OHIO

Data Mining Research Laboratory m

LCS-TRIM
Dynamic Programming Meets XML Indexing and Querying

Shirish Tatikonda
Srinivasan Parthasarathy

Matthew Goyder

VLDB
September 2007 © The Ohio State University

Outline

e Problem definition
* QOur approach

— Data transformation
— Tree matching
— Tree Indexing

e Optimizations
e Evaluation
e Related work

e Conclusions

LCS-TRIM 24-Sep-2007 2

Problem definition

XML Document XPath Query (twig)

//Book [//Algorithms] [//Cormen] [Year]

(010

Title All authors Chapter

/\ /\ Aleorithors G
Author Author 2001 Title Pages £

Leiserson Dynamig 197--278
Programming

A\

Enumerate &bohedrivbbelddd ovtvmart tseenorphisms
of the given query tree

LCS-TRIM 24-Sep-2007 3

LCS-TRIM: -based [Ree Indexing & Matching

Queries (Q)
XML
Database [Data T(D) Index
(D) Transformation Construction

Filtering

Matched
Documents

LCS-TRIM 24-Sep-2007 4

Data transformation

et tanstortivg tr degfmsessegpaences
* Prufer & Depth-irstisequences..

Rooted, 5 (8) Va

Ordered/—} NPS: 2 5450
labeled 2 LS : DBBCA
tree

. 3 Label Sequence

1. Traverse the tree in post-order (PO)

2./ Remove the node with smallest PO number
Add its label to LS and its parent to NPS

LCS-TRIM 24-Sep-2007

Data transformation

M5
NPS: 2 4 50 ——> . D
LS : D B CA

1 3

Properties

 Non-redundant complementing sequences
— NPS provides structure

— LS provides labels
e Concise bijective transformation
e Each pair corresponds to an edge
e No pointers => improved ILP

LCS-TRIM 24-Sep-2007

Tree matching

* Finds the matches of a query Q in a database tree T

e Recasted in to subsequence matching
— If Qis a subtree of T then LS, is a subsequence of LSy

e Consists of 3 steps

— Subsequence checking
o Check if LS is the LCS of LS, and LSy

— Subsequence matching

o Enumerate all the subsequence matches of LS, in LSy

— Structure matching
o Filter the subsequence matches by using NPS, and NPS;

LCS-TRIM 24-Sep-2007 7

Subsequence checking

A]&ﬁé&rsng]LGSQ is a subsequence of LS; or not
— LSq has to be the Longest Common Subsequence of LSy, LSy

e Construct the R matrix
i,j]: length of LCS of prefixes LSy[1..i] and LS¢[1..]]

0, ifi=0grj=0—— LG, —
[ij] = < R[i-1,j-1]+1, ifL83§=LSﬁ] B

B C A
1 3 LS maxBRB-1G3] X[, j-1]), if LS@[l] ﬁsrsl-‘m 1111111
0 q LSeB[1]2[2]2]2
D B
3 o@ynamzc Programming ©oal1]2]2]2 ©)
D ® l
1 2 ILCS(Q,T) |

If ILCS(Q,T)| # QI then Q is not a subtree of T

LCS-TRIM 24-Sep-2007 8

Subsequence matching

* Enumerates all the occurrences of LS in LS;
— By backtracking on R from R[m,n]: m=1Q! & n=IT|
* Resulting match: (iy, iy, ..., 1.,), LSu[j]=LS[i]

L @
D 5 B & 4 i, i, 4
T D11 @ ' 1 Subsequence 2® 11 32 53 D
1|2)
1

B
LSQ B 12 24(__'2 Matches 1 —
grjgz'j\ fﬂ%@\é 2 312 5 DB

—M ~15 : DBA

S CoMsidetrst amtyelahetethisl=rmteighs! folkefpositives
< Prune them by considering the structure (NPS)

' a

LCS-TRIM 24-Sep-2007 9

Structure matching

Subsequence match: (i, i,,i5)=(1,3,5)

