

Integrity Auditing of Outsourced Data Integrity Auditing of Outsourced Data

Min Xie*, Haixun Wang, Jian Yin**, Xiaofeng Meng***

* Renmin University of China ** IBM T.J. Watson Research Center

© 2007 IBM Corporation

Outline

- **Concerns in Database Outsourcing**
- **Our Motivation**
- **A Probabilistic Approach**
- **Proof of Security**
- **Experimental Results**
- Future Work

Database outsourcing

- Push:
	- Lowered network cost
- Pull:
	- Expanding market
- Obstacles:
	- Security

Two aspects of security concerns

Privacy

- $-$ Safeguard confidential data against unauthorized accesses.
- $-$ Rely on data encryption.

- Integrity

- Ensure query results are the same as if the data owner would have produced them.
	- –Inclusive
	- –Complete

,,,,,,,,,

Current approach – signature based

pppp

Current approach – signature based

• Merkle tree

Authenticate data structure based approaches

 For large databases, a lot of signatures need to be maintained.

■ How to do join?

SELECT * $\mathop{\rm FROM}\nolimits{\bf T}_1$ AND ${\bf T}_2$ WHERE $\mathbf{T}_1 \cdot \mathbf{B} = \mathbf{T}_2 \cdot \mathbf{B}$

 Changes must be made in DBMS engines to support the scheme.

Think out of the box – step 1 Cross examination

Service Provider B

It opens a can of worms

Security

–What if the two service providers conspire in cheating?

Cost

Using two service providers incurs double cost.

 $-$ Run time cost is also high.

.........

Think out of the box - step 2 Are you human?

© 2007 Carnegie Mellon University, all rights reserved.

It is a probabilistic approach!

- Wrong doings may be caught immediately
	- The answer to the known word is wrong
- **There is a chance that wrong doings can evade** detection
	- The answer to the known word is correct
- **In the long run, the probability that wrong doings** can evade detection is very small

 $\hbox{--}$ If it's only guessing at which word is the known word

Our approach

- **Add a small set of "fake" tuples to the database.**
- **Encrypt the database for privacy.**
- **The attackers do not know what tuples are** "fake".
- **The service provider executes queries in a** DBMS (with support of encryption).
- **All "fake" tuples that satisfy the query must be** returned.

Our approach

No need to maintain local databases

We do not store "fake" tuples.

Deterministic "faking"

 We use a function, which is determined by a secret key, to generate "fake" tuples.

Low cost

 $-$ Each client remembers only the function

If is extendible

– For joins, updates, etc.

Architecture

Privacy

Encryption w/ order preserving features

 $-$ Orthogonal to our work

¾Executing SQL over encrypted data in the database-service-provider model *[Hacigumus, SIGMOD 2002]*

^¾Order-preserving encryption for numeric data *[Agrawal, SIGMOD 2004]*

¾Multi-dimensional range query over encrypted data *[Shi, Oakland 2007]*

Privacy

- Our approach is based on the **Order-Preserving Encryption** (OPE) scheme
	- $-$ Every attribute is encrypted using OPE independently
	- $-$ Only authorized users/administrators have the key

Protect data from being tampered

We encrypt data using OPE

 $-$ A tuple t (a_1 , a_2 , …, a_n) is encrypted to t' { a_1' , a_2 ', …, a_n }

 We assume the tuple has an additional field, which allows us to easily check the authenticity of the tuple. For example, the field can be computed as :

$$
H(a_1 \oplus a_2 \oplus ... \oplus a_n)
$$

where H is a one-way hashing function.

Query completeness

- Database has *N* tuples.
- We embed *K* "fake" tuples in the database.
- $\overline{}$ If fake tuples covered by a query do not appear in the results, we know there is an attack.
- **There is a probability that the attacker can escape from** being caught.

Analysis

- **If a tuple is deleted by** an attacker, it has the probability of $\frac{N}{N+K}$ not being caught. *N* +
- **The probability of not** being caught after m attacks is

$$
\prod_{i=0}^{m-1} \frac{N-i}{K+(N-i)}
$$

Distinguish fake tuples from real ones

- Our scheme won't work if attackers can tell fake tuples from real ones
	- It only need to query against fake tuples
- **If is easy for the client, who knows the key, to distinguish** fake tuples from real ones

 $checksum = \begin{cases} H(a_0 \oplus a_1 \oplus ... \oplus a_n) & \text{Real tuple} \\ H(a_0 \oplus a_1 \oplus ... \oplus a_n) + 1 & \text{Take tuple} \end{cases}$

Any fake tuples missing in the query result?

