MIST: Distributed Indexing and Querying in Sensor Networks

Ambuj K. Singh

(Arnab Bhattacharya, Anand Meka) Department of Computer Science, University of California, Santa Barbara

Semantic Modeling: Motivation

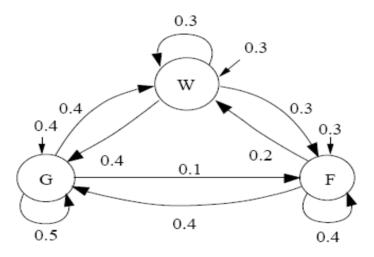
- Content-Summarization: Extracting high level semantic events from low-level sensor readings
 - What is the current traffic pattern?
 - Which room has the highest-likelihood of occupancy?
 - Is a storm approaching?
- Vocal Recognition of Acorn Woodpeckers by acoustic sensors
 - Which is this individual?
 - Where is this bird?
 - Are any birds alarmed?

Individual Recognition via models trained on sound

Motivation

- Track movement to study zebra behavior & social patterns
- Zebra's movement characterized into (G) Grazing, (W) Walking, and (F) Fast Moving
- Temporal behavior is a sequence of states
 - Ex: GWWWWFGG
- Training of Markov Chains over such sequences
 - Start state vector (π)
 - Transition vector (Γ)
 - $P(GWW) = \pi(G) \Gamma(G,W) \Gamma(W,W)$

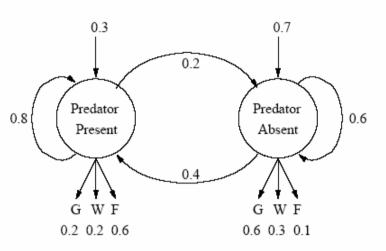
Zebranet Project



Zebra Mobility: Markov model

Semantic Modeling

- Hidden Markov Models (HMMs)
 - Additional Emission Vector (ξ)
 - Probability of state path: Akin to MC
 - Probability of observing sequence from a particular state path:
 - $P(GWW | S_1S_2S_1) = \pi(S_1) \xi(S_1,G)$ $\Gamma(S_1,S_2) \xi(S_2,W) \Gamma(S_2,S_1) \xi(S_1,W)$
 - Probability of observing the sequence is the summation of sequence probability over all possible statepaths
 - Viterbi Algorithm: O(n²k) computation for a n-state HMM, and k-length sequence



Zebra Mobility: HMM model

Goals

- Identify interesting behaviors in the network
 - Ex: Which zebranet sensors observed FFFFF sequence with a likelihood of 0.85? (denoting a possible predator attack)
- Sequence Queries
 - Range Query: Return sensors which observed a particular pattern with a likelihood of at least Φ?
 - Top-1 Query: Which is the sensor that is most likely to exhibit a given behavior?
- Model Query
 - 1-NN Query: Which sensor *model* is the most similar to the given *model*?
 - Where is the woodpecker?

Centralized Solution

- Each sensor trains a model on the observation sequence
 - Transmits the model to the Base Station (BS)
- Queries are answered at BS
- Each update of model is transmitted to the BS

A Better Solution: Slack-based Centralized Scheme

- Slack parameter maintained at local models
- Updates are not transmitted if the change is within the slack
- If query cannot be answered by the BS using the cached models, it is transmitted to each node

Talk Outline

- Motivation & Preliminaries
- MIST: An In-network Model based Index Structure
- Query Algorithms
- Experiments
- Conclusions

MIST Index Structure

- Overlay a tree on the network
- Each sensor trains a MC/HMM on the observed sequences
- Bottom-up aggregation of index structure
- Types of Index Models
 - Average Model
 - Min-Max Model
- Index models capture correlation between constituent models

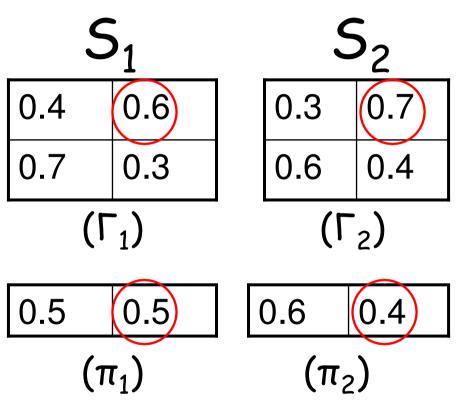
Modeling Correlations

• Models at nodes S_1 and S_2 are $(1-\epsilon)$ -correlated if for all corresponding parameters σ_1 of S_1 , and σ_2 of S_2 :

$$1 - \varepsilon = \min_{i} \{ \frac{\min(\sigma_{1}^{i}, \sigma_{2}^{i})}{\max(\sigma_{1}^{i}, \sigma_{2}^{i})} \}$$

