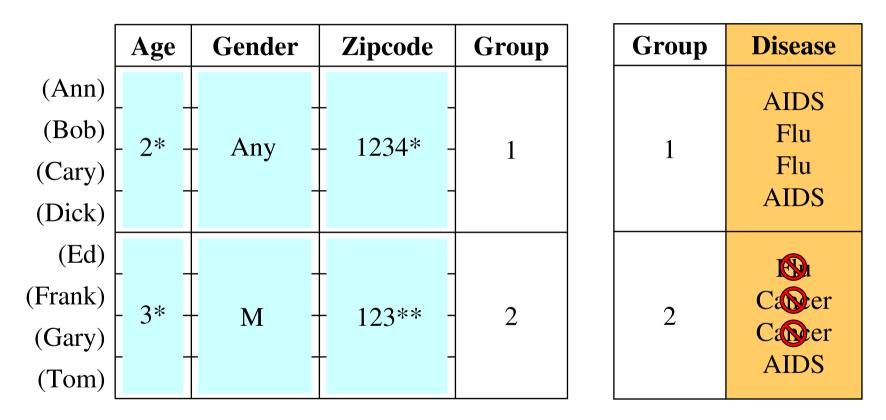
Privacy Skyline:

Privacy with Multidimensional Adversarial Knowledge

Bee-Chung Chen, Kristen LeFevre University of Wisconsin – Madison

Raghu Ramakrishnan Yahoo! Research



Example: Medical Record Dataset

- A data owner wants to release data for medical research
- An adversary wants to discover individuals' sensitive info

Name	Age	Gender	Zipcode	Disease	
Ann	20	F	12345	AIDS	
Bob	24	М	12342	Flu	
Cary	23	F	12344	Flu	
Dick	27	М	12343	AIDS	
Ed	35	М	12412	Flu	
Frank	34	М	12433	Cancer	
Gary	31	М	12453	Cancer	
Tom	38	М	12455	AIDS	

What If the Adversary Knows ...

- Without any additional knowledge, $Pr(Tom has AIDS) = \frac{1}{4}$
- What if the adversary knows "Tom does not have Cancer and Ed has Flu" Pr(Tom has AIDS | above data and above knowledge) = 1

Privacy with Adversarial Knowledge

- Bayesian privacy definition: A released dataset D* is safe if, for any person *t* and any sensitive value *s*,
 Pr(*t* has *s* | D*, Adversarial Knowledge) < *c*
 - This probability is the adversary's confidence that person t has sensitive value s, after he sees the released dataset
 - Equivalent definition: \mathbf{D}^* is safe if

 $\max_{t,s} \Pr(t \text{ has } s \mid \mathbf{D}^*, \text{ Adversarial Knolwedge}) < c$

Maximum breach probability

Prior work following this intuition: [Machanavajjhala et al., 2006; Martin et al., 2007; Xiao and Tao, 2006]

Questions to be Addressed

• Bayesian privacy criterion:

max Pr(*t* has $s | \mathbf{D}^*$, Adversarial Knowledge) < *c*

- How to describe various kinds of adversarial knowledge
 - We provide intuitive knowledge expressions that cover three kinds of common adversarial knowledge
- How to analyze data safety in the presence of various kinds of possible adversarial knowledge
 - We propose a skyline tool for what-if analysis in the "knowledge space"
- How to efficiently generate a safe dataset to release
 - We develop algorithms (based on a "congregation" property) orders of magnitude faster than the best known dynamic programming technique [Martin et al., 2007]

Outline

- Theoretical framework (possible-world semantics)
 - How the privacy breach is defined
- Three-dimensional knowledge expression
- Privacy Skyline
- Efficient and scalable algorithms
- Experimental results
- Conclusion and future work

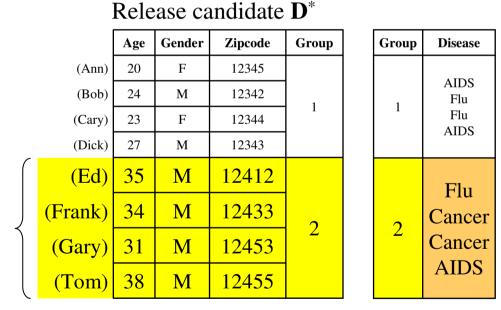
Theoretical Framework

Original dataset **D**

Name	Age	Gender	Zipcode	Disease
Ann	20	F	12345	AIDS
Bob	24	М	12342	Flu
Cary	23	F	12344	Flu
Dick	27	М	12343	AIDS
Ed	35	М	12412	Flu
Frank	34	М	12433	Cancer
Gary	31	М	12453	Cancer
Tom	38	М	12455	AIDS

