
Depth Estimation for

Ranking Query Optimization

Karl Schnaitter, UC Santa Cruz

Joshua Spiegel, BEA Systems, Inc.

Neoklis Polyzotis, UC Santa Cruz

2

Relational Ranking Queries

• A base score for each table in [0,1]

• Combined with a scoring function S
S(bH, bR, bE) = 0.3*bH + 0.5*bR + 0.2*bE

• Return top k results based on S
In this case, k = 10

RANK BY 0.3/h.price + 0.5*r.rating + 0.2*isMusic(e)

LIMIT 10

bE(e) = isMusic(e)Events:

bR(r) = r.ratingRestaurants:

bH(h) = 1/h.priceHotels:

SELECT h.hid, r.rid, e.eid

FROM Hotels h, Restaurants r, Events e

WHERE h.city = r.city AND r.city = e.city

3

Ranking Query Execution

SELECT h.hid, r.rid, e.eid

FROM Hotels h, Restaurants r, Events e

WHERE h.city = r.city AND r.city = e.city

RANK BY 0.3/h.price + 0.5*r.rating + 0.2*isMusic(e)

LIMIT 10

H R

E

Fetch 10 results

H R

E

Sort on S

conventional plan rank-aware plan

Fetch 10 results

Ordered

by score

Rank join

Rank joinJoin

Join

4

Depth Estimation

• Depth: number of accessed tuples

– Indicates execution cost

– Linked to memory consumption

• The problem: Estimate depths for
each operator in a rank-aware plan

H Rleft depth right depth

Rank join

5

Depth Estimation Methods

• Ilyas et al. (SIGMOD 2004)
–Uses probabilistic model of data

–Assumes relations of equal size and a
scoring function that sums scores

–Limited applicability

• Li et al. (SIGMOD 2005)
–Samples a subset of rows from each table

– Independent samples give a poor model
of join results

6

Our Solution: DEEP

• DEpth Estimation for Physical plans

• Strengths of DEEP

–A principled methodology

• Uses statistical model of data distribution

• Formally computes depth over statistics

–Efficient estimation algorithms

–Widely applicable

•Works with state-of-the-art physical plans

• Realizable with common data synopses

7

• Preliminaries

• DEEP Framework

• Experimental Results

Outline

8

• Preliminaries

• DEEP Framework

• Experimental Results

Outline

9

Monotonic Functions

x

f(x)

• A function f(x1,...,xn) is monotonic if
�i(xi≤yi) � f(x1,...,xn) ≤ f(y1,...,yn)

10

Monotonic Functions

• A function f(x1,...,xn) is monotonic if
�i(xi≤yi) � f(x1,...,xn) ≤ f(y1,...,yn)

• Most scoring functions are monotonic

–E.g. sum, product, avg, max, min

• Monotonicity enables bound on score

– In example query, score was
0.3/h.price + 0.5*r.rating + 0.2*isMusic(e)

–Given a restaurant r, upper bound is
0.3*1 + 0.5*r.rating + 0.2*1

11

Hash Rank Join [IAE04]

• The Hash Rank Join algorithm
– Joins inputs sorted by score

– Returns results with highest score

• Main ideas

– Alternate between inputs based on pull strategy

– Score bounds allow early termination

� � �

0.8y

1.0x

bLaL

� � �

0.7w

0.9z

1.0y

bRaR Query: Top result from L R
with scoring function
S(bL, bR) = bL + bR

Result: y
Score: 1.8

Bound: 1.8 Bound: 1.7

12

HRJN* [IAE04]

• The HRJN* pull strategy:
a) Pull from the input with highest bound

b) If (a) is a tie, pull from input with the
smaller number of pulls so far

c) If (b) is a tie, pull from the left

bLaL bRaR

Bound: 2.0 Bound: 2.01.8 1.9 1.7

x 1.0

y 0.8

y 1.0

z 0.9

w 0.7
Result: y
Score: 1.8

Query: Top result from L R
with scoring function
S(bL, bR) = bL + bR

?�

13

• Preliminaries

• DEEP Framework

• Experimental Results

Outline

14

Supported Operators

Evidence in favor of HRJN*

– Pull strategy has strong properties
• Within constant factor of optimal cost

• Optimal for a significant class of inputs

• More details in the paper

– Efficient in experiments [IAE04]

� DEEP explicitly supports HRJN*

– Easily extended to other join operators

– Selection operators too

15

DEEP: Conceptual View

Depth
Computation

Statistical

Data Model

defined in

terms of

Formalization

Estimation

Algorithms
Statistics
Interface

defined in

terms of

Implementation

Data
Synopsis

16

Statistics Model

• Statistics yield the distribution of
scores for base tables and joins

1.0

0.5

0.7

0.7

0.7

bR

6

4

3

2

2

FL R(bL,bR)

1.0

1.0

1.0

0.9

0.6

bL

5

2

3

12

8

FL(bL)

1.0

0.9

0.8

0.6

0.4

bL

3

1

2

FR(bR)

1.0

0.7

0.5

bRFR

FL

FL R

17

Statistics Interface

• DEEP accesses statistics with two methods
– getFreq(b): Return frequency of b

– nextScore(b,i): Return next lowest score on dimension i

getFreq(b) = 3

nextScore(b,1)=0.9

nextScore(b,2)=0.5

1.0

0.5

0.7

0.7

0.7

bR

6

4

3

2

2

FL R(bL,bR)

