Randomized Algorithms for Data Reconciliation in Wide Area Aggregate Query Processing

Fei Xu and Christopher Jermaine
CISE Department
University of Florida
September 26,2007

How to answer an aggregate query over a distributed, "dirty" database

Let us Begin with the Centralized Case

What is the total salary paid by the company?

Salary	
Name	Salary
Michael	$\$ 10000$
Daniel	$\$ 7864$
David	$\$ 8433$
Christina	$\$ 7633$
Steve	$\$ 8003$
Sean	$\$ 9607$
Emily	$\$ 10822$
James	$\$ 7322$
Michael	$\$ 9899$
Christina	$\$ 7412$

- If the data is "clean", we only need to summarize all the salaries in the table.
- But we do have a concern:
- Whether the two "Michaels" are the same person?
- If we know that the they are the same person, now we have two different salaries.
- How can we obtain the correct salary?

Prior Researches

- Many prior researches have been done in order to answer the two questions:
- Deciding whether different records refer to the same entity.
- Obtaining a clean record from inconsistent duplicates.
- We want to utilize these existing results to answer the two questions:
- Encode existing techniques into two generic functions.
- Expect users to provide actual implementation.

Two Generic Functions

- The similarity function $\operatorname{Sim}()$:
- This function tells whether two records refer to the same entity, i.e. whether they are similar.
- $\operatorname{Sim}\left(r_{1}, r_{2}\right)=$ true iff r_{1} and r_{2} are similar.
- The reconciliation function $\operatorname{Rec}()$:
- This function takes a set of similar records and reconcile them.
- It returns a numerical value used for aggregation.

Examples

- The similarity function:
- Ex: r_{1} and r_{2} are similar if and only if r_{1}. Name $=r_{2}$. Name.
- $\operatorname{Sim}(($ Michael, 10000), (Michael, 9899))= true
- $\operatorname{Sim}(($ Michael, 10000), (Christina, 7412))=false
- The reconciliation function:
- Ex: Take the average salary.
- $\operatorname{Rec}(\{($ Michael, 10000), (Michael, 9899)\})

$$
=(10000+9899) / 2=9949.5
$$

Utilize the Two Functions to Answer the Aggregate Query.

- Given these two functions, we could answer the aggregate query in the following three steps:
- Using the similarity function to partition the records in the database into "equivalence classes" (will be discussed soon).
- Apply the reconciliation function to each of the equivalence classes to reconcile the records.
- Aggregate the returned values from each reconciliation and return the aggregate value as the answer.

Equivalence class

- If we assume each record is a vertex in a graph, and we assume there is an edge between two vertices if they are similar, then an equivalence class is a connected component in the graph.
- We use this definition in the paper. But alternative definitions exist. [BBS05][BG04][PD05][PMMRS05]

The Three-Step Solution

Assuming we use the definitions of $\operatorname{Sim}()$ and $\operatorname{Rec}()$ given in the example, the three-step solution is shown below:

Extend to the Distributed Environment

$R 1:$ New York	
Name	Salary
Michael	$\$ 10000$
Daniel	$\$ 7864$
David	$\$ 8433$

$R 2$:Chicago	
Name	Salary
Christina	$\$ 7633$
Steve	$\$ 8003$
Sean	$\$ 9607$

R3:Vienna	
Name	Salary
Emily	$\$ 10822$
James	$\$ 7322$
Michael	$\$ 9899$
Christina	$\$ 7412$

- What is the difficulty:
- Similar records distributed in different sites.
- The partition step requires to ship all the data to a coordinator.
- Each site may contain a large number of records.
- Such shipments are unaffordable- maybe gigabytes/terabytes of data.

Our Solution

- Use Approximation:
- Sample from the set of all equivalence classes.
- Only ship a part of the records from each sites.
- Several randomized algorithms are proposed.
- Provide the statistical guarantees.

