Making Sense of Suppressions and Failures in Sensor Data: A Bayesian Approach

Adam SilbersteinJun Yang, Kamesh MunagalaYahoo! ResearchDuke CS

Gavino Puggiono, Alan Gelfand Duke ISDS

September 27, 2007

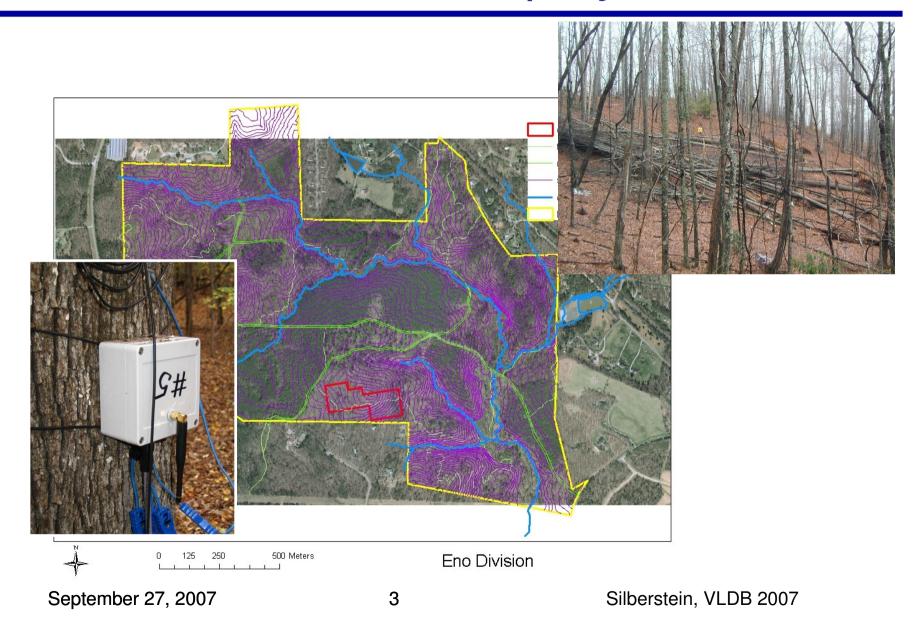
Silberstein, VLDB 2007

Introduction

- What is a sensor network?
 - A collection of nodes
 - Node components
 - Sensors (e.g. temperature)
 - Radio (wireless) communication
 - Battery power

Crossbow Mica2

Duke Forest Deployment



Getting All the Data

- Scientists often want ALL the data!
 - No aggregates (e.g. mean)
- Continuous reporting
 - Repeatedly transmit readings to root
 - Explicitly construct central DB and use traditional processing techniques
 - Radio costs too high!
 - Cost to transmit a bit over radio ~1000 times more than to execute machine instruction

Push processing into network with suppression

Outline

- 1. Suppression
- 2. Failure!
- 3. Coping using redundancy
- 4. BaySail
 - Inference of missing readings, parameters

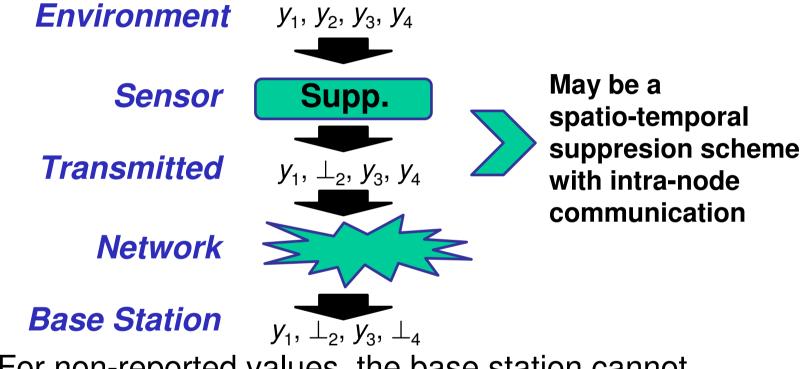
Suppression

- Push-based communication

 Only report deviations from a model
- Value-based Temporal Suppression
 model: temp_t=temp_(t-1)

The Catch for Suppression

• What about reports generated, but lost to failure?



