
The Chinese University of Hong KongThe Chinese University of Hong Kong

11

Graph Indexing: Tree + Graph Indexing: Tree + DeltaDelta >= Graph >= Graph

PeixianPeixian Zhao, Jeffrey Xu Yu, Philip S. Yu Zhao, Jeffrey Xu Yu, Philip S. Yu

The Chinese University of Hong Kong, {The Chinese University of Hong Kong, {pxzhao,pxzhao,yu}@se.cuhk.edu.hkyu}@se.cuhk.edu.hk

IBM Watson Research Center, IBM Watson Research Center, psyu@us.ibm.compsyu@us.ibm.com

22

An OverviewAn Overview

•• Graph containment queryGraph containment query

•• The framework and query cost modelThe framework and query cost model

•• Some existing path/graph based solutionsSome existing path/graph based solutions

•• A new tree-based approachA new tree-based approach

•• Experimental studiesExperimental studies

•• ConclusionConclusion

33

Graph Containment QueryGraph Containment Query

• Given a graph database G = {g1, g2, …, gN} and a query
graph q, find the set

• Infeasible to check subgraph isomorphism for every gi
in G, because subgraph-isomorphism is NP-Complete.

i i isup(q) { g | q g ,g G }= ! "

√√

(q)

44

The FrameworkThe Framework
•• Index constructionIndex construction generates a set of features, generates a set of features, F,F, from the from the

graph database graph database GG. Each . Each featurefeature, , ff, maintains a set of graph ids, maintains a set of graph ids
in in GG containing, containing, ff, , supsup((ff).).

•• Query processingQuery processing is a is a filtering-verification filtering-verification process.process.

• Filtering phase uses the features in query graph, q, to
compute the candidate set.

• Verification phase checks subgraph isomorphism for every
graph in Cq. False positives are pruned.

55

Query Cost ModelQuery Cost Model
•• The cost of processing a graph containment query The cost of processing a graph containment query q q upon G isupon G is

modeled asmodeled as

• Cf : the filtering cost, and

• Cv : the verification cost (NP-Complete)

•• Several Facts:Several Facts:

• To improve query performance is to minimize |Cq|.

• The feature set F selected has great impacts on Cf and |Cq|.

• There is also an index construction cost, which is the cost
of discovering the feature set F.

66

Existing Solutions: Paths Existing Solutions: Paths vsvs Graphs Graphs
•• Path-based Indexing Approach: GraphGrep (Path-based Indexing Approach: GraphGrep (PODSPODS’’0202))

• All paths up to a certain length lp are enumerated as indexing features

– An efficient index construction process

– Index size is determined by lp
– Limited pruning power, because the structural information is lost.

•• Graph-based Indexing Approach: gIndex (Graph-based Indexing Approach: gIndex (SIGMODSIGMOD’’04)04)
• Discriminative frequent subgraphs are mined from G as indexing features

– A costly index construction process

– Compact index structure

– Great pruning power, because structural information is well-
preserved

77

Tree Features?Tree Features?

•• Regarding paths and graphs as index features:Regarding paths and graphs as index features:
• The cost of generating path features is small but

the candidate set can be large.

• The cost of generating frequent graph features is
high but the candidate set can be small.

•• The key observationThe key observation: the majority of frequent: the majority of frequent
graph-features (more than 95%) are trees.graph-features (more than 95%) are trees.

•• How good can tree features do?How good can tree features do?

88

A New Approach: Tree+A New Approach: Tree+ΔΔ

•• To explore To explore indexabilityindexability of path, tree and graph. of path, tree and graph.

•• A new approach Tree+A new approach Tree+ΔΔ : :

• To select frequent tree features.

• To select a small number of discriminative graph-
features that can prune graphs effectively,
on demand, without costly graph mining.

99

Indexability of Path, Tree and GraphIndexability of Path, Tree and Graph

• We consider three main factors to answer indexability.

• The frequent feature set size: |F|

• The feature selection cost (mining): CFS

• The candidate set size: |Cq|

1010

The Frequent Feature Set Size: |FF|

•• 95% of frequent graph features are trees. Why?95% of frequent graph features are trees. Why?

•• Consider non-tree frequent graph features g and gConsider non-tree frequent graph features g and g’’..

• Based on Apriori principle, all g’s subtrees, t1, t2,
…, tn are frequent.

• Because of the structural diversity and vertex/edge
label variety, there is a little chance that subrees of
g coincide with those of g’.

