
STAR: Self-Tuning Aggregation for
Scalable Monitoring

Navendu Jain, Dmitry Kit,
Prince Mahajan, Praveen Yalagandula†,

Mike Dahlin, and Yin Zhang

University of Texas at Austin
†HP Labs

[On job market next year]

 Network traffic monitoring: Detect Heavy Hitters

Motivating Application

Traffic Stream Frequency Counts

\

0.1%
threshold

Identify flows that account for a significant fraction
(say 0.1%) of the network traffic

2

Global Heavy Hitters

 Distributed Heavy Hitter detection
• Monitor flows that account for a significant

fraction of traffic across a collection of routers

Fr
eq

ue
nc

ie
s +

+

+
Flows

Node 1

Node N

Aggregate Sum

0.1%

threshold

3

Broader Goal

 Scalable Distributed Monitoring
• Monitor, query, and react to changes in global state

- Examples: Network monitoring, Grid monitoring, Job
scheduling, Efficient Multicast, Distributed quota
management, sensor monitoring and control, ...

Sensor Networks

IP Traffic

Financial apps

Multicast

Quota Management

Grids

4

System Model

Adaptive filters [Olston SIGMOD ’03], Astrolabe [VanRenesse TOCS ’03],
TAG [Madden OSDI ’02], TACT [Yu TOCS ’02]

Arithmetic query approximation
• Exact query answers are not needed!
• Trade accuracy for communication/processing cost

Filters

5

Data
Streams

S1 Sm

Monitor Query(S1,…,Sm) Coordinator

AdjustPush

Key Challenges
Large-scale: nodes, attributes (e.g., flows)
Robustness to dynamic workloads
Cost of adjustment

updates

outside
range

update

 A scalable self-tuning algorithm to adaptively set
the accuracy of aggregate query results

• Flexible precision-communication cost tradeoffs

Approach
• Aggregation Hierarchy

-Split filters flexibly across leaves, internal nodes, root

•Workload-Aware Approach
-Use variance, update rate to compute optimal filters

•Cost-Benefit Analysis
-Throttle redistribution

Our Contribution: STAR

6

Talk Outline

Motivation

STAR Design
 Aggregation Hierarchy
 Self-Tuning Filter Budgets

 Estimate Optimal Budgets
 Cost-Benefit Throttling

Evaluation and Conclusions

Background: Aggregation
PIER [Huebsch VLDB ‘03], SDIMS [Yalagandula SIGCOMM ’04],

Astrolabe [VanRenesse TOCS ’03], TAG [Madden OSDI ’02]

Fundamental abstraction for scalability
• Sum, count, avg, min, max, select, ...
• Summary view of global state
• Detailed view of nearby state and rare events

18 19

37

Physical Nodes (Leaf sensors)

L1

L2

L3

L0

7 11 7 12

3 4 2 9 6 1 9 3

SUM

8

 Guarantees
• Given an error budget , report a range s.t.

δself

Setting Filter Budgets

(1)

9

δc4

δc2(self)
δc1(self)

(2)

L H

L1

L2

L3

L0

δroot

δc1
δc2

δc3
δc5

δc6
δc4

δroot(self)

Node A Node B

Node R

[4,6] [3,4]

[4+3, 6+4]

[6,11]
δroot = 5

10

Aggregation Hierarchy

[4,6]

Node A Node B

Node R

[3,4]6 5

Filtered

Filtered
[4,5] Sent

Update

[4,5]

[4+4, 6+5]

[6,11]
δroot = 5

11

Aggregation Hierarchy

Talk Outline

Motivation

STAR Design
 Aggregation Hierarchy
 Self-Tuning Error Budgets

 Estimate Optimal Budgets
 Cost-Benefit Throttling

Evaluation and Conclusions

Goal: Self-tuning

 Ideal distribution
• Send budget to where filtering needed/effective

- Large variance of inputs --> Require more budget to filter
- Higher update rate of inputs --> Higher load to monitor

How to Set Budgets?