- Assume each person has only one sensitive value (in the talk)
- Sensitive attribute can be set-valued (in the paper)

Gender Zipcode Group Age Group Disease 20 F (Ann) 12345 AIDS (Bob) 24 Μ 12342 Flu 1 Flu 23 F 12344 (Cary) AIDS 27 (Dick) Μ 12343 35 12412 (Ed) Μ Flu 34 (Frank) Μ 12433 Cancer 2 2 Cancer (Gary) 31 Μ 12453 AIDS 38 (Tom) Μ 12455


Release candidate \mathbf{D}^*

- Each group is called a QI-group
- This abstraction includes
 - Generalization-based methods
 - Bucketization

Theoretical Framework

Reconstruction

A reconstruction of \mathbf{D}^* is intuitively a possible original dataset (possible world) that would generate \mathbf{D}^* by using the grouping mechanism

Assumption: Without any additional knowledge, every reconstruction is equally likely

Reconstructions of Group 2

Ed		Flu				
Frank	•••	Cancer				
Gary		Cancer				
Tom	AIDS					
• • •						
Ed		AIDS				
Fra Fix Permute						
Tom		Flu				

Probability Definition

Knowledge expression K: Logic sentence [Martin et al., 2007]
 E.g., K = (Tom[S] ≠ Cancer) ∧ (Ed[S] = Flu)

 $\Pr(\operatorname{Tom}[S] = \operatorname{AIDS} | K, \mathbf{D}^*)$

of reconstructions of \mathbf{D}^* that satisfy $K \wedge (\text{Tom}[S] = \text{AIDS})$

of reconstructions of \mathbf{D}^* that satisfy *K*

- Worst-case disclosure
 - Knowledge expressions may also include variables E.g., $K = (\text{Tom}[S] \neq \mathbf{x}) \land (\mathbf{u}[S] \neq \mathbf{y}) \land (\mathbf{v}[S] = \mathbf{s} \rightarrow \text{Tom}[S] = \mathbf{s})$
 - Maximum breach probability

$$\max \Pr(t[S] = s \mid \mathbf{D}^*, K)$$

The maximization is over variables *t*, *u*, *v*, *s*, *x*, *y*, by substituting them with constants in the dataset

What Kinds of Expressions

- Privacy criterion: Release candidate \mathbf{D}^* is safe if max Pr($t[S] = s | \mathbf{D}^*, K) < c$
- Prior work by Martin et al., 2007
 - *K* is a conjunction of *m* implications
 - E.g., $K = (u_1[S] = x_1 \rightarrow v_1[S] = y_1) \land \dots \land (u_m[S] = x_m \rightarrow v_m[S] = y_m)$
 - Not intuitive: What is the practical meaning of *m* implications?
 - Some limitations: Some simple knowledge cannot be expressed
- Complexity for general logic sentences
 - Computing breach probability is NP-hard
- Goal: Identify classes of expressions that are
 - Useful (intuitive & cover common adversarial knowledge)
 - Computationally feasible

Outline

- Theoretical framework
- Three-dimensional knowledge expression
 - Tradeoff between expressiveness and feasibility
- Privacy Skyline
- Efficient and scalable algorithms
- Experimental results
- Conclusion and future work

Kinds of Adversarial Knowledge

	Age	Gender	Zipcode	Group		Group	Disease
(Ann)	20	F	12345				AIDS
(Bob)	24	М	12342	1	1	1	Flu
(Cary)	23	F	12344			1	Flu
(Dick)	27	М	12343				AIDS
(Ed)	35	М	12412				Flu
(Frank)	34	М	12433	2	2	2	Cancer
(Gary)	31	М	12453			Z	Cancer
(Tom)	38	М	12455				AIDS

Assume a person has only one record in the dataset in this talk (Multiple sensitive values per person is in the paper)

- Adversary's target: Whether Tom has AIDS
- Knowledge about the target: Tom does not have Cancer
- Knowledge about other people: Ed has Flu
- Knowledge about relationships: Ann has the same sensitive value as Tom