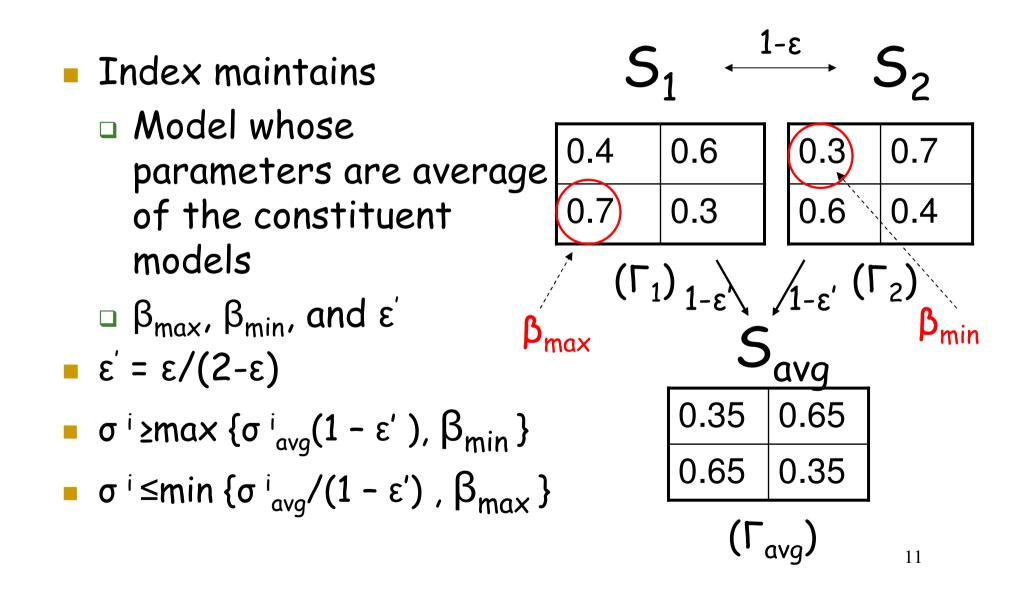
• $\epsilon \rightarrow 0$: high similarity

Example: 0.75 correlation



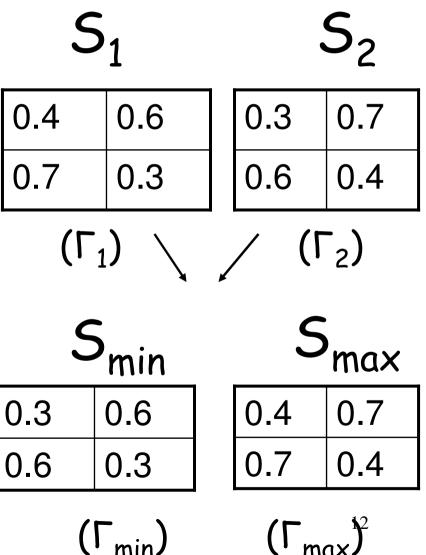
$$0.75 = \min\{\frac{0.3}{0.4}, \frac{0.6}{0.7}, \frac{0.4}{0.5}, \frac{0.5}{0.6}\}$$

MIST: Average Index Models



MIST: Min-Max Index Models

- Index maintains
 - Min Model: parameters are minimum of the constituent models
 - Max Model is similarly defined