* Map the structure of Q to the structure formed by
subsequence match (i, ..., i,,)

— Map each edge in Q to an ancestor-descendant in T
— Structure agreement checks at each node in Q

LCS-TRIM 24-Sep-2007 10

- 00000000000]
Structure agreement check

= At k=m, map the root node to i, without any checks
= Atk=m-1... k=1 (ie., right to left)
— check if k™ parent in Q = nearest mapped ancestor of iy in T

Subsequence match: (i,,1,,1,)=(1,2,5)|Palsd pdsitite

=
DO (N
U1 |w

o k=2: chedkiffrmap{| 2 Sprameantt]| isamancestordfi=BimTT
o k=1: check if map[1’s parent] is an ancestor of i,=1in T

LCS-TRIM 24-Sep-2007 11

LCS-TRIM

XML
Database

o) =

LCS-TRIM

Queries (Q)

Data

Transformation

T(D)

Inde
T(Q)

Filtering

Index

Construction

T'(D)

Tree Matching

24-Sep-2007

Matched
documents

12

Index

e Selects a subset of trees from the data base
— Tree matching is done only on this subset
e Simple inverted index
S = set of distinct labels in data base
> Tlist (L;)={i/T, contains L, }
L, = Tlist (L,)

LISI - > ThSt (L|S|)

e Given a Q with labels {qu, o, Lqm}
* Tree matching is performed on the following set

Thist(L,;) N ... N Tlist(L,,,)

LCS-TRIM 24-Sep-2007 13

Outline

e Optimizations
e Evaluation
e Related work

e Conclusions

LCS-TRIM 24-Sep-2007 14

Optimizations for tree matching

o Alleviate the computation overhead
* Preserve the correctness

e Reduce the number of recursions
— Label filtering (LF)
— Dominant match processing (DOM)

 Reduce the number of false positives

— Simultaneous subsequence and structure matching
(SIMUL)

LCS-TRIM 24-Sep-2007 15

Label filtering (LF)

Observation
Not all the labels in data base tree appear in the query, Q

Strategy
Prune LS; from the labels not in Q
R IS - 1S, —
DB B C A D B B A
D ,, P opl1f11]1
LS, B ; ;> LSom(12]2]2
‘/ A) \‘ Al11212)3

Benefits

v" Shrinks R making it fit in a few cache lines
v Reduces the number of recursions on R

LCS-TRIM 24-Sep-2007 16

I —————
Dominant match processing (DOM)

Observation
Only few entries of R matrix are interesting

Strategy

Identify the entries at which subseq. length is increased

— LS, —>

» -
D - £

| b |

<

Benefits
v Completely eliminates the redundant recursions

LCS-TRIM 24-Sep-2007 17

Simultaneous subsequence and structure matching

Observation
Both matching steps operate from right to left

Strategy

As soon as the labels match at k" position,
perform the structure agreement check at k

Benefits

v' Detects the false positives as early as possible
v' Never generates them completely
v' Significantly improves the performance

LCS-TRIM 24-Sep-2007 18

Outline

e Evaluation
e Related work
e Conclusions

LCS-TRIM 24-Sep-2007 19

Evaluation

e Used a AMD 250 Opteron dual processor system
with 8GB of memory

e Performance results against PRIX [Rao06]
e Evaluated on different data sets and workloads

Dataset # of trees | Max depth
Swissprot 50,000 5
Treebank 52,851 36

DBLP 328,858 6

Cslogs 59,691 85

NLM 450K-1M 8

LCS-TRIM

[Rao06] Sequencing XML Data and Query Twigs for Fast Pattern Matching, TODS, 2006

24-Sep-2007

Comparison with PRIX

PRIX LCS-TRIM
Data transformation

— Prufer-based but Longer Sequences - Space-efficient representation
— Suffer from redundancy — Absolutely 1o redundancy

Subsequence matching

— Relies on large disk-based indices - Efficient dynamic programming
— Too many probes to the index — Operates on simple matrices