3D Knowledge Expression

- Adversary's target: Whether person *t* has sensitive value *s*
- Adversary's knowledge $\mathscr{L}_{t,s}(\ell,k,m)$:
 - Knowledge about the target: *l* sensitive values that *t* does not have

 $t[S] \neq x_1 \land \ldots \land t[S] \neq x_\ell$

Knowledge about others: The sensitive values of k other people

$$u_1[S] = y_1 \wedge \ldots \wedge u_k[S] = y_k$$

Knowledge about relationships: A group of *m* people who have the same sensitive value as *t*

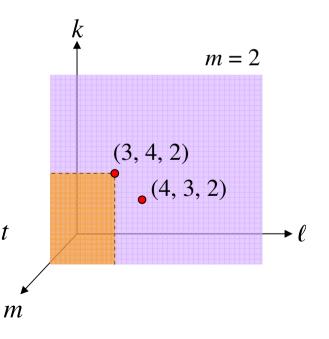
 $(v_1[S] = s \to t[S] = s) \land \dots \land (v_m[S] = s \to t[S] = s)$

- Worst-case guarantee: max $\Pr(t[S] = s \mid \mathbf{D}^*, \mathscr{L}_{t,s}(\ell, k, m)) < c$
 - No matter what those *l* sensitive values, what those *k* people and what those *m* people are, the adversary should <u>not</u> be able to predict any person *t* to have any sensitive value *s* with confidence $\geq c$

Outline

- Theoretical framework
- Three-dimensional knowledge expression
- Privacy Skyline
 - Skyline privacy criterion
 - Skyline exploratory tool
- Efficient and scalable algorithms
- Experimental results
- Conclusion and future work

Basic 3D Privacy Criterion

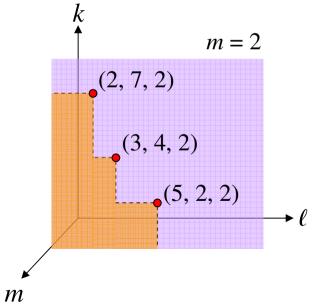

• Given knowledge threshold (ℓ, k, m) and confidence threshold *c*, release candidate \mathbf{D}^* is **safe** if max Pr($t[S] = s | \mathbf{D}^*, \mathscr{L}_{t,s}(\ell, k, m)) < c$

Example: $(\ell, k, m) = (3, 4, 2)$ and c = 0.5

A release candidate is **safe** if <u>no</u> adversary with the following knowledge can predict any person *t* to have any sensitive value *s* with confidence ≥ 0.5

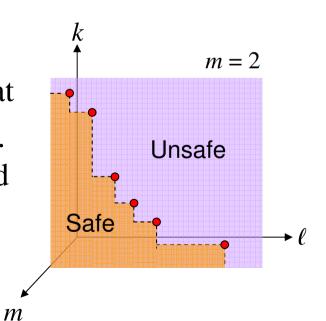
- Any 3 sensitive values that *t* does not have
- The sensitive values of any 4 people
- Any 2 people having the same sensitive value as *t*

k-anonymity and *l*-diversity are two special cases of this criterion



Skyline Privacy Criterion

• Given a set of skyline points


 $(\ell_1, k_1, m_1, c_1), \ldots, (\ell_r, k_r, m_r, c_r),$

release candidate \mathbf{D}^* is **safe** if it is safe with respect to every point

Skyline Exploratory Tool

- In the skyline privacy criterion
 - The data owner specifies a set of skyline points
 - The system checks whether a release candidate is safe
- Skyline exploratory tool
 - Given a release candidate
 - Find the set of skyline points such that
 - The release candidate is **safe** w.r.t. any point **beneath** the skyline, and
 - The release candidate is **unsafe** w.r.t. any point **above** the skyline

Outline

- Theoretical framework
- Three-dimensional knowledge expression
- Privacy Skyline
- Efficient and scalable algorithms
 - SkylineCheck (in this talk)
 - Check whether a given release candidate is safe w.r.t. a skyline
 - SkylineAnonymize (in the paper)
 - Generate a safe release candidate that maximizes a utility function
 - SkylineFind (in the technical report)
 - Find the skyline of a given release candidate
- Experimental results
- Conclusion and future work