Basic Framework

Function GetAnswer ()

1. $\mathbf{S}^{\prime}=$ SampleClasses()
2. $\hat{M}=0$
3. For $i=1$ to m :
4. $\hat{M}_{i}=0$
5. For each class $S \in \mathbf{S}^{\prime}$ where $|S|=i$:
6. $\hat{M}_{i}+=\frac{1}{p_{i}} \operatorname{Rec}(S)$
7. $\hat{M}+=\hat{M}_{i}$
8. Return \hat{M}

Basic Framework

Function GetAnswer ()

1. $\mathbf{S}^{\prime}=$ SampleClasses()
2. $\hat{M}=0$
3. For $i=1$ to m :
4. $\hat{M}_{i}=0$
5. For each class $S \in \mathbf{S}^{\prime}$ where $|S|=i$:
6. $\hat{M}_{i}+=\frac{1}{p_{i}} \operatorname{Rec}(S)$
7. $\hat{M}+=\hat{M}_{i}$
8. Return \hat{M}

The SampleClasses() Step (Logically)

- Requirements:
- Probability of selecting an equivalence class of size i is p_{i} : for some constant.
- If one record from an equivalence class is selected, all records from that equivalence class are selected.

Basic Framework

Function GetAnswer()

1. $\mathbf{S}^{\prime}=$ SampleClasses()
2. $\hat{M}=0$
3. For $i=1$ to m :
4. $\hat{M}_{i}=0$
5. For each class $S \in \mathbf{S}^{\prime}$ where $|S|=i$:
6. $\hat{M}_{i}+=\frac{1}{p_{i}} \operatorname{Rec}(S)$
7. $\hat{M}+=\hat{M}_{i}$
8. Return \hat{M}

Michael	$\$ 10000$
Michael	$\$ 9899$

Daniel	$\$ 7864$

Steve $\$ 8003$

$$
p_{1}=p_{2}=0.5
$$

Basic Framework

Function GetAnswer()

1. $\mathbf{S}^{\prime}=$ SampleClasses()

Michael	$\$ 10000$
Michael	$\$ 9899$

Emily	$\$ 10822$

2. $\hat{M}=0$
$i=1$
Daniel
\$7864
Steve
$\$ 8003$
3. For $(i=1$ to m :

$$
p_{1}=p_{2}=0.5
$$

4. $M_{i}=0$
5. For each class $S \in \mathbf{S}^{\prime}$ where $|S|=i$:
$M_{i}+=7864 / 0.5$
6. $M_{i}+=\frac{1}{p_{i}} \operatorname{Rec}(S)$
7. $\hat{M}+=\hat{M}_{i}$
8. Return \hat{M}

Basic Framework

Function GetAnswer()

1. $\mathbf{S}^{\prime}=$ SampleClasses()

Michael	$\$ 10000$
Michael	$\$ 9899$

Emily	$\$ 10822$

2. $\hat{M}=0$
$i=1$
3. $\operatorname{For}(i)=1$ to m :

Daniel $\quad \$ 7864$
Steve
\$8003
4. $\hat{M}_{i}=0$
5. For each class $S \in \mathbf{S}^{\prime}$ where $|S|=i$:
$\hat{M}_{1}+=8003 / 0.5$
6. $\left.\hat{M}_{i}\right)+=\frac{1}{p_{i}} \operatorname{Rec}(S)$
7. $\hat{M}+=\hat{M}_{i}$
8. Return \hat{M}

Basic Framework

Function GetAnswer()

1. $\mathbf{S}^{\prime}=$ SampleClasses()

Michael	$\$ 10000$
Michael	$\$ 9899$

2. $\hat{M}=0$
$i=1$
Daniel $\quad \$ 7864$
Steve
$\$ 8003$
3. For $(i=1$ to m :

$$
p_{1}=p_{2}=0.5
$$

4. $M_{i}=0$
5. For each class $S \in \mathbf{S}^{\prime}$ where $|S|=i$:
$M_{i}+=10822 / 0.5$
6. $M_{i}+=\frac{1}{p_{i}} \operatorname{Rec}(S)$
7. $\hat{M}+=\hat{M}_{i}$
8. Return \hat{M}

Basic Framework

Basic Framework

	Michael	\$10000	Emily	\$10822
Function GetAnswer() 1. $\mathbf{S}^{\prime}=$ SampleClasses()	Michael	\$9899		
	Daniel	\$7864	Steve	\$8003
2. $\hat{M}=0$$i=2$				
3. For $(i=1$ to m : 4. $\hat{M}_{i}=0$	$p_{1}=p_{2}=0.5$			
5. For each class $S \in \mathbf{S}^{\prime}$ whore $\|S\|=i$: 6. $\left.\hat{M}_{i}\right)+=\frac{1}{p_{i}} \operatorname{Rec}(S)$ 7. $\hat{M}+=\hat{M}_{i}$ 8. Return \hat{M}	$\hat{M}+=$	$\text { (} 100$	9899	2)/0.

