘ '

\bP a— »¢

{"F -_(a;-;{:).\?-..{c;-;e)). {\— [’a:--; b))j\?_.' {ax c): {\— {cx d b), Vi (a-.‘--i e_)_.
VexVbaVa, VdoVa} VdoVa) VeaVa, Ven Vb

26.09.2007 28

Phase 2, Step 1 — Redundancy Elimination
& Well Formed Constraint Graphs

d d
/\ N) / N
Y a4
d
d AC «C
4 ! .. /
-b/ G
a a -

26.09.2007 29

Phase 2, Step 2 — Inference Rules

Applying transaction definitions
—1f a<-b 1sm P then

P.D—+(@) W AC)a
P.D—F (3 v AC

v~ 1s ¢y with some occurrence of a replaced with b;
C” 1s C after deleting a and splicing edges adjacent on a

Querying the database

— if a 1is a database predicate in y and D |=a then

P.D —+(3) (W AC)o
P.D—F(3) 0 AC

v~ 1s ¢y with some occurrence of a deleted

26.09.2007 30

Phase 2, Step 2 — Inference Rules (Cont’d)

» Executing elementary updates
— If a 1s an elementary update s.t. D, —a—> D, then

P,D; —+@) (W AC)a
P,D; —F (3) & AC

v~ 1s y with some occurrence of a deleted

C” 1s C after deleting some nodes (details omitted)

* Executing atomic transactions

— If ®a occurs in y then

P, D —F+ (3) (ax 'y C
P.D—F () AC

v~ 1s y with some occurrence of ®@a deleted

26.09.2007 31

Outline

 Related Work

26.09.2007

32

Related Work

* Service contracting

— Existing work focuses on defining frameworks, models, and architectures
different aspects and phases of e-contracting (negotiation, enforcement, violation
detection, monitoring, legal aspects)

— We provide a simple yet realistic and useful framework for e-contracting
» Solve a concrete problem in establishing of contracts and enacting Web services
* Workflow/process modeling
— Many languages for process modeling, e.g. YAWL, DecSerFlow

— Ours 1s as expressive as DecSerFlow, and additionally integrates with
conditional control flows, data flows, provides reasoning mechanisms

* Process verification
— Most of the existing approaches use model checking for verification
« Complexity exponential in the size of the control graph

— CTR’s integrates several process modeling paradigms: conditional control flows,
data flows, hierarchical modeling, constraints

» Complexity polynomial in the size of the control graph and exponential in the size of
the constraints (due to better structuring of the problem)

26.09.2007 33

Outline

e Conclusions

26.09.2007

34

Conclusions

Formulated the problems of choreography, contracting, and enactment for
semantic Web services using Concurrent Transaction Logic

— complex set of constraints
— data flow and conditional process controls
— extended CTR proof theory
Presented reasoning techniques for
— deciding 1f automatic contracting for a service is possible

— finding a choreography that obeys the policy of the service and the user
requirements of the contract

— enacting the service
Can be extended to multi-party contracts
Possible extensions
— more expressive interaction patterns, e.g. loops
— subsets of constraints for which the verification problem has a better complexity

26.09.2007 35

Thank you!

	Reasoning About the Behavior� of Semantic Web Services�with Concurrent Transaction Logic
	Semantic Web Services
	Outline
	Outline
	Modeling & Reasoning About�Service Behavior
	Example: (Conditional) Control and Data Flow Graphs & Constraints
	Outline
	Introduction to CTR
	CTR Syntax
	Concurrent-Horn Subset of CTR
	CTR – Elementary State Transitions
	Outline
	Modeling Service Choreography with CTR �(Control Flow Graphs & Data Flow)
	Outline
	Constraint Algebra
	Constraints Expressivity Examples
	Service Constraints: Example
	Outline
	Constraints Implied by Data Flow
	Reduction of Conditional Control Flows
	Outline
	Reasoning About Service Behavior
	Solution – Overview
	Outline
	Phase 1 – Normal Form Transformation
	Outline
	Phase 2 – Extended Proof Theory
	Phase 2, Step 1 – Constraint Graphs
	Phase 2, Step 1 – Redundancy Elimination & Well Formed Constraint Graphs�
	Phase 2, Step 2 – Inference Rules
	Phase 2, Step 2 – Inference Rules (Cont’d)
	Outline
	Related Work
	Outline
	Conclusions