Check Safety for a Single Point

- Given (ℓ, k, m, c) , check
 - $\max \Pr(t[S] = s \mid \mathbf{D}^*, \mathscr{L}_{t,s}(\ell, k, m)) < c$
 - $\mathscr{L}_{t,s}(\ell,k,m) = K_t(\ell) \wedge K_u(k) \wedge K_{v,t}(m)$
 - $K_t(\ell) = t[S] \neq x_1 \land \ldots \land t[S] \neq x_\ell$
 - $K_u(k) = u_1[S] = y_1 \land \dots \land u_k[S] = y_k$
 - $K_{v,t}(m) = (v_1[S] = s \rightarrow t[S] = s) \land \dots \land (v_m[S] = s \rightarrow t[S] = s)$
 - Variables:
 - People: $t, u_1, ..., u_k, v_1, ..., v_m$
 - Sensitive values: $x_1, \ldots, x_\ell, y_1, \ldots, y_k$
- Technical challenge:
 - How to find the variable assignment that maximizes the breach probability

Ŵ

Check Safety for a Single Point

- max Pr($t[S] = s \mid \mathbf{D}^*, \mathscr{L}_{t,s}(\ell, k, m)$)
 - Variables:
 - People: $t, u_1, ..., u_k, v_1, ..., v_m$
 - Sensitive values: $x_1, \ldots, x_\ell, y_1, \ldots, y_k$
- In principle, we need to
 - Consider all possible ways of assigning person variables into QI-groups
 - For each assignment of person variables, find the assignment of sensitive-value variables that maximizes the breach probability
 - Has a closed-form solution

Release candidate \mathbf{D}^*

Age	Gender	Zipcode	Group		Group	Disease	
20	F	12345				AIDS	
24	М	12342	1		1	Flu	
23	F	12344	1		1	Flu	
27	М	12343				AIDS	
35	М	12412				Flu	
34	М	12433	2		2	Cancer	
31	М	12453	Z		Z	Cancer	
38	М	12455				AIDS	
20	F	12345				AIDS	
24	М	12342	3		3	Flu	
23	F	12344	3		3	Flu	
27	М	12343				AIDS	
35	М	12412				Flu	
34	М	12433	4			1	Cancer
31	М	12453			4	Cancer	
38	М	12455				AIDS	

Example assignment of person variables:

Group 1: t, u_1 Group 2: u_2, v_1, v_2 Group 3: u_3, u_4 Group 4: v_3, v_4

"Congregation" Property

- max Pr($t[S] = s \mid \mathbf{D}^*, \mathscr{L}_{t,s}(\ell, k, m)$)
 - Variables:
 - People: $t, u_1, ..., u_k, v_1, ..., v_m$
 - Sensitive values: $x_1, \ldots, x_\ell, y_1, \ldots, y_k$
- When the breach probability is maximized,
 - All $u_1, ..., u_k$ would congregate in one QI-group
 - All $v_1, ..., v_m$ would congregate in one QI-group
 - *t* would be in one of the above two

Release candidate \mathbf{D}^*

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Age	Gender	Zipcode	Group	Grou
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	20	F	12345		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	24	М	12342	1	1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	23	F	12344	L	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	27	М	12343		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	35	М	12412		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	34	М	12433	2	2
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	31	М	12453	Z	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	38	М	12455		
23 F 12344 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 4 <th>20</th> <td>F</td> <td>12345</td> <td></td> <td></td>	20	F	12345		
23 1 12344 0 0 27 M 12343 3 35 M 12412 34 M 12433 31 M 12453 4 4	24	М	12342	2	2
35 M 12412 34 M 12433 31 M 12453	23	F	12344	3	5
34 M 12433 4 4 31 M 12453 4 4	27	М	12343		
<u>31 M 12453</u> 4 4	35	М	12412		
	34	М	12433	1	1
38 M 12455	31	М	12453	4	4
	38	М	12455		

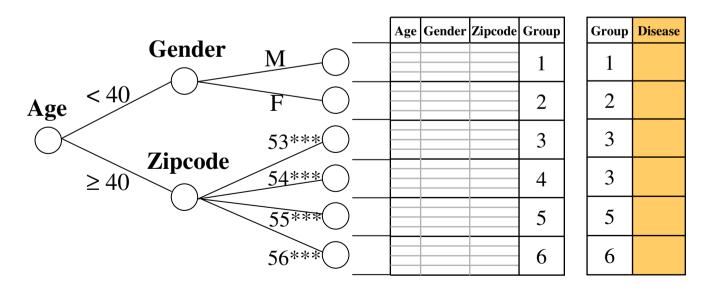
up Disease AIDS Flu Flu AIDS Flu Cancer Cancer AIDS AIDS Flu Flu AIDS Flu Cancer Cancer AIDS