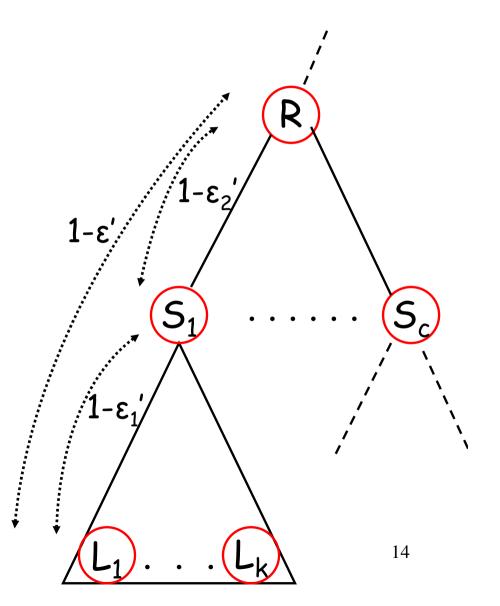


Index Models for HMMs

- Correspondence of states required to define index models
- Domain knowledge to infer correspondence between states

MIST: Hierarchical Index Structure

- Average Model:
 - □ $(1-\epsilon') = (1-\epsilon_1') (1-\epsilon_2')$
- Min-Max model aggregation similar to an R-Tree



Dynamic Maintenance

- After every period 'd', each sensor trains a new model on the recent observation sequence
- Update protocol: Child does not update its parent if the new model is (1-δ)—correlated with the model maintained at the parent
- Correlation maintained at the parent
 (1 ε_{slack}) = (1 δ) (1 ε_{no-slack})
 Optimal slack analysis in paper

Talk Outline

- Motivation & Preliminaries
- MIST: An In-network Model based Index Structure
- Query Algorithms
- Experiments
- Conclusions

Range Querying

- Return all nodes that have observed a particular sequence of symbols q: q¹...q^k with a probability > Φ
- Assume P(q) = $\sigma^1 \dots \sigma^k \dots \sigma^k$
- Pruning by Average model S_{avg}:
 - □ Ib: $\prod k [\max \{\sigma_{avg}^{i}(1 \varepsilon_{s}), \beta_{min}(1 \delta)\}]$
 - ub: $\Pi k [\min \{\sigma_{avg}^{i}/(1 \varepsilon_{s}), \beta_{max}/(1 \delta)\}]$
- Pruning by Min-Max models $S_{min} \& S_{max}$ Ib: $P(q|S_{min})(1-\delta)^k$ ub: $P(q|S_{max})/(1-\delta)^k$

Top-1 Query

- Return the sensor that has the highest probability of observing the query sequence
- Pruning employed by index models
 - compute lower and upper bounds on the query probability for each child-subtree
 - Prune the child-subtree if the upper bound from this subtree is smaller than the lower bound from another child-subtree

Model Querying

- Return the sensor model most similar to the query model.
- Similarity measure: L₂ distance between corresponding model parameters
- Average Models
 - Create an M-Tree index
 - Index node: routing object S_{avq} and covering radius
- Min-Max Models
 - Build an R-Tree based index
 - Index node: MBR in the vector space

Semantic Modeling & Querying

- Motivation & Preliminaries
- MIST: An In-network Model based Index Structure
- Query Algorithms
- Experiments
- Conclusions