• For non-reported values, the base station cannot distinguish failures from suppressions

Coping With Failure

- Focus on simple temporal suppression
- Learn ALL missing values

Two Coping Strategies

System-level acks + re-transmissions

 Sender re-sends until receiver returns acknowledgement

Minimize chance report not received

Augment existing reports

Minimize impact of missing report

Redundancy

- Temporal Suppression with error tolerance
 - Report only if reading changes beyond ε since last reported
- 5 report types

Name	Payload Addition
Standard	Node reading
Counter	Incrementing report number
Timestamp	Last <i>n</i> report times
Timestamp D	Last <i>n</i> report times + direction bits
History	last <i>n</i> times + readings

• Increasing payload, increasing info

TinyOS Implementation

- Application-level Redundancy
 - Simple to implement
 - 40-50 lines of additional code to a tutorial example
- Lower-level redundancy
 - Activate "acks" in MAC-layer code
 - Re-transmissions in application code
- Failure Rates
 - Tied to distance, clearance, battery, etc.
 - Independent over time
 - 30% failure rate with maximum 2 re-transmissions gives <3% effective failure rate

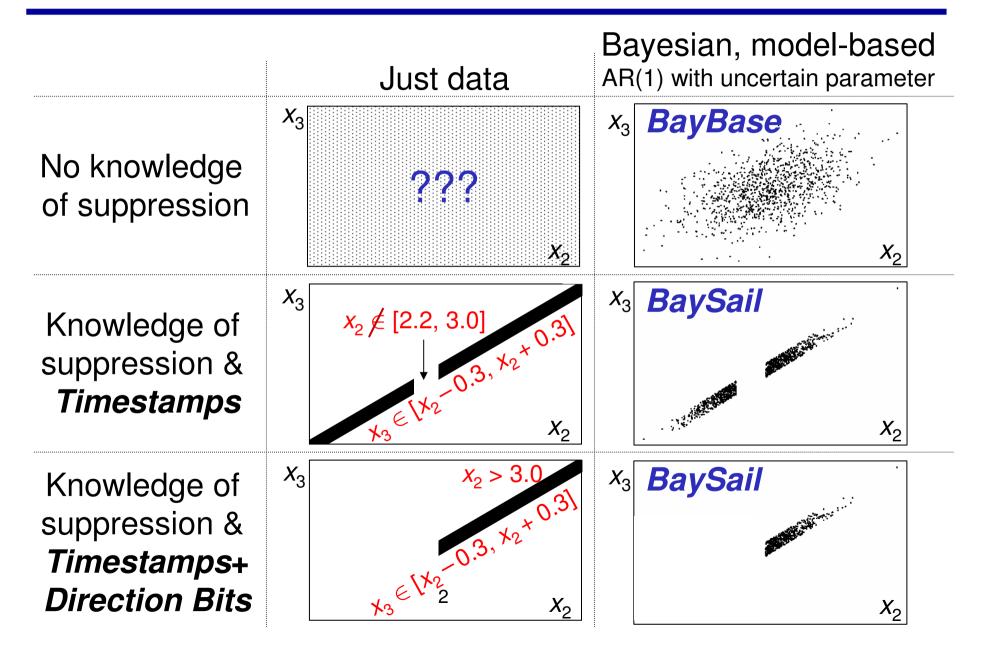
Suppression-Aware Inference

- Redundancy + knowledge of suppression scheme ⇒ hard constraints on missing data
 - Temporal suppression with ε = 0.3, prediction = last reported
 - Actual: $(x_1, x_2, x_3, x_4) = (2.5, 3.5, 3.7, 2.7)$
 - Base station receives: (2.5, nothing, nothing, 2.7)
 - With *Timestamp* (r=1)
 - (2.5, failed, suppressed, 2.7)
 - $|x_2 2.5| > 0.3; |x_3 x_2| \le 0.3; |2.7 x_2| > 0.3$
 - With Timestamp+Direction Bit (r=1)
 - (2.5, failed & increased, suppressed, 2.7 & decreased)
 - $x_2 2.5 > 0.3; -0.3 \le x_3 x_2 \le 0.3; x_2 2.7 > 0.3$
 - With *Count*
 - One suppression and one failure in x_2 and x_3 ; not sure which
 - A very hairy constraint!
- Posterior: $p(\mathbf{X}_{mis}, \Theta | \mathbf{X}_{obs})$, with \mathbf{X}_{mis} subject to constraints

September 27, 2007

Silberstein, VLDB 2007

Using Redundancy



BaySail Key Features

- 1. Estimates missing readings/parameters
- 2. Bayesian provides posterior distributions, not just single point estimates
- 3. Missing data not generically missing
 - Constrain possible settings using suppression scheme and redundancy
- 4. Computing posteriors is hard
 - Gibbs' sampling iteratively generates samples of reading time series and of each parameter
- 5. Combine simple, low-cost in-network reporting with efficient out-of-network inference

