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Relational Ranking Queries

• A base score for each table in [0,1]

• Combined with a scoring function S
S(bH, bR, bE) = 0.3*bH + 0.5*bR + 0.2*bE

• Return top k results based on S
In this case, k = 10

RANK BY 0.3/h.price + 0.5*r.rating + 0.2*isMusic(e)

LIMIT 10

bE(e) = isMusic(e)Events:

bR(r) = r.ratingRestaurants:

bH(h) = 1/h.priceHotels:

SELECT h.hid, r.rid, e.eid

FROM Hotels h, Restaurants r, Events e

WHERE h.city = r.city AND r.city = e.city
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Ranking Query Execution

SELECT h.hid, r.rid, e.eid

FROM Hotels h, Restaurants r, Events e

WHERE h.city = r.city AND r.city = e.city

RANK BY 0.3/h.price + 0.5*r.rating + 0.2*isMusic(e)

LIMIT 10

H R

E

Fetch 10 results

H R

E

Sort on S

conventional plan rank-aware plan

Fetch 10 results

Ordered 

by score

Rank join

Rank joinJoin

Join
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Depth Estimation

• Depth: number of accessed tuples

– Indicates execution cost

– Linked to memory consumption

• The problem: Estimate depths for 
each operator in a rank-aware plan

H Rleft depth right depth

Rank join
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Depth Estimation Methods

• Ilyas et al. (SIGMOD 2004)
–Uses probabilistic model of data

–Assumes relations of equal size and a 
scoring function that sums scores

–Limited applicability

• Li et al. (SIGMOD 2005)
–Samples a subset of rows from each table

– Independent samples give a poor model 
of join results
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Our Solution: DEEP

• DEpth Estimation for Physical plans

• Strengths of DEEP

–A principled methodology

• Uses statistical model of data distribution

• Formally computes depth over statistics

–Efficient estimation algorithms

–Widely applicable

•Works with state-of-the-art physical plans

• Realizable with common data synopses
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• Preliminaries

• DEEP Framework

• Experimental Results

Outline
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Monotonic Functions

x

f(x)

• A function f(x1,...,xn) is monotonic if
�i(xi≤yi) � f(x1,...,xn) ≤ f(y1,...,yn)
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Monotonic Functions

• A function f(x1,...,xn) is monotonic if
�i(xi≤yi) � f(x1,...,xn) ≤ f(y1,...,yn)

• Most scoring functions are monotonic

–E.g. sum, product, avg, max, min

• Monotonicity enables bound on score

– In example query, score was
0.3/h.price + 0.5*r.rating + 0.2*isMusic(e)

–Given a restaurant r, upper bound is
0.3*1 + 0.5*r.rating + 0.2*1
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Hash Rank Join [IAE04]

• The Hash Rank Join algorithm
– Joins inputs sorted by score

– Returns results with highest score

• Main ideas

– Alternate between inputs based on pull strategy

– Score bounds allow early termination

� � �

0.8y

1.0x

bLaL

� � �

0.7w

0.9z

1.0y

bRaR Query: Top result from L    R
with scoring function
S(bL, bR) = bL + bR

Result: y
Score: 1.8

Bound:  1.8 Bound:  1.7
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HRJN* [IAE04]

• The HRJN* pull strategy:
a) Pull from the input with highest bound

b) If (a) is a tie, pull from input with the 
smaller number of pulls so far

c) If (b) is a tie, pull from the left

bLaL bRaR

Bound: 2.0 Bound: 2.01.8 1.9 1.7

x   1.0

y   0.8

y 1.0

z 0.9

w 0.7
Result: y
Score: 1.8

Query: Top result from L    R
with scoring function
S(bL, bR) = bL + bR

?�
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• Preliminaries

• DEEP Framework

• Experimental Results

Outline
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Supported Operators

Evidence in favor of HRJN*

– Pull strategy has strong properties 
• Within constant factor of optimal cost

• Optimal for a significant class of inputs

• More details in the paper

– Efficient in experiments [IAE04]