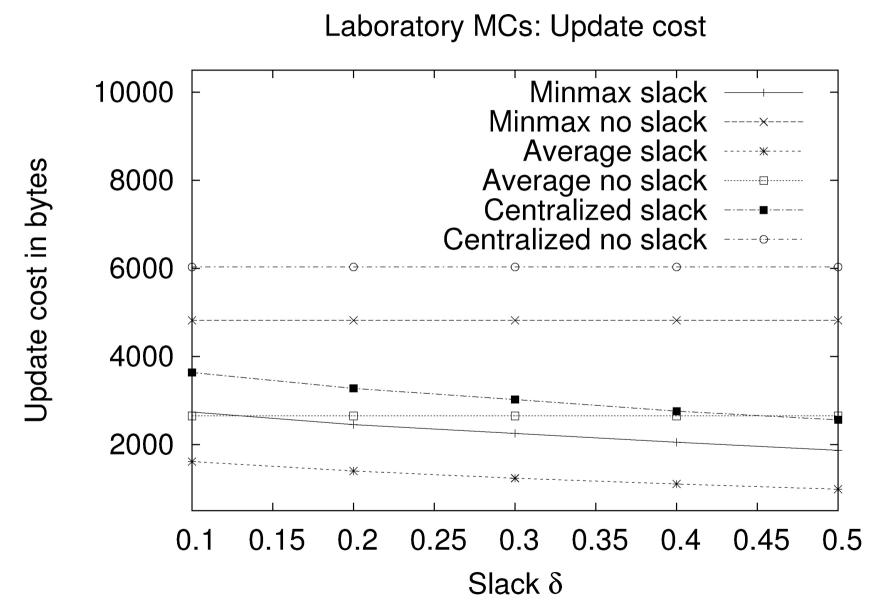
Experimental Results

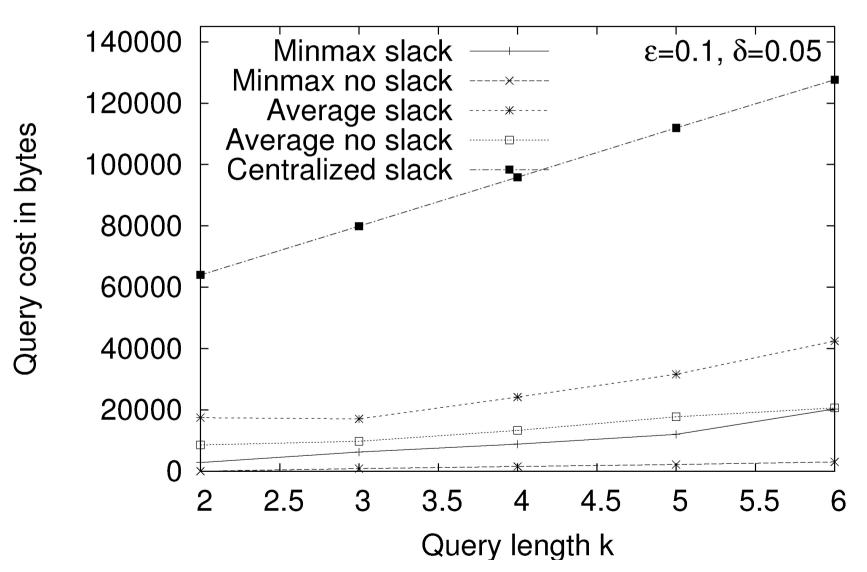
- Datasets
 - Lab-data:
 - 4 rooms, 4 sensors in each room.
 - Temperature readings every 30s for 10 days.
 - Symbols: C (cold), P (Pleasant), H (Hot)
 - Example semantic queries: CCHHCC, PPPPP
 - Synthetic data
 - Network size varied between 16-512
 - State size varied between 3-11
 - Correlation parameter ε varied between 0.001 -0.5

Compared Techniques

- Centralized scheme with no slack
 - A node transmits each parameter update to the base station
 - Zero querying cost
- Centralized scheme with slack
 - Slack maintained at base station
 - Updates transmitted if they exceed the slack
 - If query cannot be answered by the BS using cached models, it is transmitted to the nodes.
- MIST schemes
 - Without slack
 - With slack at every level of the tree

