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ABSTRACT 
In Mobile Sensor Network (MSN) applications, sensors move to 
increase the area of coverage and/or to compensate for the 
failure of other sensors. In such applications, loss or corruption 
of sensor data, known as the missing sensor data phenomenon, 
occurs due to various reasons, such as power outage, network 
interference, and sensor mobility. A desirable way to address 
this issue is to develop a technique that can effectively and 
efficiently estimate the values of the missing sensor data in order 
to provide timely response to queries that need to access the 
missing data. There exists work that aims at achieving such a 
goal for applications in static sensor networks (SSNs), but little 
research has been done for those in MSNs, which are more 
complex than SSNs due to the mobility of mobile sensors. In 
this paper, we propose a novel data mining based technique, 
called Data Estimation for Mobile Sensors (DEMS), to handle 
missing data in MSN applications. DEMS mines the spatial and 
temporal relationships among mobile sensors with the help of 
virtual static sensors. DEMS converts mobile sensor readings 
into virtual static sensor readings and applies the discovered 
relationships on virtual static sensor readings to estimate the 
values of the missing sensor data. We also present the 
experimental results using both real life and synthetic datasets to 
demonstrate the efficacy of DEMS in terms of data estimation 
accuracy. 
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1. INTRODUCTION 
A wireless sensor network (WSN) can be defined as a set of 
independent sensors which can solve cooperatively some 
monitoring based applications [1]. Typical applications of WSN 
include environmental monitoring [2], scientific investigation 
[3], civil structure flaw detection, battle surveillance and 
medical applications [4]. However, successful monitoring of any 
physical phenomenon is directly dependent on the appropriate 
deployment of the sensors [5], [6]. In a static sensor network 
(SSN), the sensors’ positions remain stationary after the initial 
deployment. In addition, the areas covered by the sensors are 
dependent on the initial network configuration and remain 
unchanged over time [7]. An inappropriate deployment of 
sensors in a SSN may partition the monitoring area into regions 
either covered by at least one sensor and/or devoid of any 
sensors [7]. Therefore, while a covered region may be monitored 
by unnecessary multiple sensors, the regions uncovered by 
sensors may not be monitored at all leading to inaccurate results. 
Also, certain restrictions, such as hostile environments and 

disaster areas [8], make initial, manual deployment of sensors 
impossible. Finally, certain applications like monitoring 
atmosphere or ocean environment require constant mobility that 
can be achieved only if the sensors themselves are mobile [7]. 
Consequently, in recent years, much interest has been shown 
towards un-stationary sensors (e.g., Robomote [9]), that can re-
deploy themselves according to the needs of the application. 
These sensors are termed as mobile sensors and their networks 
as mobile sensor networks (MSNs).  

WSN data, in form of online data streams, arrive at the base 
station as real-time updated data [10]. These online data streams 
are infinite, unbounded and have high continuous arrival rates 
which do not permit complete scanning of the entire data [11]. 
Various factors, such as limited power and transmission 
capabilities of sensors, hardware failures, power outages, and 
network issues like disruption, package collision and external 
noise, cause the transmitted data to fail to reach the base station 
and/or be corrupted. The sensors that ‘generate’ these missing 
data are called missing sensors. A major concern with any WSN 
is the issue of missing sensor data. Several approaches, such as 
ignoring missing data, using backup sensors, re-querying the 
network, and utilizing data estimating techniques to estimate the 
values of the missing data, have been proposed to address the 
issue of missing sensor data [15]. Ignoring missing data is not 
viable for sensitive applications; using backup sensors may lead 
to data duplication and is expensive; and re-querying the 
network is unrealistic in terms of time and resource efficiency. 
The approach that uses data estimation has shown to be the most 
promising solution; however, currently it is limited to SSNs only 
[15], [16], [17], [18]. To the best of our knowledge, no work has 
been proposed to estimate the values of the missing sensor data 
in MSN applications. 