Basic Framework

Basic Framework

Function GetAnswer()

1. $\mathbf{S}^{\prime}=$ SampleClasses()
2. $\hat{M}=0$
3. For $i=1$ to m :

Michael	$\$ 10000$
Michael	$\$ 9899$

| Daniel | $\$ 7864$ | Steve $\$ 8003$ |
| :--- | :--- | :--- | :--- |

4. $\hat{M}_{i}=0$
5. For each class $S \in \mathbf{S}^{\prime}$ where $|S|=i$:
6. $\hat{H}_{i}+1$ Becon
7. $M_{i}+=\frac{1}{n} \operatorname{Bec}(5)$
8. $\hat{M}+\hat{=} \hat{M_{i}}$
9. Return

Accuracy Guarantees

- The variance of \hat{M}_{i} is:

$$
\operatorname{var}\left(\hat{M}_{i}\right)=\left(\frac{1}{p_{i}}-1\right) \sum_{S \in \mathbf{S} \wedge|S|=i} \operatorname{Rec}^{2}(S)
$$

- The variance of \hat{M} is:

$$
\operatorname{var}(\hat{M})=\sum \operatorname{var}\left(\hat{M}_{i}\right)
$$

- An estimator or $\operatorname{var}\left(\hat{M}_{i}\right)$ is:

$$
\operatorname{vâr}\left(\hat{M}_{i}\right)=\frac{1}{p_{i}}\left(\frac{1}{p_{i}}-1\right) \sum_{S \in \mathbf{S}^{\prime} \wedge|S|=i} \operatorname{Rec}^{2}(S)
$$

- An estimator of $\operatorname{var}(\hat{M})$ is:

$$
\operatorname{vâr}(\hat{M})=\sum_{i} v \hat{a} r\left(\hat{M}_{i}\right)
$$

- Central Limit Theorem based or more conservative Chebyshev confidence bound can be provided.

First Big Question

- How to implement the SampleClasses () function?
- Related to the similarity function.

Case 1:Transitive Similarity Function

$\left(\operatorname{Sim}\left(r_{1}, r_{2}\right)=\operatorname{Sim}\left(r_{2}, r_{3}\right)=\operatorname{true}\right) \Rightarrow\left(\operatorname{Sim}\left(r_{1}, r_{3}\right)=\operatorname{true}\right)$

- Each connected component is a clique if $\operatorname{Sim}()$ is transitive .
- Canonical form exists for each equivalence class.
- William: \{Will, Bill, William, Wm., Billy, Willy, Willie\}
- The canonical form of each equivalence class can be pre-stored at each site.
- Hash Bernoulli algorithm works for this case.

The Hash Bernoulli Algorithm

$R 1:$ New York	
Name	Salary
Michael	$\$ 10000$
Daniel	$\$ 7864$
David	$\$ 8433$

$R 2$:Chicago	
Name	Salary
Christina	$\$ 7633$
Steve	$\$ 8003$
Sean	$\$ 9607$

R3:Vienna	
Name	Salary
Emily	$\$ 10822$
James	$\$ 7322$
Michael	$\$ 9899$
Christina	$\$ 7412$

1. Choose a probability p.
2. Choose a Hash function $H(r)$, which takes a record and returns a value between 0 and 1.
3. For every record in each site, hash the canonical form of the record.
4. Ship all records whose hash value $<=p$.