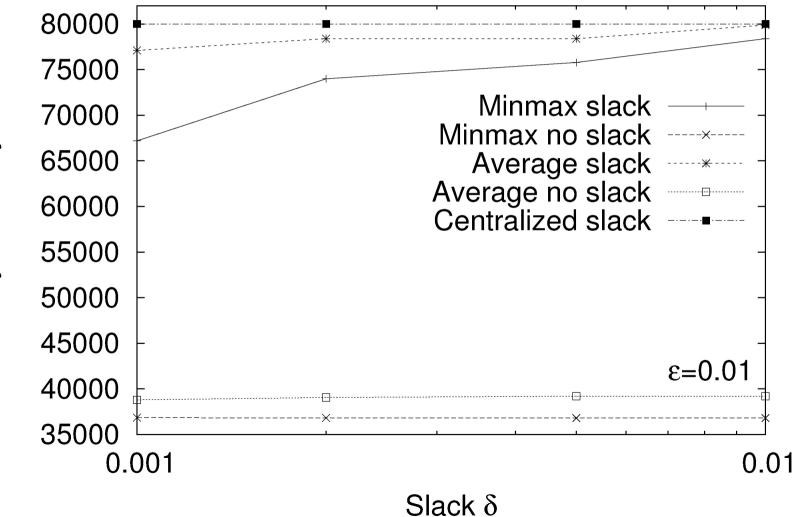
Update cost





Top-1 query

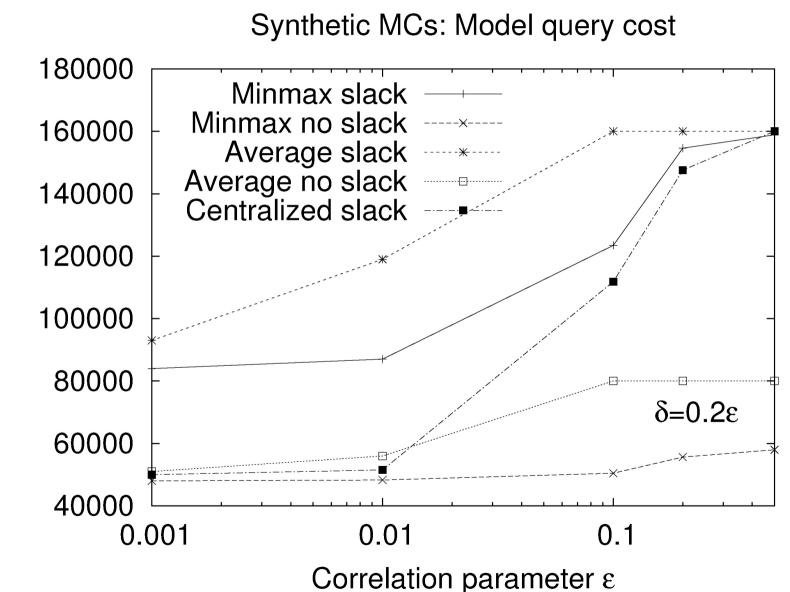
Synthetic HMMs: Top-1 query cost



25

Query cost in bytes

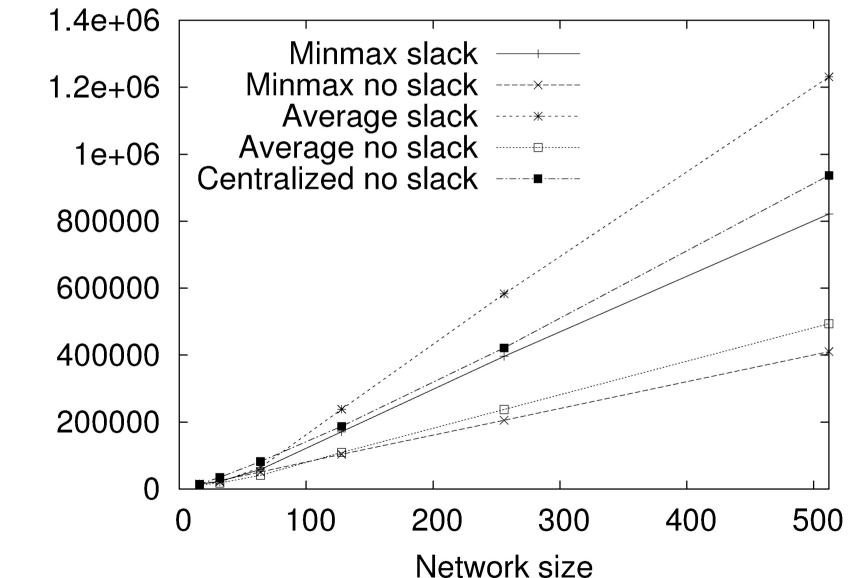
Model query



Query cost in bytes

Scalability with network size

Scalability with network size



Communication cost in bytes

Semantic Modeling & Querying

- Motivation & Preliminaries
- MIST: An In-network Model based Index Structure
- Query Algorithms
- Experiments
- Conclusions

Semantic Modeling & Querying

- Content summarization using MCs and HMMs
- Semantic queries
 - Sequence-based: Range and Top-1 queries
 - Model-queries
- MIST: In-network index structure
 - \square Average model and $\epsilon,\,\beta_{max},\,\beta_{min}$
 - Min-Max model
- Efficient pruning of queries via MIST
- MIST shows superior scalability than centralized schemes in update, query and total communication costs

Future work

- Other models
- Other ways of summarizing parameters
 - $\square \ \beta_{max}, \ \beta_{min}$
- Other query algorithms
- State correspondence problem
- Application domains
- Learning the model

Questions?