MSNs consist of sensors placed on mobile platforms like 
Robomote [9]. In addition to the issues common to any data 
stream application, MSN applications have certain additional 
constraints. MSN applications are broadly divided into 
relocation and continuous coverage based applications [7], [8]. 
The spatial relation between two sensors is distorted by the 
mobility of mobile sensors; hence the spatial relationship 
between two mobile sensors is difficult to obtain in MSNs. 
Moreover, the history data of a mobile sensor that are generated 
at different locations may not necessarily possess the spatial or 
temporal relationships with the data in the current round of 
sensor readings. Finally, mobile sensors have the capability of 
moving themselves which costs lots of energy; so power outage 
occurs more often on mobile sensors than on static sensors; 
hence, instances of missing data are more pronounced in MSNs. 



In this paper we propose a data mining based solution for 
estimating the values of the missing sensor data in MSN 
applications, called DEMS (Data Estimation for Mobile 
Sensors). DEMS is a novel concept that addresses the issues 
associated with mobile sensors by utilizing virtual static sensors. 
DEMS establishes these virtual static sensors by dividing the 
entire monitoring area into hexagons and associating each 
hexagon’s center with a virtual static sensor. It converts each 
mobile sensor reading into an equivalent virtual sensor reading. 
When a mobile sensor reading is missing, DEMS uses the 
spatial and temporal association rules among the virtual sensor 
readings that it discovers based on the history virtual sensor 
readings to compute the estimated value of the missing mobile 
sensor reading.  

The rest of the paper is organized as follows: Section 2 discusses 
the related work; Section 3 describes DEMS; Section 4 presents 
the performance evaluation comparing DEMS with the three 
existing techniques: Average, Spirit [17], and TinyDB [13]; and 
Section 5 provides the conclusions and future work.  

2. RELATED WORK AND ISSUES  
Approaches for estimating the values of the missing sensor data 
(or approaches for estimating missing data for short), as of now, 
have been limited to SSNs only. TinyDB [13] is a prominent 
information extracting system for sensor networks. TinyDB does 
data estimation for a missing sensor by averaging the readings of 
other sensors for a particular round. However, it does not work 
well if a non-linear relationship exists among sensors and the 
sensors do not report similar readings. SPIRIT [17] uses auto-
regression for finding correlations using hidden variables inside 
the history data of a sensor. It estimates missing data by 
predicting changes in data patterns using hidden variables as a 
summary of data correlation among all the history data. 
However, it does not consider the sensor readings from other 
sensors for the current round; therefore it is unable to find the 
current relationships among the data which may affect its 
accuracy. The Kalman filter [15] uses the dynamic linear model 
to predict missing data based on the history data. However, the 
dynamic nature of data distribution may introduce instances 
when the same sensor reports a completely different value in the 
current round compared to the previous rounds. This may cause 
erroneous results.  

FARM [14] uses association rules among sensor readings to 
estimate missing data. It uses a novel data freshness framework 
to address the temporal nature of data. Further, it implements a 
data compaction scheme to store history data. Its estimated data 
are fairly accurate compared to those of statistical methods. 
However, its limitation is that it establishes association rules 
among similar sensor readings only; thus, only equivalent 
relationships are mined.  

Mining Autonomously Spatio-Temporal Environmental Rules 
(MASTER) [16] is a comprehensive spatio-temporal association 
rules mining framework which provides both a competitive data 
estimation method and an exploratory tool to investigate the 
evolution of patterns of the sensor data in static sensor networks. 
MASTER is well equipped to discover spatial and temporal 
association rules among the sensors. This framework includes a 
novel data structure called MASTER-tree which stores the 
history data synopsis (the moments) for each sensor and 
represents the association rules among the sensors. An example 

of an association rule in MASTER is ��[10, 20], �	[40, 90]  →

 ��[30, 40] where ��, �	 and �� are three sensors, �� and �	 are 
called the antecedent sensors and �� is called the consequent 
sensor of the rule. This rule implies when the sensor reading of 
�� is between 10 and 20 and the sensor reading of �	 is between 
40 and 90, the sensor reading of �� would be between 30 and 40. 
Each node in the MASTER-tree represents a sensor except the 
root node which represents an empty node; and each path/sub-
path starting from the root node represents an association rule. 
Hence a MASTER-tree is capable of representing any kind of 
relationships among the sensors which participate in the 
MASTER-tree. 