1.0

1.0

1.0

0.9

0.6

bL

b

• The interface allows for efficient algorithms
– Abstracts the physical statistics format

– Allows statistics to be generated on-the-fly

18

Statistics Implementation

• Interface can be implemented over

common types of data synopses

• Can use a histogram if

a) Base score function is invertible, or

b) Base score measures distance

• Assume uniformity & independence if

a) Base score function is too complex, or

b) Sufficient statistics are not available

19

Depth Estimation Overview

ValueEstimates made

2

2

1

1

1

2

Top-k query plan

A B

C

l2 r2

r1l1

s2

s1
Score of the kth best
tuple out of

s11.

Depths of needed
to output score of s1

l1 and r12.

Score of the l1
th best

tuple out of
s23.

Depths of needed
to output score of s2

l2 and r24.

20

• Idea

– Sort by total score

– Sum frequencies

Estimating Terminal Score

• Suppose we want
the 10th best score

sumFL R(bL,bR)bL + bR

6

9

11

1.0

0.5

0.7

0.7

0.7

bR

6

4

3

2

2

FL R(bL,bR)

1.0

1.0

1.0

0.9

0.6

bL

6

3

2

4

2

2.0

1.7

1.6

1.5

1.3

Sterm = 1.6

21

Estimation Algorithm

1 0.7 0.5

6 41

0.9

0.8

0.6

3

2

2

• Idea: Only process necessary statistics

1.0

0.5

0.7

0.7

0.7

bR

6

4

3

2

2

FL R(bL,bR)

1.0

1.0

1.0

0.9

0.6

bL

• Algorithm relies solely on getFreq and nextScore

– Avoids materializing complete table

• Worst-case complexity equivalent to sorting table

– More efficient in practice

Sterm = 1.6

22

Depth Estimation Overview

ValueEstimates made

2

2

1

1

1

2

Top-k query plan

A B

C

l2 r2

r1l1

s2

s1
Score of the kth best
tuple out of

s11.

Depths of needed
to output score of s1

l1 and r12.

Score of the l1
th best

tuple out of
s23.

Depths of needed
to output score of s2

l2 and r24.

23

Estimating Depth for HRJN*

Example: Sterm = 1.6

11 ≤ depth ≤ 15

5

2

3

12

8

FL(bL)

1.0

0.9

0.8

0.6

0.4

bL

< Sterm

< Sterm

< Sterm

< Sterm

< Sterm

= Sterm

= Sterm

= Sterm

> Sterm

> Sterm

> Sterm

> Sterm

Input Score Bounds

Theorem: i ≤≤≤≤ depth of HRJN* ≤ j

i

j

• Estimation algorithm

– Access via getFreq and nextScore

– Similar to estimation of Sterm

5

2

3

4

8

FL(bL)

2.0

1.9

1.8

1.6

1.4

bL+1

24

• Preliminaries

• DEEP Framework

• Experimental Results

Outline

25

Experimental Setting

• TPC-H data set

–Total size of 1 GB

–Varying amount of skew

• Workloads of 250 queries

–Top-10, top-100, top-1000 queries

–One or two joins per query

• Error metric: absolute relative error

26

Depth Estimation Techniques

• DEEP
– Uses 150 KB TuG synopsis [SP06]

• Probabilistic [IAE04]
– Uses same TuG synopsis

– Modified to handle single-join queries
with varying table sizes

• Sampling [LCIS05]
– 5% sample = 4.6 MB

27

Error for Varying Skew

342%

3%

12%

2%

18% 16%

44%39%

489% 501%

297%

1

10

100

1000

0 0.5 1 1.5
z

DEEP Probabilistic Sampling

Zipfian Skew Parameter

P
e
rc

e
n

ta
g

e
 E

rr
o

r

28

Error at Each Input

697% 683% 696% 679%

284%

695% 644%

28% 28% 28% 28%28%25%
35%

1

10

100

1000

10000

1 2 3 4 5 6 7
Input

DEEP Sampling

Input of Two-Join Query

P
e
rc

e
n

ta
g

e
 E

rr
o

r

29

Conclusions

• Depth estimation is necessary to optimize
relational ranking queries

• DEEP is a principled and practical solution

– Takes data distribution into account

– Applies to many common scenarios

– Integrates with data summarization techniques

• New theoretical results for HRJN*

• Next steps

– Accuracy guarantees

– Data synopses for complex base scores
(especially text predicates)

30

Thank You

31

Related Work

• Selectivity estimation is a similar idea

• It is the inverse problem

L R L R

depth? depth?

selectivity = k

depth = |L|

selectivity?

depth = |R|

Selectivity Estimation Depth Estimation

32

Other Features

• DEEP can be extended to NLRJ and
selection operators

• DEEP can be extended to other pulling
strategies

– Block-based HRJN*

– Block-based alternation

33

Analysis of HRJN*

• Within the class of all HRJN variants:

–HRJN* is optimal for many cases

• With no ties of score bound between inputs

• With no ties of score bound within one input

–HRJN* is instance optimal