The Hash Bernoulli Algorithm

$R 1:$ New York	
Name	Salary
Michael	$\$ 10000$
Daniel	$\$ 7864$
David	$\$ 8433$

$R 2$:Chicago	
Name	Salary
Christina	$\$ 7633$
Steve	$\$ 8003$
Sean	$\$ 9607$

R3:Vienna	
Name	Salary
Emily	$\$ 10822$
James	$\$ 7322$
Michael	$\$ 9899$
Christina	$\$ 7412$

1. Choose a probability p.
2. Choose a Hash function $H(r)$, which takes a record and returns a value between 0 and 1.
3. For every record in each site, hash the canonical form of the record.
4. Ship all records whose hash value $<=p$.

The Hash Bernoulli Algorithm

$R 1:$ New York	
Name	Salary
Michael	$\$ 10000$
Daniel	$\$ 7864$
David	$\$ 8433$

$R 2$:Chicago	
Name	Salary
Christina	$\$ 7633$
Steve	$\$ 8003$
Sean	$\$ 9607$

R3:Vienna	
Name	Salary
Emily	$\$ 10822$
James	$\$ 7322$
Michael	$\$ 9899$
Christina	$\$ 7412$

1. Choose a probability p.
2. Choose a Hash function $H(r)$, which takes a record and returns a value between 0 and 1.
3. For every record in each site, hash the canonical form of the record.
4. Ship all records whose hash value $<=p$.

The Hash Bernoulli Algorithm

$R 1:$ New York	
Name	Salary
Michael	$\$ 10000$
Daniel	$\$ 7864$
David	$\$ 8433$

$R 2:$ Chicago	
Name	Salary
Christina	$\$ 7633$
Steve	$\$ 8003$
Sean	$\$ 9607$

R3:Vienna	
Name	Salary
Emily	$\$ 10822$
James	$\$ 7322$
Michael	$\$ 9899$
Christina	$\$ 7412$

1. Choose a probability p.
2. Choose a Hash function $H(r)$, which takes a record and returns a value between 0 and 1.
3. For every record in each site, hash the canonical form of the record.
4. Ship all records whose hash value $<=p$.

The Hash Bernoulli Algorithm

R1:New York			R2:Chicago	
Name	Salary		Name	Salary
Michael	\$10000	0.3	Christina	\$7633
Daniel	\$7864	0.7	Steve	\$8003
David	\$8433		Sean	\$9607

R3:Vienna	
Name	Salary
Emily	$\$ 10822$
James	$\$ 7322$
Michael	$\$ 9899$
Christina	$\$ 7412$

1. Choose a probability p.
2. Choose a Hash function $H(r)$, which takes a record and returns a value between 0 and 1.
3. For every record in each site, hash the canonical form of the record.
4. Ship all records whose hash value $<=p$.

The Hash Bernoulli Algorithm

$R 1:$ New York	
	Salary
Michael	$\$ 10000$
Daniel	$\$ 7864$
David	$\$ 8433$
0.3	
	0.6

R2:Chicago	
	Salary
Christina	$\$ 7633$
Steve	$\$ 8003$
Sean	$\$ 9607$
0.6	
0.9	

R3:Vienna	
Name	Salary
Emily	$\$ 10822$
James	$\$ 7322$
Michael	$\$ 9899$
Christina	$\$ 7412$

1. Choose a probability p.
2. Choose a Hash function $H(r)$, which takes a record and returns a value between 0 and 1.
3. For every record in each site, hash the canonical form of the record.
4. Ship all records whose hash value $<=p$.

The Hash Bernoulli Algorithm

R1:New York			R2:Chicago		
Name	Salary		Name	Salary	
Michael	\$10000	0.3	Christina	\$7633	0.6
Daniel	\$7864	0.7	Steve	\$8003	0.1
David	\$8433	0.6	Sean	\$9607	0.4

R3:Vienna	
	Salary
Emily	$\$ 10822$
James	$\$ 7322$
Michael	$\$ 9899$
Christina	$\$ 7412$

1. Choose a probability p.
2. Choose a Hash function $H(r)$, which takes a record and returns a value between 0 and 1.
3. For every record in each site, hash the canonical form of the record.
4. Ship all records whose hash value $<=p$.