BaySail Experimental Example

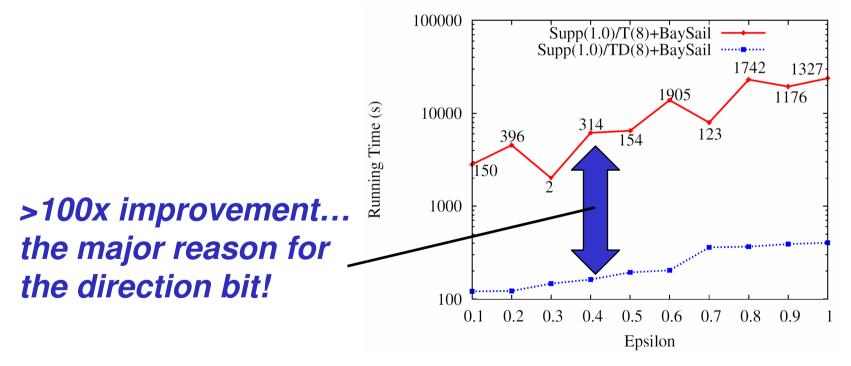
• Simple model of soil moisture

$$- Y_{s,t} = C_t + \phi Y_{s,t-1} + \varepsilon_{s,t}$$

- c_t is a series of known precipitations
- $\phi \in (0,1)$ controls how fast moisture escapes soil
- $\operatorname{Cov}(Y_{s,t}, Y_{s',t}) = \sigma^2 (\phi^{|t-t'|}/(1-\phi^2)) \exp(-\tau ||s-s'||)$
- τ controls strength of spatial correlation over distance
- *Prior*: $1/\sigma^2 \sim \text{Gamma}$, $\phi \sim U(0,1)$, $\tau \sim \text{Gamma}$
- Joint Posterior: $p(Y_{mis}, \phi, \sigma^2, \tau | Y_{obs})$ subject to constraints

Why the Direction Bit?

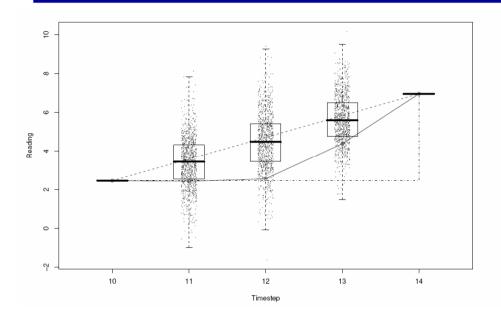
- TS gives OR constraints: $|x_2 x_1| > \varepsilon$
 - Inefficient *rejection* sampling
- TS+D gives linear constraint: $x_1 x_2 > \varepsilon$
 - Allows for more efficient sampling [Rodriguez-Yam et al. 04]



September 27, 2007

Silberstein, VLDB 2007

3 Missing Values Cluster



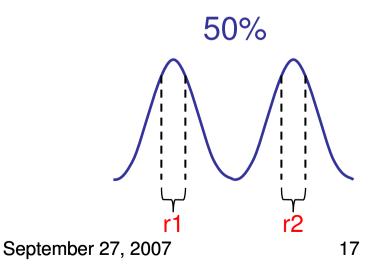
 G_{i} G_{i

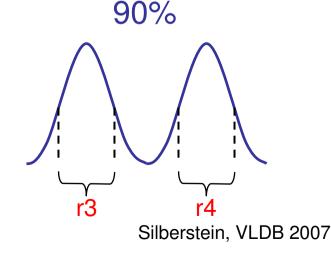
BayBase: Conditioning on model and endpoints

BaySail: Conditioning on model, endpoints, and that missing values are suppressions

Metrics

- Compare posterior mean to actual?
 - Mean misleading for bimodal distributions
- High density regions (hdr)
 - Given percentage x, return minimal length range(s) of values such that x% of sample's probability density contained in range(s)
 - Ensure hdr covers actual reading x% of time