- **Let Q be a query.**
- Let $C_s(Q)$ be the set of fake tuples in the query result sent back by the server
- Let $C_c(Q)$ be the set of fake tuples that satisfy the query
- **Integrity check:** $C_c(Q) = C_s(Q)$?
- If $|C_c(Q)| \ll |C_s(Q)|$, then there is definitely a problem.
- If $|C_c(Q)| = |C_s(Q)|$, do we need to compare the two sets for equality?

Any fake tuples missing in the query result?

THEOREM 1. If $|C_s(Q)| = |C_c(Q)|$, then $C_s(Q) = C_c(Q)$.

PROOF. Assume to the contrary $C_s(Q) \neq C_c(Q)$. Since $|C_s(Q)| =$ $|C_c(Q)|$, then $\exists t \in C_s(Q)$ such that $t \notin C_c(Q)$. But $t \in C_s(Q)$ means t is a checking tuple, whose authenticity is guaranteed by the one-way hash function, and since t satisfies Q , t must appear in $C_c(Q)$. \Box

Fake tuple distribution

- Data distribution is important to security
	- Use a multi-dimensional histogram to catch original data's distribution.
	- Match the distribution of fake tuples with that of real tuples.
- Query distribution is important to level of integrity assurance

– Do queries follow a random distribution, or the data distribution?

How to generate fake tuples?

- **A Naïve approach**
	- $-$ Randomly generate fake tuples under distribution of the real data
	- Maintain a copy of fake tuples at each client
	- $-$ When a query Q is send to the server, also run Q on the client site.
	- $-$ Check whether $|C_s(Q)|$, the count of fake tuples in the query result provided by the server, is equal to $|C_c(Q)|$, the count of fake tuples the client finds out.
- $\overline{}$ Drawbacks:
	- Maintaining database locally is against the purpose of database outsourcing

Deterministic Methods

Choose a family of functions

- e.g., linear functions, quadratic functions
- Randomly pick a key, which determines a function in the family
	- e.g., coefficients of the linear/quadratic functions

Each client remembers the function

- Little storage cost
- $-$ Efficient to find the count of fake tuples that satisfy a query

How about distribution?

- **Divide the feature space into grids**
- Capture the distribution of the real data (count of tuples in each grid)
- **Create a key (hence a deterministic function) for each** grid
- **The count decides how many tuples the function** generates for that grid

Fake tuple generation

 1111111111

Checking query integrity

Proof of security

ε -distinguisher

Let ε >0 and let f^0_0 and f^1_1 be two functions selected from two different f unction families \mathcal{F}_o and \mathcal{F}_1 uniformly randomly.

A distinguisher A is an algorithm; given a function, A outputs 0 or 1 as it determines whether the function is from F_o or F_1 .

Let Adv_A denote A's advantage in distinguishing F_{o} and F_{1} .

 $Adv_{A} = |P$ r[$A(f_{0}) = 1]$ *-* P r[$A(f_{1}) = 1$]|

We say algorithm A is an ε -distinguisher of F_o and F_1 if Adv $_{\mathsf{A}}$ > $\varepsilon.$

Proof of security

(q, t, ε)-pseudorandom

A function family F is called (*q, t,*)*-pseudorandom if*

there does not exist an algorithm A that can -distinguish F from a truly random function.

(A is allowed to use F as an oracle for q queries, and use no more than t computation time.)

Proof of security

Our approach is provable secure

Given a dataset T, we generate a dataset S, and store $X=F_k(T\cup S)$ to the server. The highest level of security is achieved if any subset from Fk(*T*) is indistinguishable from a random subset of *X* to attackers.

We prove: there does not exist an adversary algorithm that can select l tuples from X such that all the l tuples are in T with a possibility bigger than

$$
\left(\frac{|T|}{|T|+|S|}\right)^l + \varepsilon
$$

Integrity assurance of Joins

Join two tables T_1 and T_2

```
SELECT * 
\rm{FROM\,T_1} and \rm{T_2}WHERE T_1.B = T_2.B
```
We have 4 cases here:

- 1.. Original tuples from ${\sf T}_1$ *join with* original tuples from ${\sf T}_2$
- 2.Fake tuples from T_1 *join with* original tuples from T_2
- 3. $\,$ Original tuples from ${\sf T}_1$ *join with* fake tuples from ${\sf T}_2$
- **4.Fake tuples from T1** *join with* **fake tuples from T2**

,,,,,,,,,

Integrity Auditing of Outsourced Data | VLDB 2007 | Haixun Wang **Corporation Corporation** © 2007 IBM Corporation

Experiment (1)

,,,,,,,,,

Experiment (2)

,,,,,,,,,

Experiment (3)

Experiment (4)

,,,,,,,,,

Experiment (5)

,,,,,,,,,

Future work

Update queries

- –Merkle tree based approaches
- –Probabilistic approaches

Aggregate queries

- sum and max
- **Data mining queries**
	- –e.g., Nearest neighbor search