More on Hash Bernoulli Algorithm

R1:New York			R2:Chicago			R3:Vienna		
Name	Salary		Name	Salary		Name	Salary	
Michael	\$10000	0.3	Christina	\$7633	0.6	Emily	\$10822	0.2
Daniel	\$7864	0.7	Steve	\$8003	0.1	James	\$7322	0.7
David	\$8433	0.6	Sean	\$9607	0.4	Michael	\$9899	0.3
						Christina	\$7412	0.6

- Records in the same equivalence class have the same hash value.
- Once a record in an equivalence class is sampled out, every record in this class is sampled out.
- The probability to sample each equivalence class is p.

Case 2: Non-transitive Similarity Function

- An equivalence class is not a clique.
- Canonical form does not exists and cannot be prestored.
- Require more complicated algorithms:
- The uniform- p algorithm.
- Essentially this is a distributed transitive closure algorithm.
- The diminishing- p algorithm.

The Uniform-p Algorithm

$R 1:$ New York	
Name	Salary
Michael	$\$ 10000$
Daniel	$\$ 7864$
David	$\$ 8433$

$R 2:$ Chicago	
Name	Salary
Christina	$\$ 7633$
Michael	$\$ 8003$
Sean	$\$ 9607$

R3:Vienna	
Name	Salary
Emily	$\$ 10822$
James	$\$ 7322$
Michael	$\$ 9899$
Christina	$\$ 7412$

1. Choose a probability p.
2. For every record in each site, with probability p, it is selected as a seed independently.
3. Each site ships all its seeds to the coordinator.
4. The whole seeds set is sent back to every site.
5. Every site returns records that are similar to one of the records in the seed set. These records are added into the seeds set.

6 . Repeat 4 and 5 until no more records is returned.

The Uniform-p Algorithm

$R 1:$ New York	
Name	Salary
Michael	$\$ 10000$
Daniel	$\$ 7864$
David	$\$ 8433$

$R 2:$ Chicago	
Name	Salary
Christina	$\$ 7633$
Michael	$\$ 8003$
Sean	$\$ 9607$

1. Choose a probability $p \longrightarrow p=0.5$

R3:Vienna	
Name	Salary
Emily	$\$ 10822$
James	$\$ 7322$
Michael	$\$ 9899$
Christina	$\$ 7412$

2. For every record in each site, with probability p, it is selected as a seed independently.
3. Each site ships all its seeds to the coordinator.
4. The whole seeds set is sent back to every site.
5. Every site returns records that are similar to one of the records in the seed set. These records are added into the seeds set.
6. Repeat 4 and 5 until no more records is returned.

The Uniform-p Algorithm

$R 1:$ New York	
Name	Salary
Michael	$\$ 10000$
Daniel	$\$ 7864$
David	$\$ 8433$

$R 2:$ Chicago	
Name	Salary
Christina	$\$ 7633$
Michael	$\$ 8003$
Sean	$\$ 9607$

R3:Vienna	
Name	Salary
Emily	$\$ 10822$
James	$\$ 7322$
Michael	$\$ 9899$
Christina	$\$ 7412$

1. Choose a probability p.
2. For every record in each site, with probability p, it is selected as a seed independently.
3. Each site ships all its seeds to the coordinator.
4. The whole seeds set is sent back to every site.
5. Every site returns records that are similar to one of the records in the seed set. These records are added into the seeds set.

6 . Repeat 4 and 5 until no more records is returned.

The Uniform-p Algorithm

$R 1:$ New York	
Name	Salary
Michael	$\$ 10000$
Daniel	$\$ 7864$
David	$\$ 8433$

$R 2$:Chicago	
Name	Salary
Christina	$\$ 7633$
Michael	$\$ 8003$
Sean	$\$ 9607$

1. Choose a probability p.

R3:Vienna	
Name	Salary
Emily	$\$ 10822$
James	$\$ 7322$
Michael	$\$ 9899$
Christina	$\$ 7412$

2. For every record in each site, with probability p, it is selected as a seed independently.
3. Each site ships all its seeds to the coordinator.
4. The whole seeds set is sent back to every site.
5. Every site returns records that are similar to one of the records in the seed set. These records aro added into the seeds set.
6. Repeat 4 and 5 until nc ds is returned.