MASTER limits the number of sensors in one MASTER-tree by 
clustering the sensors into small groups and producing an 
individual MASTER-tree for each cluster. The advantage of the 
clustering step is twofold: 1) the clustering step arranges 
spatially co-related sensors into a cluster, and 2) it limits the 
number of sensors in a MASTER-tree which restricts the 
exponentially large number of association rules into a more 
manageable number. As each data round arrives, MASTER 
finds the appropriate MASTER-tree for each sensor and updates 
the MASTER-tree based on the arrived sensor readings. At any 
particular time, if a sensor reading is missing, MASTER finds 
the appropriate MASTER-tree for the missing sensor and 
evaluates the support and confidence of the association rules 
where the missing sensor appears as consequent. MASTER 
finds the best association rule comparing the obtained support 
and confidence with the user-defined minimum support and 
minimum confidence. Finally, it uses the best association rule 
and the current sensor readings of the antecedent sensors in the 
best association rule to estimate the consequent sensor’s reading. 
Interested readers are referred to [16] for further details. 

MASTER was designed for SSNs. It has the following 
deficiencies. The cluster formation step is solely based on the 
spatial attributes of a sensor. In a MSN, the spatial data of a 
sensor are changing; therefore the prior knowledge about sensor 
locations is not enough for MSNs even though spatial clustering 
works very well in SSNs. One possible solution for this problem 
is re-clustering whenever a sensor changes its location, but re-
clustering is very computation-intensive and may cause loss of 
the history data, and thus loss of history data synopsis (the 
moments) stored in the MASTER-tree. Hence location-based 
clustering for mobile sensors does not produce any meaningful 
result. Moreover, in a MSN, a reading of a sensor is 
accompanied by the location of the sensor. So, if a sensor is 
missing, it is very likely that the reading and the location from 
that sensor will be missing together. Hence the estimation 
technique must estimate both dimensions for the missing 
sensors, which means that location prediction has to be an 
inherent part of the technique. 

In a SSN, association rule mining can be used to discover the 
relations among sensors. According to Tobler’s first law of 
geography [22], geographically close sensors are more 
correlated than the distant one. In a MSN, the distance between 
the mobile sensors changes over time; therefore the correlation 
changes over time too. The association rules among the sensors 
represent the correlation among them. If the mobile sensors 
change their locations, the correlations among them change; 
hence the association rules previously obtained based on the 
sensor data will no longer be valid for the new locations. This 



has two-fold implications on MASTER: 1) any previously 
explored rules may not be valid anymore; and 2) previously 
formed clusters may not be valid at all. In the extreme case, the 
history data from the same sensor may no longer be valid to 
estimate the missing data of the same sensor in the current round 
of data. This is because the old data are based on the previous 
locations of the sensor, whereas the new data are based on the 
new locations. So the methods (e.g., Kalman Filter [15]) which 
use history data to estimate new data will also become invalid in 
such a situation. 

Motivated by the drawbacks of MASTER, in this paper we 
propose a new technique, called DEMS, for MSN applications. 
DEMS makes use of virtual static sensors that tackles the 
problems of location-aware clustering of real mobile sensors. It 
also tackles the problem of having no related history information 
for the current round of data from real mobile sensors. 
Moreover, DEMS addresses the issue of missing location of a 
real mobile sensor and is capable of predicting the next location 
for a missing real mobile sensor. The details of DEMS are 
presented in the next section. 

3. THE PROPOSED DEMS 
This section describes our technique, DEMS. It starts with a 
brief overview of DEMS followed by a detailed description of 
our novel concept of virtual static sensor and its significance. 
Finally it presents the MASTER-tree used for data mining and 
the estimation module for DEMS. 