Example assignment of person variables:

Group 1: Group 2: $t, u_1, ..., u_k$ Group 3: Group 4: $v_1, ..., v_m$

Five Sufficient Statistics

- Three possible cases at the maximum
 - Case 1:
 - All person variables are in one QI-group (A) max $Pr(...) = 1 / [(\min_A CF_1(A)) + 1]$
 - Case 2:
 - t and $u_1, ..., u_k$ are in one QI-group (B)
 - v_1, \ldots, v_m are in one QI-group (C) max $Pr(\ldots) = 1 / [(\min_B CF_2(B)) \cdot (\min_C CF_3(C)) + 1]$
 - Case 3:
 - t and v_1, \ldots, v_m are in one QI-group (D)
 - u_1, \dots, u_k are in one QI-group (E) max $Pr(\dots) = 1 / [(\min_D CF_4(D)) \cdot (\min_E CF_5(E)) + 1]$

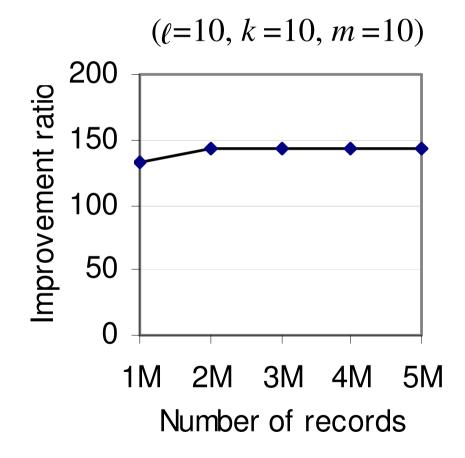

(For a fixed QI-group, CF_1 , ..., CF_5 are closed-form formulas)

SkylineCheck Algorithm

- Keep 5 sufficient statistics (5 floating-point variables) for each skyline point
- Single-scan algorithm
 - Scan the dataset once
 - During the scan, update the 5 sufficient statistics for each skyline point
 - Compute the maximum breach probability based on these statistics

SkylineAnonymize Algorithm

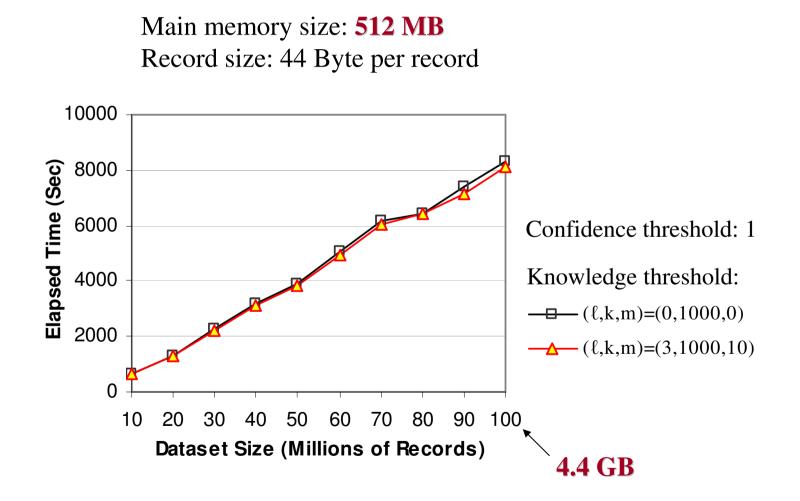
- Goal: Generate a safe release candidate that maximizes a utility function
- Partition records into QI-groups by a tree structure
 - Adaptation of the Mondrian algorithm by LeFevre et al.
 - The congregation property makes the adaptation easy


Outline

- Theoretical framework
- Three-dimensional knowledge expression
- Privacy Skyline
- Efficient and scalable algorithms
- Experimental results
- Conclusion and future work

Experimental Results

- Our SkylineCheck algorithm (based on the congregation property) is orders of magnitude faster than the best-known dynamic-programming technique [Martin et al., 2007]
- Our SkylineAnonymize algorithm scales nicely to datasets substantially larger than main memory
- A case study shows usefulness of the skyline exploratory tool