The Uniform- p Algorithm

$R 1:$ New York	
Name	Salary
Michael	$\$ 10000$
Daniel	$\$ 7864$
David	$\$ 8433$

$R 2$:Chicago	
Name	Salary
Christina	$\$ 7633$
Michael	$\$ 8003$
Sean	$\$ 9607$

1. Choos a probability p.
2. For every cord in each sit with probability 1 is selected as a seed indepen ntly.
3. Each site ships $a n$ ts seeds b the cod mator.
4. The conde cot ic eqnt back \square eve ith

 in the seed set. Inese recarac arn anded into the seeds set.
5. Repeat 4 and 5 until nc ds is returned.

The Uniform-p Algorithm

$R 1:$ New York	
Name	Salary
Michael	$\$ 10000$
Daniel	$\$ 7864$
David	$\$ 8433$

$R 2$:Chicago	
Name	Salary
Christina	$\$ 7633$
Michael	$\$ 8003$
Sean	$\$ 9607$

1. Choose a probability p.

R3:Vienna	
Name	Salary
Emily	$\$ 10822$
James	$\$ 7322$
Michael	$\$ 9899$
Christina	$\$ 7412$

2. For every record in each site, with probability p, it is selected as a seed independently.
3. Each site ships all its seeds to the coordinator.
4. The coode cat ic eqnt back to every cito

in the seed set. Inese rechear med into the seeds set.
5. Repeat 4 and 5 until nc ds is returned.

The Uniform- p Algorithm

$R 1:$ New York	
Name	Salary
Michael	$\$ 10000$
Daniel	$\$ 7864$
David	$\$ 8433$

$R 2$:Chicago	
Name	Salary
Christina	$\$ 7633$
Michael	$\$ 8003$
Sean	$\$ 9607$

1. Choos a probability p.
2. For every cord in each sit , with probability it is selected as a seed indepen ntly.
3. Each site ships $a \mathrm{t} s$ seeds b the cod mator.
4. The conde cot is copthark ave iitn

5. Eveq Michael in the seed set. Inese recarac aro anded into the seeds set.
6. Repeat 4 and 5 until nc ds is returned.

The Uniform-p Algorithm

$R 1:$ New York	
Name	Salary
Michael	$\$ 10000$
Daniel	$\$ 7864$
David	$\$ 8433$

$R 2$:Chicago	
Name	Salary
Christina	$\$ 7633$
Michael	$\$ 8003$
Sean	$\$ 9607$

1. Choose a probability p.

R3:Vienna	
Name	Salary
Emily	$\$ 10822$
James	$\$ 7322$
Michael	$\$ 9899$
Christina	$\$ 7412$

2. For every record in each site, with probability p, it is selected as a seed independently.
3. Each site ships all its seeds to the coordinator.
4. The conde cat is eqpt hack to ovory gito

in the seed set. Inese recorac aro aded into the seeds set.
5. Repeat 4 and 5 until nd is returned.

The Uniform- p Algorithm

$R 1:$ New York	
Name	Salary
Michael	$\$ 10000$
Daniel	$\$ 7864$
David	$\$ 8433$

$R 2$:Chicago	
Name	Salary
Christina	$\$ 7633$
Michael	$\$ 8003$
Sean	$\$ 9607$

1. Choose a probability p.

R3:Vienna	
Name	Salary
Emily	$\$ 10822$
James	$\$ 7322$
Michael	$\$ 9899$
Christina	$\$ 7412$

2. For every record in each site, with probability p, it is selected as a seed independently.
3. Each site ships all its seeds to the coordinator.
4. The conde cat is eqpt hack to ovory pito
 in the seed set. Inese recorac 2r0 and ed into the seeds set.
6 . Repeat 4 and 5 until nd is returned.

More on Uniform- p Algorithm

$R 1:$ New York	
Name	Salary
Michael	$\$ 10000$
Daniel	$\$ 7864$
Michael	$\$ 8433$

$R 2:$ Chicago	
Name	Salary
Christina	$\$ 7633$
Michael	$\$ 8003$
Michael	$\$ 9607$

R3:Vienna	
Name	Salary
Michael	$\$ 10822$
Michael	$\$ 7322$
Michael	$\$ 9899$
Christina	$\$ 7412$

- Obvious Optimization:
- Every time, for each site, only "new" records need to be sent.
- Drawbacks:
- Large equivalence classes have high probability to sample out: $p_{i}=1-(1-p)^{i}$
- If there is a super larger equivalence class, sampling becomes meaningless (too many records sampled out).