� DEEP explicitly supports HRJN*

– Easily extended to other join operators

– Selection operators too
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DEEP: Conceptual View

Depth
Computation

Statistical

Data Model

defined in

terms of

Formalization

Estimation

Algorithms
Statistics
Interface

defined in

terms of

Implementation

Data
Synopsis
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Statistics Model

• Statistics yield the distribution of 
scores for base tables and joins
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Statistics Interface

• DEEP accesses statistics with two methods
– getFreq(b): Return frequency of b

– nextScore(b,i): Return next lowest score on dimension i

getFreq(b) = 3

nextScore(b,1)=0.9

nextScore(b,2)=0.5
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b

• The interface allows for efficient algorithms
– Abstracts the physical statistics format

– Allows statistics to be generated on-the-fly
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Statistics Implementation

• Interface can be implemented over 

common types of data synopses

• Can use a histogram if

a) Base score function is invertible, or

b) Base score measures distance

• Assume uniformity & independence if

a) Base score function is too complex, or

b) Sufficient statistics are not available
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Depth Estimation Overview

ValueEstimates made
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• Idea

– Sort by total score

– Sum frequencies

Estimating Terminal Score 

• Suppose we want 
the 10th best score

sumFL     R(bL,bR)bL + bR
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Estimation Algorithm
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• Idea: Only process necessary statistics
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• Algorithm relies solely on getFreq and nextScore

– Avoids materializing complete table

• Worst-case complexity equivalent to sorting table

– More efficient in practice

Sterm = 1.6
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Depth Estimation Overview

ValueEstimates made
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Estimating Depth for HRJN*

Example: Sterm = 1.6

11 ≤ depth ≤ 15
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> Sterm

> Sterm

Input Score Bounds

Theorem: i ≤≤≤≤ depth of HRJN* ≤ j

i

j

• Estimation algorithm

– Access via getFreq and nextScore

– Similar to estimation of Sterm
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• Preliminaries

• DEEP Framework

• Experimental Results

Outline
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Experimental Setting

• TPC-H data set

–Total size of 1 GB

–Varying amount of skew

• Workloads of 250 queries

–Top-10, top-100, top-1000 queries

–One or two joins per query

• Error metric: absolute relative error
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Depth Estimation Techniques

• DEEP
– Uses 150 KB TuG synopsis [SP06]

• Probabilistic [IAE04]
– Uses same TuG synopsis

– Modified to handle single-join queries 
with varying table sizes

• Sampling [LCIS05]
– 5% sample = 4.6 MB
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Error for Varying Skew
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Error at Each Input

697% 683% 696% 679%

284%

695% 644%

28% 28% 28% 28%28%25%
35%

1

10

100

1000

10000

1 2 3 4 5 6 7
Input

DEEP Sampling

Input of Two-Join Query

P
e
rc

e
n

ta
g

e
 E

rr
o

r



29

Conclusions

• Depth estimation is necessary to optimize 
relational ranking queries

• DEEP is a principled and practical solution

– Takes data distribution into account

– Applies to many common scenarios

– Integrates with data summarization techniques

• New theoretical results for HRJN*

• Next steps

– Accuracy guarantees

– Data synopses for complex base scores 
(especially text predicates)
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Thank You
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Related Work

• Selectivity estimation is a similar idea

• It is the inverse problem

L R L R

depth? depth?

selectivity = k

depth = |L|

selectivity?

depth = |R|

Selectivity Estimation Depth Estimation
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Other Features

• DEEP can be extended to NLRJ and 
selection operators

• DEEP can be extended to other pulling 
strategies

– Block-based HRJN*

– Block-based alternation
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Analysis of HRJN*

• Within the class of all HRJN variants:

–HRJN* is optimal for many cases 

• With no ties of score bound between inputs

• With no ties of score bound within one input

–HRJN* is instance optimal