13

 Quantify filtering gain
• Chebyshev’s inequality
• Expected message cost

Self-tuning Budgets: Single Node

M
es

sa
ge

 L
oa

d

M(δ) =

Error Budget

14

δ > σδ ≤ σ

Self-tuning Budgets: Hierarchy

 Single-level tree
• Estimate optimal filter budget

- Optimization problem: Min. msg cost under fixed budget
- Solution:

…

δT

δc1 δc2 δcn

u1 u2 un

M(δ1)
M(δ2)

M(δn)

Filter budgets

Update rate

Expected msg cost

15

Talk Outline

Motivation

STAR Design
 Aggregation Hierarchy
 Self-Tuning Filter Budgets

 Estimate Optimal Budgets
 Cost-Benefit Throttling

Evaluation and Conclusions

Redistribution Cost

175

Filters

Data
Streams

S1 Sm

Monitor Query(S1,…,Sm) Coordinator

Adjust

When to Redistribute Budgets?

 More frequent redistribution
• More closely approx. ideal distribution (current load)
• Heavier redistribution overhead

M
es

sa
ge

 L
oa

d

Frequency of Budget Distribution

Total Load

Monitoring
Load

Redistribution
Load

18

19

Cost-Benefit Throttling

M(δcurrent) – M(δideal)

1. Load Imbalance 2. Long-lasting Imbalance

Tcurrent – Ttime_last_redist

Charge: (M(δcurrent) – M(δideal)) * (Tcurrent – Ttime_last_redist)

Rebalance if Charge > Threshold

Talk Outline

Motivation

STAR Design
 Aggregation Hierarchy
 Self-Tuning Filter Budgets

 Estimate Optimal Budgets
 Cost-Benefit Throttling

Evaluation and Conclusions

Experimental Evaluation

STAR prototype
• Built on top of SDIMS aggregation [Yalagandula ‘04]
• FreePastry as the underlying DHT [Rice Univ./MPI]
• Testbeds

- CS Department, Emulab, and PlanetLab

Questions
• Does arithmetic approximation reduce load?
• Does self-tuning yield benefits and approximate ideal?

21

Methodology

 Simulations
• Quantify load reduction due to self-tuning budgets

under varying workload distributions

 App:Distributed Heavy Hitter detection (DHH)
• Find top-100 destination IPs receiving highest traffic
• Abilene traces for 1 hour (3 routers); 120 nodes

- Netflow data logged every 5 minutes

22

 . -

 . -

 .-

 -

 .- - -

M
e
s
s
a
g
e
 C

o
s
t
p
e
r

s
e
c
o
n
d

Error Budget to Noise ratio

Uniform Allocation
Adap-filters

STAR

 A.AAB

 A.AB

 A.B

 B

 A.B B BA

M
c
m
m
T
g
c
 M

i
m
n
p
c
l

m
c
c
i
g
a

El l i l Eoagcn ni Ni emc lTnei

Ugedi lm Affi cTnei g
AaTp-defnclm

STAR

 1.11A

 1.1A

 1.A

 A

 1.A A A1

M
T
l
l
N
g
T
 B

f
l
m
g
T
i

l
T
c
f
e
S

Ei i f i BnSgTm mf Mf al T iNmaf

UeaUf id Accf cNmaf e
ASNg-UacmTi l

STAR

Figure 9: STAR provides higher performance benefits as skewness in a workload increases. The three figures
show load vs. error budget to noise ratio for different skewness settings (a) 20:80% (b) 50:50% (c) 90:10%.

proaches as skewness in a workload increases. In Figure 9,
the three graphs show the communication load vs. error
budget to noise ratio for the following skewness settings:
(a) 20:80% (b) 50:50% (c) 90:10%. For example, the 20:80%
skewness represents that only 20% nodes have zero noise and
the remaining 80% nodes have a large noise. In this case,
since only a small fraction of the nodes are stable, both
STAR and Adaptive-filters can only reclaim 20% total error
budget from the zero-noise sources and distribute it to noisy
sources to cull their updates. STAR reduces monitoring load
by up to 5x compared to Adaptive-filters. Further, the latter
algorithm’s approach of periodic shrinking of error bounds
at each node only yields small benefits compared to uniform
allocation. For the 50:50 case, both the self-tuning algo-
rithms can claim 50% of the total budget compared to uni-
form allocation and give it to noisy sources. However, even
when the optimal configuration (error budget large com-
pared to noise) is reached, Adaptive-filters keep readjusting
the budgets due to periodic shrinking of error bounds. Fi-
nally, when 90% nodes are stable, STAR gives more than
an order of magnitude reduction in load compared to both
Adaptive-filters and uniform allocation.