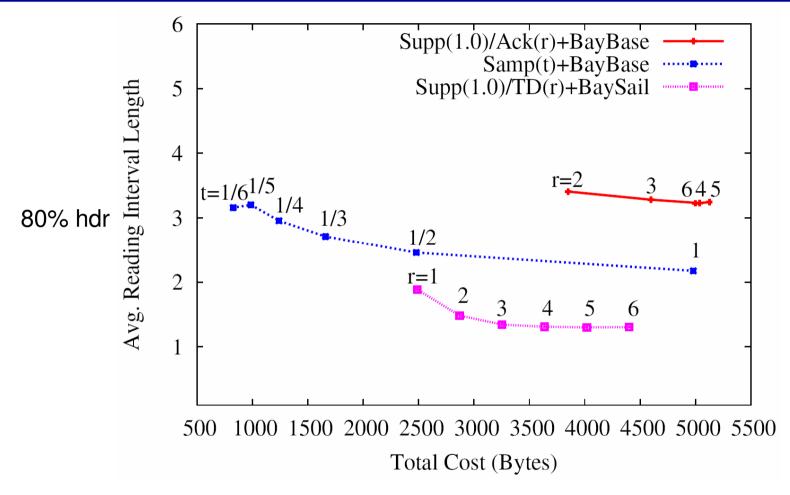
Cost vs. HDR Interval

• Parameters induce 60% suppression rate

 $-\sigma^2 = 1.0, \ \phi = 0.9, \ \varepsilon = 1.0$

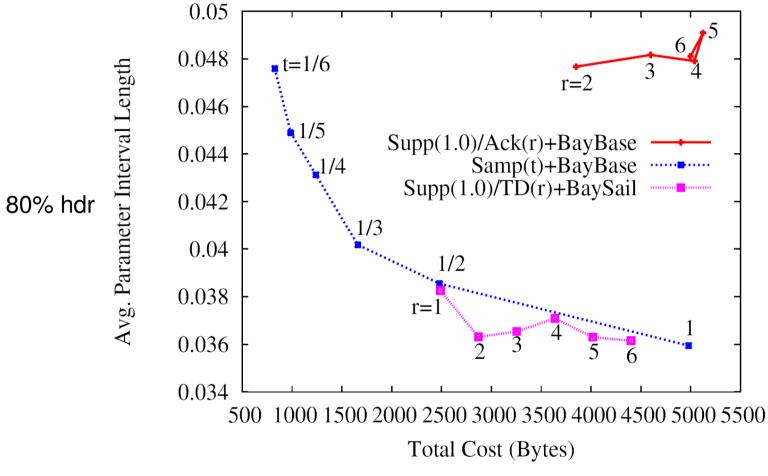
- Failure rate 30%
- 3 Schemes
 - Samp(τ)
 - Fixed reporting every τ rounds
 - Supp/TD(*r*)
 - Timestamp + direction for last *r* reports
 - Supp/Ack(r)
 - Maximum *r* re-transmission attempts

Readings Interval



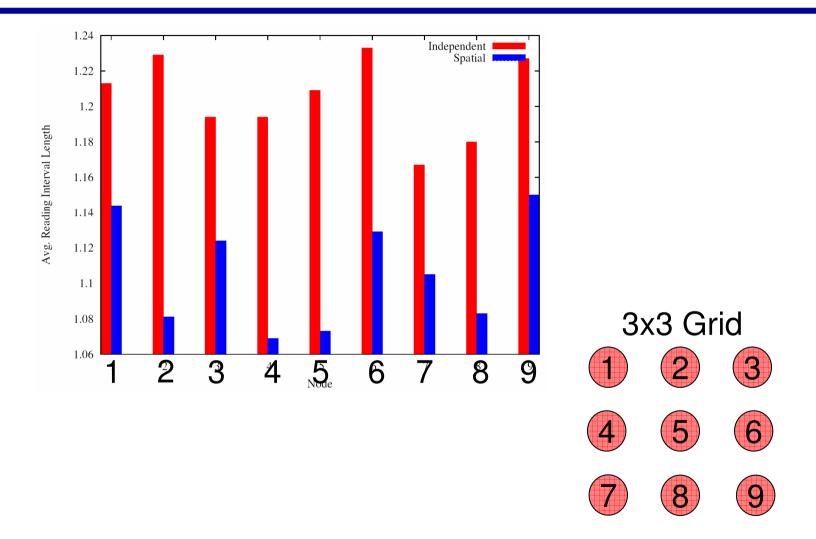
BaySail demonstrates significant improvement

Phi Interval



Choice has little effect for process parameter

Spatial Inference



Conclusion

- Suppression is a viable technique only when made robust to failure
- BaySail combines low-cost in-network redundancy with efficient out-of-network statistical inference
 - Generates posteriors distributions on raw missing values and process parameters
- Future Challenges
 - Sophisticated spatio-temporal schemes
 - Failure on in-network constraints
 - Failure of model parameter transmission
 - Storing query results