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Problem definition

XML Document XPath Query (twig)
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Data transformation

et tanstortivg tr degfmsessegpaences
* Prufer & Depth-irstisequences..

Rooted, 5 (8) Va

Ordered/—} NPS: 2 5450
labeled 2 LS : DBBCA
tree

. 3 Label Sequence

1. Traverse the tree in post-order (PO)

2./ Remove the node with smallest PO number
Add its label to LS and its parent to NPS
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Data transformation

M5
NPS: 2 4 50 ——> . D
LS : D B CA

1 3

Properties

 Non-redundant complementing sequences
— NPS provides structure

— LS provides labels
e Concise bijective transformation
e Each pair corresponds to an edge
e No pointers => improved ILP
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Tree matching

* Finds the matches of a query Q in a database tree T

e Recasted in to subsequence matching
— If Qis a subtree of T then LS, is a subsequence of LSy

e Consists of 3 steps

— Subsequence checking
o Check if LS is the LCS of LS, and LSy

— Subsequence matching

o Enumerate all the subsequence matches of LS, in LSy

— Structure matching
o Filter the subsequence matches by using NPS, and NPS;
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Subsequence checking

A]&ﬁé&rsng ]LGSQ is a subsequence of LS; or not
— LSq has to be the Longest Common Subsequence of LSy, LSy

e Construct the R matrix
i,j]: length of LCS of prefixes LSy[1..i] and LS¢[1..]]

0, ifi=0grj=0—— LG, —
[ij] = < R[i-1,j-1]+1, ifL83§=LSﬁ] B

B C A
1 3 LS maxBRB-1G3] X[, j-1]), if LS@[l] ﬁsrsl-‘m 1111111
0 q LSeB[1]2[2]2]2
D B
3 o@ynamzc Programming ©oal1]2]2]2 ©)
D ® l
1 2 ILCS(Q,T) |

If ILCS(Q,T)| # QI then Q is not a subtree of T
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Subsequence matching

* Enumerates all the occurrences of LS in LS;
— By backtracking on R from R[m,n]: m=1Q! & n=IT|
* Resulting match: (iy, iy, ..., 1.,), LSu[j]=LS[i]

L @
D 5 B & 4 i, i, 4
T D11 @ ' 1 Subsequence 2® 11 32 53 D
1|2 )
1

B
LSQ B 12 24(__'2 Matches 1 —
grjgz'j\ fﬂ%@\é 2 312 5 DB

—M ~15 : DBA

S CoMsidetrst amtyelahetethisl=rmteighs! folkefpositives
< Prune them by considering the structure (NPS)

' a
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Structure matching

Subsequence match: (i, i,,i5)=(1,3,5)

* Map the structure of Q to the structure formed by
subsequence match (i, ..., i,,)

— Map each edge in Q to an ancestor-descendant in T
— Structure agreement checks at each node in Q
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- 00000000000 ]
Structure agreement check

= At k=m, map the root node to i, without any checks
= Atk=m-1... k=1 (ie., right to left)
— check if k™ parent in Q = nearest mapped ancestor of iy in T

Subsequence match: (i,,1,,1,)=(1,2,5)|Palsd pdsitite

=
DO (N
U1 |w

o k=2: chedkiffrmap{| 2 Sprameantt ]| isamancestordfi=BimTT
o k=1: check if map[ 1’s parent ] is an ancestor of i,=1in T

LCS-TRIM 24-Sep-2007 11



LCS-TRIM

XML
Database

o) =

LCS-TRIM

Queries (Q)

Data

Transformation

T(D)

Inde
T(Q)

Filtering

Index

Construction

T'(D)

Tree Matching

24-Sep-2007

Matched
documents

12




Index

e Selects a subset of trees from the data base
— Tree matching is done only on this subset
e Simple inverted index
S = set of distinct labels in data base
> Tlist (L;)={i/T, contains L, }
L, = Tlist (L,)

LISI - > ThSt (L|S|)

e Given a Q with labels {qu, o, Lqm}
* Tree matching is performed on the following set

Thist(L,;) N ... N Tlist(L,,,)
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Optimizations for tree matching

o Alleviate the computation overhead
* Preserve the correctness

e Reduce the number of recursions
—  Label filtering (LF)
—  Dominant match processing (DOM)