Efficiency of SkylineCheck

Improvement ratio =

Execution time of DP Execution time of ours

Scalability of SkylineAnonymize

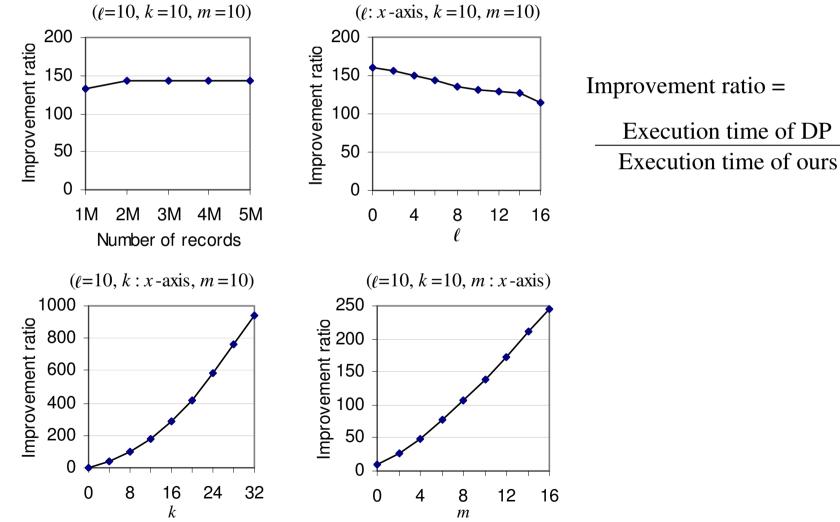
Conclusion and Future Work

- It is important to consider adversarial knowledge in data privacy
- Tradeoff between expressiveness and feasibility
 - Useful expressions that satisfy the congregation property
- Future directions:
 - Other kinds of adversarial knowledge
 - Probabilistic knowledge expressions
 - knowledge about various kinds of social relationships
 - Other kinds of data
 - Search logs
 - Social networks

University of Wisconsin - Madison

Thank You!

Bee-Chung Chen 2007 beechung@cs.wisc.edu



University of Wisconsin - Madison

Supplementary Slides

Bee-Chung Chen 2007 beechung@cs.wisc.edu

Efficiency of SkylineCheck

Case Study: *l*-Diverse Dataset

- Dataset: UCI adult dataset
 - Size: 45,222 records
 - Sensitive attribute: Occupation
- Create a (c=3, ℓ=6)-diverse release candidate D*
- How safe **D**^{*} is at confidence 0.95?
 - D* is only safe for an adversary with knowledge beneath the knowledge skyline
 - E.g., if the adversary knows 5 people's occupations, then he can predict somebody *t*'s occupation with confidence ≥ 0.95

Knowledge skyline of \mathbf{D}^* $\frac{\ell \ k \ m}{(0, 4, 0)}$ (1, 3, 1)(2, 2, 2)(3, 1, 2)(2, 1, 3)(4, 0, 3)(3, 0, 4)

Related Work

- *k*-Anonymity (by Sweeney)
 - Each QI-group has at least *k* people
 - *k*-Anonymity is a special case of our 3D privacy criterion with knowledge (0, *k*-2, 0) and confidence 1
 - Give each person a unique sensitive value
- *l*-Diversity (by Machanavajjhala et al.)
 - Each QI-group has ℓ well-represented sensitive values
 - (c,ℓ) -Diversity is a special case of our 3D privacy criterion with knowledge $(\ell-2, 0, 0)$ and confidence c/(c+1)

Related Work

- Differential privacy & indistinguishability (Dwork et al.)
 - Add noise to query outputs so that no one can tell whether a record is in the original dataset with a high probability
- Probabilistic disclosure without adversarial knowledge
 - Xiao and Tao (SIGMOD'06 and VLDB'06)
 - Li et al. (ICDE'07)

Related Work

- Query-view privacy
 - Require complete independence between sensitive information and the released dataset
 - Deutsch et al. (ICDT'05), Miklau and Suciu (SIGMOD'04), and Machanavajjhala and Gehrke (PODS'06)
 - Bound the asymptotic probability of the answer of a Boolean query given views when the domain size $\rightarrow \infty$
 - Dalvi et al. (ICDT'05)

NP-Hardness

- max $\Pr(t[S] = s | \mathbf{D}^*, K) < c$
 - $K = (A_1[S] = C_1 \leftrightarrow B_1[S] = D_1) \land \dots \land (A_m[S] = C_m \leftrightarrow B_m[S] = D_m)$
 - $A_1, ..., A_m, B_1, ..., B_m, C_1, ..., C_m, D_1, ..., D_m$ are constants