The Diminishing- p Algorithm

- Purpose:
- Reduce the sampling probability of large equivalence classes.
- Try to avoid sampling super large equivalence classes.
- Solution:
- Take seeds as shown in the uniform- p algorithm.
- Large equivalence classes need to wait for more time to complete.
- In the first run, only partial equivalence classes of size one are sent back, in the second run, only partial equivalence classes of size two are sent back,...
- In the beginning of every run, randomly killing some seeds.
- If all seeds of an equivalence class are killed, the whole class is dropped the sample.
- See the paper for details.

Can we do better:

Increasing the Accuracy While Retaining the Same Sample Size?

- More complicated methods is possible to build to improve the accuracy if the reconciliation function satisfies the size-ratio property:

$$
\frac{\sum_{r \in S} \operatorname{Rec}(\{r\})}{\operatorname{Rec}(S)}=\rho(|S|)
$$

- Example:
- $\operatorname{Rec}(S)$: take the average salary.
- $S=\{($ Michael, 10000), (Michael, 9899) $\}$
- $\rho(x)=x$
- $\operatorname{Rec}(S)=(10000+9899) / 2=9949.5$
- $\operatorname{Rec}(\{$ Michael, 10000 $)\})+\operatorname{Rec}(\{($ Michael, 9899) $\}$

$$
=10000+9899=19899
$$

- 19899/9949.5=2= $\rho(\mid S)$

Free Extra Information: the "Dirty" Sum

- See the paper for details.

Coordinator

Each site calculates the partial "dirty" sum while hashing / seeding and sends this value along with the records to the coordinator.

Experiment: Basic Setup

- Until the data set generated is of size s, the following steps are repeated:
- An equivalence class size is generated by taking a random sample from a gamma distribution with shape parameter sh and scale parameter $s c$.
- A equivalence class mean μ_{1} is generated from a normal distribution with mean μ and variance σ^{2}.
- For each record in this equivalence class, an aggregate value is generated using a sample from another normal distribution with mean μ_{1} and variance σ^{2}.
- Finally, each record in the equivalence class is randomly sent to one of five data sites.
- The data generation are determined by $s, s h, s c, \mu$, σ^{2}.
- A sample fraction p is chosen to take samples.

Experiment: Estimators work correctly.

- We have 6 different estimators, 3 simple ones and three optimized ones in the test.
- We generated data using the following setting

$$
\text { - } S=10^{7}, s h=1, s c=4, \mu=1, \sigma^{2}=1
$$

- For each estimator, we took 1% samples and provided 95\% confidence bound, and checked whether the bound contained the answer.
- We repeated this procedure for 500 time and counted how many times each estimator provided a confidence bound that contained the answer.
- It turned every estimator worked well, the rate that the bound contained the query answer differed from 94% to 97%.

Experiment: Accuracy only Relies on Sample Size

- Fixed the sample size while increasing the database size and observed how the width of confidence bounds changed.
- Conclusion: accuracy only relies on the sample size.
- This is theoretically expected.

Width vs DB Size

Experiment: Optimized Estimators Performed Better.

- For different sample ratio, execute both the simple estimator and the optimized one. Record both confidence interval widths.
- Conclusion: Optimized estimators performed better, especially when the sample ratio is low.

Experiment: The Cost of the Estimators.

- For three simple estimators, record the cost to reach a particular accuracy (in terms of confidence interval width) in two cases:
- In the first case: 95\% of the equivalence classes are sized fewer than 12, and 22% of the classes are size one.
- In the second case: 95% of the classes have fewer than six elements and 44\% of the classes are size one.
- Conclusion:
- The cost of the Hash Bernoulli algorithm is always the smallest one.
- The diminishing- p algorithm outperforms the Uniform- p algorithm when there are more large-size equivalence classes.

Conclusion

- We solve the problem to answer an aggregate query over a distributed, "dirty" database environment.
- We proposed several randomized algorithms.
- We integrate existing data cleaning techniques into our solution:
- Two generic function are used to encapsulate existing data cleaning techniques.

Thank You.

Questions?