Note that overall, for Figures 8 and 9, the advantage of
STAR’s cost-benefit throttling varies with the budget to
noise ratio. We expect that for systems monitoring a large
numbers of attributes (e.g., DHH) some attributes (e.g., the
elephants) will have a low error budget to noise ratios and
gain a modest advantage from STAR, while other attributes
(e.g., the mice) will have large ratios and gain large advan-
tages. We typically expect many more mice attributes than
elephant attributes for common monitoring applications.

Next, we compare the performance of STAR, Adaptive-
filters, and uniform allocation under different configurations
by varying input data distribution, standard deviation (step
sizes), and update frequency at each node. For data dis-
tribution, the workload is either generated from a random-
walk pattern or Gaussian. For standard deviation/step-size,
70% of the nodes have uniform parameters as previously de-
scribed; the remaining 30% nodes have these parameters
proportional to rank (i.e., with locality) or randomly as-
signed (i.e., no locality) from the range [0.5, 150].

Figure 10 shows the corresponding results for different
settings of data distribution and standard deviation for a
4-level degree-4 tree with fixed update frequency of 1 up-
date per node per round. We make the following observa-
tions from Figure 10(a). First, when error budget is smaller

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4

M
e
s
s
a
g
e
 C

o
s
t
p
e
r

s
e
c
o
n
d

Error Budget to Noise ratio

Uniform Allocation
Adap-filters

STAR

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4

M
e
s
s
a
g
e
 C

o
s
t
p
e
r

s
e
c
o
n
d

Error Budget to Noise ratio

Uniform Allocation
Adap-filters

STAR

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4

M
e
s
s
a
g
e
 C

o
s
t
p
e
r

s
e
c
o
n
d

Error Budget to Noise ratio

Uniform Allocation
Adap-filters

STAR

 .

 . -1

 . -3

 . -6

 . -A

 0

 . 0 1 2 3

M
d
p
p
U
f
d
 C

n
p
r
p
d
o

p
d
c
n
m
c

Moono Cscf dr rn Sngpd oUrgn

Tmgenol AiincUrgnm
AcUp-egirdop

STAR

Figure 10: Performance comparison of STAR vs.
Adaptive-filters and uniform allocation for different
{workload, step sizes/standard deviation} configu-
rations (a) random walk, rank (b) random walk, ran-
dom (c) Gaussian, rank, and (d) Gaussian, random.

than noise, no algorithm in any configuration achieves better
performance than uniform allocation. Adaptive-filters, how-
ever, incurs a slightly higher overhead due to self-tuning even
though it does not benefit. In comparison, STAR avoids self-
tuning costs via cost-benefit throttling. Second, Adaptive-
filters and uniform error allocation reach a cross-over point
having a similar performance. This cross-over implies that
for Adaptive-filters, the cost of self-tuning is equal to the
benefits. Third, as error budget increases, STAR achieves
better performance than Adaptive-filters. Because step-sizes
are based on node rank, STAR’s outlier detection avoids al-
locating budget to the nodes having the largest step-sizes.
Adaptive-filters, however, does not make such a distinction
and computes burden scores based on load thereby favoring
nodes with relatively large step sizes. Thus, since the total
budget is limited, reducing error budget at nodes with small
step sizes increases their load but does not benefit outliers
since the additional slack is still insufficient to filter their
updates. Finally, as expected, when error budget is higher
than noise, all algorithms achieve good performance. In
this configuration, STAR reduces monitoring load by 3x-5x

90/10 synthetic workload
• Self-Tuning: Much better than uniform
• Throttling: Adaptive filters [Olsten ‘03] wastes messages on

useless adjustments

Does Throttling Redistribution Benefit?

10x load
reduction

23

STAR

Adaptive
filters

M
es

sa
ge

 C
os

t p
er

 se
co

nd

Error Budget to Noise ratio

Uniform noise workload
• Self-tuning approximates uniform allocation
• Avoid useless readjustments

Does Self-Tuning Approximate Ideal?