Structure matching
— Multiple stages of refinements — Single pass over the twig
— Each makes a pass over the twig

— Parameter dependent — Parameter free
— Poor locality — Very good locality

LCS-TRIM 24-Sep-2007 21

Effect of optimizations - swissprot

10°

10*

= =
o o
N [€8)

Run time (msec)
—_
-}

10°

/ 107

0 No Opt

| |LOLF & DOM

B Lcs-Trim

A T N

[h

Log Scale @@ @

LCS-TRIM

9

Q3

Q4

— # of recursive C

= DemQustrgis Mgt

— Processing of ~3 million talse positives is avoided

Q5

24-Sep-2007

Q6

Q7

Q8

uce the comp utatzona[overﬁeaaf
Is reduced from 16

Q9

Q10

[lion tq.5 million

gzmegr ers of tmprovement

22

Comparison with PRIX - swissprot

5
10 M Lcs-Trim

|| Prix-Subseq
10¢ O Prix-Refine

—_
@]
D

—
(@)
o

Run time (msec)
—_
S

100

101
Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10

= Subsequence matching in PRIX is way too expensive
= LCS-TRIM is comparable or faster than refinements in PRIX
= Owverall, up to 2-3 orders of magnitude faster than PRIX

LCS-TRIM 24-Sep-2007 23

Effect of data base size - NLM

Difference in run time

Index size
°[T8 Les Trim 0 PRIX 10 | +-Q32 #Q33 Q34 2
m 4 — v M o)
o 3] //] é //
.E / () 6 _
52— | a £ —_—
'-g P = 4
| o] — - — - — | | 0 ——=m — —— —
0.5 1 1.5 2 2.5 0.5 1.0 1.5 2.0 2.5
Data base size (GB) Data base size (GB)
o PRIX
— Index size increases proportionately with data base size
— Workload dependent

e Our index is small & tunable
e Difference in run time increases with data base size

LCS-TRIM 24-Sep-2007

24

Effect of workload characteristics

Average improvement in run time

* Query size

— Small: 60-times Large # of probes to the
— Large: 400-times index in PRIX
* Node selectivity
— High: 170-times LCS-TRIM is not affected by
— Low: 250-times selectivity of nodes

e Recursive structure

— Deep: 240-times | Large # of index probes for
— Bushy: 190-times , deep queries in PRIX

e Wildcards L
. Large # of false positives and
- Up to 2,500 times PRIX detects them very late

LCS-TRIM 24-Sep-2007 25

]
Related work

e Path-based

— Structural joins [Al-Khalifa02]
— DataGuides[Goldman97], APEX[Chung02], and others

e TwigStack-based

— Holistic joins [Bruno02]

— B*-tree [Chien02], XR-TwigStk [Jiang03], and others
* Sequence-based

— ViST [Wang03]

— PRIX [Rao06]

— Zezula’s [Zezula03]

LCS-TRIM 24-Sep-2007 26

Current & future work

e Comparison with TwigStack—-based algorithms

e Extensions
— Unordered matching
— Approximate matching
— Handling NOT predicates

— Parallel matching
o We have seen up to 6.3-fold speedup on 8 processors
o Suitable for emerging multi-core server architectures

LCS-TRIM 24-Sep-2007 27

Conclusions

e Non-redundant data transformation

* Dynamic programming -based tree matching
— Pruning steps are embedded

e A very simple index structure
e Up to 2-3 orders of magnitude faster

Acknowledgements

e NSF grants
— CCF-0702587, CNS-0406386, 115-0347662, and CNS-0403342

o All the reviewers
* Dr. Praveen Rao (PRIX) & Dr. Haifeng Jiang (XR-TwigStk)

LCS-TRIM 24-Sep-2007 28

Our lab DMRL: http:/ /dmrl.cse.ohio-state.edu/index.jsp
My page : http:/ /www.cse.ohio-state.edu/~tatikond

/o4
QUESTIONS

LCS-TRIM 24-Sep-2007 29