 Reduce the number of false positives

—  Simultaneous subsequence and structure matching
(SIMUL)
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Label filtering (LF)

Observation
Not all the labels in data base tree appear in the query, Q

Strategy
Prune LS; from the labels not in Q
R IS - 1S, —
DB B C A D B B A
D ,, P opl1f11]1
LS, B ; ;> LSom(12]2]2
‘/ A ) \‘ Al11212)3

Benefits

v" Shrinks R making it fit in a few cache lines
v Reduces the number of recursions on R
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I —————
Dominant match processing (DOM)

Observation
Only few entries of R matrix are interesting

Strategy

Identify the entries at which subseq. length is increased

— LS, —>

» -
D - £

| b |

<

Benefits
v Completely eliminates the redundant recursions
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Simultaneous subsequence and structure matching

Observation
Both matching steps operate from right to left

Strategy

As soon as the labels match at k" position,
perform the structure agreement check at k

Benefits

v' Detects the false positives as early as possible
v' Never generates them completely
v' Significantly improves the performance
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Evaluation

e Used a AMD 250 Opteron dual processor system
with 8GB of memory

e Performance results against PRIX [Rao06]
e Evaluated on different data sets and workloads

Dataset # of trees | Max depth
Swissprot 50,000 5
Treebank 52,851 36

DBLP 328,858 6

Cslogs 59,691 85

NLM 450K-1M 8

LCS-TRIM

[Rao06] Sequencing XML Data and Query Twigs for Fast Pattern Matching, TODS, 2006
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Comparison with PRIX

PRIX LCS-TRIM
Data transformation

— Prufer-based but Longer Sequences - Space-efficient representation
— Suffer from redundancy — Absolutely 1o redundancy

Subsequence matching

— Relies on large disk-based indices - Efficient dynamic programming
— Too many probes to the index — Operates on simple matrices

Structure matching
— Multiple stages of refinements — Single pass over the twig
— Each makes a pass over the twig

— Parameter dependent — Parameter free
— Poor locality — Very good locality
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Effect of optimizations - swissprot
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Comparison with PRIX - swissprot

5
10 M Lcs-Trim
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= Subsequence matching in PRIX is way too expensive
= LCS-TRIM is comparable or faster than refinements in PRIX
= Owverall, up to 2-3 orders of magnitude faster than PRIX
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Effect of data base size - NLM

Difference in run time

Index size
°[ T8 Les Trim 0 PRIX 10 | +-Q32 #Q33 Q34 2
m 4 — v M o)
o 3 ] // ] é //
.E / () 6 _
52— | a £ —_—
'-g P = 4
| o] — - — - — | | 0 ——=m — —— —
0.5 1 1.5 2 2.5 0.5 1.0 1.5 2.0 2.5
Data base size (GB) Data base size (GB)
o PRIX
— Index size increases proportionately with data base size
— Workload dependent

e Our index is small & tunable
e Difference in run time increases with data base size
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Effect of workload characteristics

Average improvement in run time

* Query size

— Small: 60-times Large # of probes to the
— Large: 400-times index in PRIX
* Node selectivity
— High: 170-times LCS-TRIM is not affected by
— Low: 250-times selectivity of nodes

e Recursive structure

— Deep: 240-times | Large # of index probes for
— Bushy: 190-times , deep queries in PRIX

e Wildcards L
. Large # of false positives and
- Up to 2,500 times PRIX detects them very late
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Related work

e Path-based

— Structural joins [Al-Khalifa02]
— DataGuides[Goldman97], APEX[Chung02], and others

e TwigStack-based

— Holistic joins [Bruno02]

— B*-tree [Chien02], XR-TwigStk [Jiang03], and others
* Sequence-based

— ViST [Wang03]

— PRIX [Rao06]

— Zezula’s [Zezula03]
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Current & future work

e Comparison with TwigStack—-based algorithms

e Extensions
— Unordered matching
— Approximate matching
— Handling NOT predicates

— Parallel matching
o We have seen up to 6.3-fold speedup on 8 processors
o Suitable for emerging multi-core server architectures
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Conclusions

e Non-redundant data transformation

* Dynamic programming -based tree matching
— Pruning steps are embedded

e A very simple index structure
e Up to 2-3 orders of magnitude faster
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