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.01 0.1 1 10 100

N
o

rm
a

liz
e

d
 L

o
a

d

Error Budget to Noise ratio

Guassian Distribution
Uniform Distribution

Figure 7: Normalized load vs. error budget to
noise ratio for two synthetic workloads under a
fixed AI error budget. If noise < AI, a majority
of updates get filtered. The x-axis is on a log
scale.

 1e-04

 0.001

 0.01

 0.1

 1

 0.1 1 10 100

C
o

s
t

p
e

r
s
e

c
o

n
d

Error Budget to Noise ratio

Uniform Allocation
Adap-filters (freq = 5)

Adap-filters (freq = 10)
Adap-filters (freq = 50)

STAR

Figure 8: Performance benefits due to cost-
benefit throttling. Load vs. error budget to noise
ratio for a 10 node 1-level tree, random walk data.
The graph is on a log-log scale.

5. EXPERIMENTAL EVALUATION
Our experiments characterize the performance and scala-

bility of the self-tuning AI for the distributed heavy hitters
application. First, we quantify the reduction in monitoring
overheads due to self-tuning AI using simulations. Second,
we investigate the reduction in communication load achieved
by STAR for the DHH application in a real world monitoring
implementation. For this evaluation, we have implemented a
prototype of STAR in our SDIMS monitoring framework [41]
on top of FreePastry [33]. We used two real networks: 120
node instances mapped on 30 physical machines in the de-
partment Condor cluster and the same 120-node setup on
30 physical machines in the Emulab [40] testbed. Finally,
we evaluate the performance benefits of our optimization of
carefully distributing the initial, default error budgets us-
ing our prototype implementation. In summary, our exper-
imental results show that STAR is an effective substrate for
scalable monitoring: introducing small amounts of AI er-
ror and adaptivity using self-tuning AI significantly reduces
monitoring load.

5.1 Simulation Experiments
First, to characterize the trade-off between AI error bud-

get and monitoring load, we determine the conditions under
which is the AI error budget effective. Second, we analyze
the effect of cost-benefit throttling on reducing load. Finally,
we compare the performance of STAR, Adaptive-filters [29],
and the uniform allocation strategy for different workloads.

In all experiments, all active sensor are at the leaf nodes of
the aggregation tree. Each sensor generates a data value ev-
ery time unit (round) for two sets of synthetic workloads for
100,000 rounds: (1) a Gaussian distribution with standard
deviation 1 and mean 0, and (2) a random walk pattern in
which the value either increases or decreases by an amount
sampled uniformally from [0.5, 1.5].

Effectiveness of AI Filtering: We first investigate under
what conditions is AI error budget effective. Figure 7 shows
the simulation results for a 4-level degree-6 aggregation tree
with 1296 leaf nodes for the two workloads under uniform
static error distribution. The x-axis denotes the ratio of the
total AI budget to the total noise induced by the leaf sensors

and the y-axis shows the total message load normalized with
respect to zero AI error budget. We observe that when noise
is small compared to the error budget, there is about an or-
der of magnitude load reduction as the majority of updates
are filtered. But, as expected, when noise is large compared
to the error budget, the load asymptotically approaches the
unfiltered load with AI = 0. The random walk pattern al-
lows almost perfect culling of updates for small amounts of
noise whereas for the Gaussian distribution, there is a small
yet a finite probability for data values to deviate arbitrarily
from their previously reported range.

Cost-Benefit Throttling: Next, we quantify the cost of
the periodic bound shrinking used in previous approaches [11,
29] compared with STAR’s cost-benefit throttling. To mo-
tivate the importance of cost-benefit analysis, we perform a
simple experiment here for a one-level tree, and later show
the results for general hierarchical topologies. In our exper-
iments, the following configuration gave the best results for
Adaptive-filters: shrink percentage = 5%, high self-tuning
frequency, and distributing error budgets to a small set (e.g.,
10-15%) of nodes with the highest burden scores, where bur-
den is the ratio of load to error budget. These observations
are consistent with previous work [11].