1111

Frequent Feature DistributionsFrequent Feature Distributions

The Real Dataset (AIDS antivirus screen dataset) N = 1,000, σ = 0.1

1212

The Feature Selection Cost: The Feature Selection Cost: CCFSFS

• Given a graph database, G, and a minimum support
threshold, σ, to discover the frequent feature set F
from G.
• Graph: two prohibitive operations are unavoidable

– Subgraph isomorphism
– Graph isomorphism

• Tree: one prohibitive operation is unavoidable
– Tree-in-Graph testing

• Path: polynomial time

1313

The Candidate Set Size: The Candidate Set Size: |C|Cqq||
• Let pruning power of a frequent feature, f, be

• Let pruning power of a frequent feature set S = {f1, f2 , …, fn}

• Let a frequent subtree feature set of graph, g, be

T (g) = {t1, t2 , …, tn}. power(power(gg)) ≥≥ power(power(T T ((gg))))
• Let a frequent subpath feature set of tree, t, be

P (t) = {p1, p2 , …, pn}. power(power(tt)) ≥≥ power(power(P P ((tt))))

1414

The Pruning PowerThe Pruning Power

The Real Dataset (AIDS antivirus screen dataset) N = 1,000, σ = 0.1

1515

Indexability of TreeIndexability of Tree

•• The frequent tree-feature set dominates (95%).The frequent tree-feature set dominates (95%).

•• Discovering frequent tree-features can be doneDiscovering frequent tree-features can be done
much more efficiently than mining frequentmuch more efficiently than mining frequent
general graph-features.general graph-features.

•• Frequent tree featuresFrequent tree features can contribute similarcan contribute similar
pruning power as frequent graph featurespruning power as frequent graph features do.do.

1616

Add Graph Features On DemandAdd Graph Features On Demand
• Consider a query graph q which contains a subgraph g

• If power(T(g)) ≈ power(g), there is no need to index the
graph-feature g.

• If power(g) >> power(T(g)), it needs to select g as an
index feature, because g is more discriminative than T(g),
in terms of pruning.

• Select discriminative graph-features on-demand, without
mining the whole set of frequent graph-features from G.

• The selected graph features are additional indexing
features, denoted Δ, for later reuse.

1717

Discriminative RatioDiscriminative Ratio
• A discriminative ratio, ε(g), is defined to measure the

similarity of pruning power between a graph-feature
g and its subtrees T(g).

• A non-tree graph feature, g, is discriminative if
ε(g) ≥ ε0.

1818

Discriminative Graph SelectionDiscriminative Graph Selection (1) (1)
• Consider two graphs g and g’, where g g’.

• If the gap between power(g’) and power(g) is large, reclaim
g’ from G. Otherwise, do not reclaim g’ in the presence of
g.

• Approximate the discriminative between g’ and g, in the
presence of frequent tree-features discovered.

1919

Discriminative Graph SelectionDiscriminative Graph Selection (2) (2)
• Let occurrence probability of g in the graph DB be

• The conditional occurrence probability of g’, w.r.t.
g:

• When Pr(g’|g) is small, g’ has higher probability to
be discriminative w.r.t. g.

2020

Discriminative Graph SelectionDiscriminative Graph Selection (3) (3)
• The upper and lower bound of Pr(g’|g) become

because ε(g) ≥ ε0 and ε(g’) ≥ ε0. recall: | sup() | / | |x x G! =

2121

Discriminative Graph SelectionDiscriminative Graph Selection (4) (4)
• Because 0 ≤ Pr(g’|g) ≤ 1, the conditional occurrence

probability of Pr(g’|g), is solely upper-bounded by
T(g’).

2222

An Experimental StudyAn Experimental Study
•• We compared our Tree+We compared our Tree+ΔΔ with with gIndexgIndex (X. Yan, P.S. Yu, and J. Han,(X. Yan, P.S. Yu, and J. Han,

SIGMODSIGMOD’’04)04) and and C-TreeC-Tree (H. He and A.K. Singh, ICDE(H. He and A.K. Singh, ICDE’’06).06).

•• We used AIDS Antiviral Screen Dataset from the DevelopmentalWe used AIDS Antiviral Screen Dataset from the Developmental
TheroapeuticsTheroapeutics Program in NCI/NH Program in NCI/NH
((http://dtp.nci.nih.gov/docs/aids/aids_data.htmlhttp://dtp.nci.nih.gov/docs/aids/aids_data.html))
• 42,390 compunds from DTD’s Drug Information System.
• 63 kinds of atoms (vertex labels).
• On average, a compond has 43 vertices and 45 edges.
• At max, 221 vertices and 234 edges.

•• We also used the graph generator (M. We also used the graph generator (M. KuramochiKuramochi and G. and G. KarypisKarypis,,
ICDMICDM’’01).01).

•• We tested on a 3.4GHz Intel PC with 2GB memory.We tested on a 3.4GHz Intel PC with 2GB memory.

2323

Index Construction (Real Dataset)Index Construction (Real Dataset)

Feature Size

Construction Time

Index Size

2424

Real Dataset: False Positive Ratio (|Real Dataset: False Positive Ratio (|CqCq|/|sup(|/|sup(qq)|))|)

N=1,000

2525

ConclusionConclusion
• Tree is an effective and efficient graph indexing

feature to answer graph containment queries.

• We analyze the indexibility for tree features.

• We propose a Tree+Δ approach that holds a compact
index structure, achieves better performance in index
construction, and provides satisfactory query
performance for answering graph containment
queries.