Figure 8 shows the performance results of uniform alloca-
tion, Adaptive-filters, and STAR for a 10 node 1-level tree
using a random walk pattern with the same step size at
each node. In this case, the uniform error allocation would
be close to the optimal setting. We observe that when er-
ror budget exceeds noise, Adaptive-filters incurs a constant
error redistribution cost per tree (mapped to one or more
attributes) that is proportional to the frequency of error re-
distribution. Thus, for large-scale monitoring services that
require tracking tens of thousands to millions of attributes,
approaches that keep sending messages periodically to ad-
just error budgets such as Adaptive-filters and potential
gains adjustment [11] would incur a high overhead. STAR,
however, performs cost-benefit throttling and does not re-
distribute error when the corresponding gain is negligible.

Evaluating Different Workloads: We now characterize
the performance benefits of STAR compared to other ap-

24

STAR

Uniform
allocation

Adaptive
filters

M
es

sa
ge

 C
os

t p
er

 se
co

nd

Error Budget to Noise ratio

 1

 10

 100

 1 100 10000 1e+06

C
D

F
 (

%
 o

f
fl
o

w
s
)

Flow value (KB)

Flow value distribution
 1

 10

 100

 1 100 10000

C
D

F
 (

%
 o

f
fl
o

w
s
)

Number of updates

Flow updates distribution

Figure 11: CDF of percentage of flows vs. (a) num-
ber of updates and (b) flow-values for the Abilene
dataset. The graph is on a log-log scale.

compared to uniform allocation and by 2x-3x compared to
Adaptive-filters.

Under random distribution of step-sizes as described above,
STAR reduces load by up to 2x compared to Adaptive-filters
and up to 3x against uniform allocation (Figure 10(b).)
Comparing across configurations, all algorithms perform bet-
ter under input distribution of Gaussian compared to the
random-walk model. Overall, across all configurations in
Section 5.1, STAR reduces monitoring load by up to an or-
der of magnitude compared to uniform allocation and by up
to 5x compared to Adaptive-filters.

5.2 Testbed Experiments
In this section, we quantify the reduction in monitoring

load due to self-tuning AI and the query precision of re-
ported results for the DHH monitoring application.

We use multiple netflow traces obtained from the Abi-
lene [1] Internet2 backbone network. The traces were col-
lected from 3 Abilene routers for 1 hour; each router logged
per-flow data every 5 minutes, and we split these logs into
120 buckets based on the hash of source IP. As described in
Section 2.3, our DHH application executes a Top-100 query
on this dataset for tracking the top 100 flows (destination IP
as key) in terms of bytes received over a 30 second moving
window shifted every 10 seconds.

Figure 11 shows the cumulative distribution function (CDF)
of the percentage of network flows versus the number of
bytes (KB) sent by each flow. We observe that about 60%
flows send less than 1 KB of aggregate traffic, 80% flows
send less than 12 KB, 90% flows less than 55 KB, and 99%
of the flows send less than 330 KB during the 1-hour run.
Note that the distribution is heavy-tailed and maximum ag-
gregate flow value is about 179.4 MB. Figure 11 shows the
corresponding CDF graph of the percentage of network flows
versus the number of updates. We observe that 40% flows
send only a single update (a 28 byte IP/UDP packet.) Fur-
ther, 80% flows send less than 70 updates, 90% flows less
than 360 updates, and 99% flows less than 2000 updates.
Note that the number of update distribution is also heavy-
tailed with the maximum number of updates sent by a flow
is about 42,000.

Overall, the 120 sensors track roughly 80,000 flows and
send around 25 million updates. Thus, the monitoring load
for zero AI error budget would be about 58.6 messages per
node per second for each of the 120 nodes. Therefore, a
centralized scheme would incur a prohibitive cost of about
7,000 updates per second for processing this workload.

To address this scalability challenge, we apply our self-
tuning STAR algorithm to reduce the monitoring load. Fig-

ure 12(a) shows the bandwidth cost per node incurred by
STAR under global AI error budgets of 5%, 10%, 15%, and
20% of the maximum flow value per aggregation tree, and
different settings of the Rootshare parameter: 0%, 50%, 90%,
and 100%. We observe that with a Rootshare of 90% and AI
of 5%, we incur an overhead of about 7 messages per node
per second which is roughly three orders of magnitude less
compared to 7,000 messages per second at the root in the
centralized scheme. By increasing the AI error budget to
20%, we can reduce this cost by almost a factor of three to
about 2.5 messages per node per second. Thus, self-tuning
AI even under modest error budgets can provide a significant
reduction in the communication overhead.

Further, by carefully initializing the error budgets to cull
mice updates, we can gain nearly another order of magnitude
load reduction. Comparing different settings of Rootshare

(AI error budget of 20%) in Figure 12(a), we observe that
compared to Rootshare of 90%, Rootshare of 50% reduces
the load by almost a factor of five to about 0.5 messages per
node per second, and Rootshare of 0% (i.e., all error budget
initialized to the leaf nodes) further provides another factor
of two reduction leading to an overall order of magnitude
load reduction to about 0.27 messages per node per second.

However, setting Rootshare of 100% incurs a large over-
head of about 30 messages per node per second since a large
fraction of mice updates reach the root of their trees, and
these root nodes then initiate an error distribution in their
respective trees. As Figure 12(b) shows, for this Rootshare

setting, the redistribution overhead of sending these error
budgets in each aggregation tree dominates constituting about
70% of the total communication cost. Thus, a good default
setting of the error budgets should initialize some error bud-
get at the leaf nodes to cull a large fraction of the mice flows.

Overall, the self-tuning algorithm eventually sets the er-
ror budgets at different nodes in an aggregation tree in a
way that yields the largest benefits. Yet, we can gain by
initializing AI error budgets to some sensible state so that
majority flows get filtered as early as possible. Finally, we
want to set the error budgets optimally such that (1) the
mice flows never generate any updates and (2) the elephant
flows get filtered to the maximum extent possible. STAR
aims to attain this optimal error setting for a majority of
flows as cheaply as possible by (1) filtering mice flows at
lower levels of the aggregation tree and (2) assigning δself

at the internal nodes to filter modest variations in aggregate
values for elephant flows e.g., even if the child values have
deviated significantly from their previous reported values as
to bypass their own AI error range, the net effect of merging
all children updates may still be close to zero.

In summary, our evaluation shows that adaptive setting
of modest AI budgets can provide large bandwidth savings
to enable scalable monitoring.

6. RELATED WORK
Our STAR algorithm for self-tuning AI error budgets is

part of a larger system building effort, PRISM, to enforce
imprecision bounds and quantify the consistency guarantees
of query results in a large-scale monitoring system [23].

Olston et al. [29] proposed Adaptive-filters (AF), a self-
tuning algorithm for a one-level tree: increase δ for nodes
with high load and low previous δ and decrease δ for nodes
with low load and high previous δ. Our STAR algorithm
differs from AF in three fundamental ways driven by our

 80K flows send about 25 million updates in 1 hr
• Centralized server needs to process 7K updates/sec
• Heavy tailed distribution

Abilene Workload

60% flows
send < 1KB

40% flows
send 1 IP pkt

99% flows
send < 330KB

99% flows
send < 2k pkt

25

 Self-tuning significantly reduces load

DHH: Does Self-Tuning Reduce Load?

 0.01

 0.1

 1

 10

 100

 0 5 10 15 20

M
e
s
s
a
g
e
 C

o
s
t
p
e
r

s
e
c
o
n
d

AI Error Budget (% max flow value)

BW(Root_share=0%)
BW(Root_share=50%)
BW(Root_share=90%)

BW(Root_share=100%)

 0.01

 0.1

 1

 10

 100

 0 5 10 15 20

M
e
s
s
a
g
e
 C

o
s
t
p
e
r

s
e
c
o
n
d

AI Error Budget (% max flow value)

DistBW(Root_share=0%)
DistBW(Root_share=50%)
DistBW(Root_share=90%)

DistBW(Root_share=100%)

Figure 12: Performance comparison of the self-tuning algorithm under different settings of initial error
budgets for the DHH application. The left figure shows the average bandwidth cost per node (BW) and the
right figure shows the average redistribution overhead per node (DistBW.)

focus on scaling to a large number of nodes and attributes:
(1) STAR is hierarchical and uses a distributed algorithm to
divide error budget across internal and leaf nodes while AF
uses a centralized coordinator to distribute error budget to
leaf sensors only. (2) STAR’s mathematical formulation—
using the workload (e.g., update rate, variance) itself to
derive the optimal error budget distribution—provides use-
ful insights and practical benefits. (3) STAR’s cost-benefit
throttling is crucial for systems with (a) stable workloads
where oblivious periodic rebalancing doesn’t benefit or (b)
large numbers of attributes where rebalancing error budgets
for mice is expensive and not helpful.

For hierarchical topologies, Manjhi et al. [28] determine
an optimal but static distribution of slack to the internal
and leaf nodes of a tree for finding frequent items in data
streams. IrisNet [12] filters sensors at leaves and caches
timestamped results in a hierarchy with queries that spec-
ify the maximum staleness they will accept and that trigger
re-transmission if needed. Deligiannakis et al. [11] propose
an adaptive precision setting technique for hierarchical ag-
gregation, with a focus on sensor networks. However, sim-
ilar to Olston’s approach, their technique also periodically
shrinks the error budgets for each tree which limits scal-
ability for tracking a large number of attributes. Further,
since their approach uses only two local anchor points around
the current error budget to derive the precision-performance
tradeoff, it cannot infer the complete correlation shown in
Figure 2 making it susceptible to dynamic workload varia-
tions. None of the previous studies to our knowledge have
used the variance and the update rate in the data distribu-
tion in a principled manner. In comparison, STAR provides
an efficient and practical algorithm that uses a mathemati-
cally sound model to estimate globally optimal budgets and
performs cost-benefit throttling to adaptively set precision
constraints in a general communication hierarchy.

Some recent studies [19,22,25] have proposed monitoring
systems with distributed triggers that fire when an aggregate
of remote-site behavior exceeds an a priori global threshold.
Their solution is based on a centralized architecture. STAR
may enhance such efforts by providing a scalable way to
track top-k and other significant events.

Other studies have proposed prediction-based techniques
for data stream filtering e.g., using Kalman filters [21], neu-

ral networks [26], etc. There has also been a considerable
interest in the database and sensor network communities
on approximate data management techniques; Skordylis et
al. [36] provide a good survey.

There are ongoing efforts similar to ours in the P2P and
databases community to build global monitoring services.
PIER is a DHT-based relational query engine [20] targeted
at querying real-time data from many vantage-points on the
Internet. Sophia [39] is a distributed monitoring system
designed with a declarative logic programming model. Gi-
gascope [10] provides a stream database functionality for
network monitoring applications.

Traditionally, DHT-based aggregation is event-driven and
best-effort, i.e., each update event triggers re-aggregation for
affected portions of the aggregation tree. Further, systems
often only provide eventual consistency guarantees on its
data [38, 41], i.e., updates by a live node will eventually be
visible to probes by connected nodes.

7. CONCLUSIONS AND FUTURE WORK
Without adaptive setting of precision constraints, large

scale network monitoring systems may be too expensive to
implement even under considerable error budgets because
too many events flow through the system. STAR provides
self-tuning arithmetic imprecision to adaptively bound the
numerical accuracy in query results, and it provides opti-
mizations to enable scalable monitoring of a large number
of stream events in a distributed system.

While STAR focuses on minimizing communication load
in an aggregation hierarchy under fixed data precision con-
straints, it might be useful for some applications and en-
vironments to investigate the dual problem of maximizing
data precision subject to constraints on availability of global
computation and communication resources. Another inter-
esting topic of future work is to consider self-tuning error dis-
tribution for general graph topologies e.g., DAGs, rings, etc.,
that are more robust to node failures than tree networks. Fi-
nally, reducing monitoring load in real-world systems would
also require understanding other dimensions of imprecision
such as temporal where queries can tolerate bounded stale-
ness and topological when only a subset of nodes are needed
to answer a query.

3x load
reduction

7 msgs/node/sec

10x load
reduction

26

STAR Summary

 Scalable self-tuning setting of filter budgets
• Hierarchical Aggregation

- Flexible divide budgets across leaves, internal nodes, root

• Workload-Aware Approach
- Use variance, update rate to estimate optimal budgets

• Cost-Benefit Throttling
- Send budgets where needed

27

Thank you!

http://www.cs.utexas.edu/~nav/star

nav@cs.utexas.edu

28