3.1 The Overview of DEMS 
In DEMS, we exploit the spatial and temporal relations between 
sensor readings to estimate the missing sensor data. First we 
divide the entire monitoring area into hexagons based on a user-
defined radius. Each hexagon corresponds to a virtual static 
sensor (VSS) placed at the center of the hexagon and covering 
the entire hexagon. A VSS is an artificial sensor, i.e. it does not 
exist physically in real life applications, but it exists in our 
technique as a synthetic sensor which mirrors a real static 
sensor. Each VSS has a unique identifier. DEMS converts the 
real mobile sensor readings into VSS readings based on the 
mobile sensors’ current locations. Figure 1 shows A as the 
monitoring area covered by a MSN that is divided into 14 
hexagons with 14 VSSs, V1… V14, and 7 real mobile sensors, 
M1... M7. 

 
Figure 1. Monitoring area and hexagons 

Using agglomerative clustering [23], DEMS clusters the VSSs 
based on their locations into clusters and creates a MASTER-
tree for each cluster. The dotted lines that connect the centers of 
the hexagons in Figure 1 show three clusters (V1, V2, V3, V8, 
V10), (V6, V7, V12) and (V5, V9, V11, V13, V14). MASTER-tree 
records the data for the VSSs. For each missing mobile sensor 

reading, its estimated value is computed using the three major 
steps: 1) mapping the missing real mobile sensor to its 
corresponding VSS; 2) estimating the missing VSS reading 
using the discovered spatial and temporal association rules 
among the history VSS readings, and 3) converting the 
estimated VSS reading into the corresponding real mobile sensor 
reading.  

In a MSN, a sensor reading reported is accompanied by the 
sensor location where the reading was obtained. Whenever a 
mobile sensor reading is missing (we call this a missing mobile 
sensor for short), it is likely that both the location and the 
reading will be missing together. To find the appropriate 
location of a missing mobile sensor we always keep track of 
mobile sensors’ locations. A mobile sensor’s location is mapped 
to a hexagon and the consecutive locations of a mobile sensor 
are mapped to a sequence of hexagons. We refer to a sequence 
of hexagons as a mobile sensor’s trajectory. We mine the mobile 
sensor trajectories and predict the missing location based on the 
history trajectories. Morzy [20] proposed a pattern tree based 
approach for mining trajectories and predicting future locations, 
which we adopt for DEMS. DEMS maintains a single pattern 
tree of trajectories for all the mobile sensors. As small devices 
like sensors often use the same protocol for relocation [7], [9], it 
is reasonable to assume that they have similar patterns of 
movement; therefore DEMS maintains a single pattern tree of 
trajectories for all the mobile sensors and uses a single pattern 
tree instead of an individual pattern tree for each mobile sensor. 
This trajectory pattern tree is used to predict a missing mobile 
sensor’s location. The predicted location is used to map a mobile 
sensor to a VSS. Since sensors repeat the mobility pattern for 
relocation, history based trajectory mining is more promising 
than random walk models. 

3.2 The Virtual Static Sensor 
In SSNs, every sensor monitors a fixed region and a sensor’s 
reading reflects an event occurring within this region; but in 
MSNs, owing to their mobile nature, the region being monitored 
varies with time. However, as in SSNs, the sensor readings for 
MSNs still reflect events occurring within a particular region. 
Our concept of virtual static sensors is directly motivated by the 
above fact. Every VSS, like sensors in SSNs, ‘monitors’ a fixed 
region called its coverage area. An event occurring within a 
VSS’s coverage area is reflected in its readings. However, 
unlike sensors in SSNs, VSSs do not have real existence and do 
not ‘report’ data to a base station. On the contrary, they are 
‘created’ in our technique virtually to ease the spatio-temporal 
data mining.  

A VSS reports a reading if there exists at least one real mobile 
sensor in the coverage area. A VSS is active if it reports in the 
current round and is inactive otherwise. VSS readings are 
readings of the real mobile sensor(s) which are present in the 
VSS’s coverage area. In situations when multiple real mobile 
sensors are in a VSS’s coverage area, the VSS reports the 
average of all the real mobile sensors’ readings. There are two 
reasons for considering the average reading: 1) multiple sensors 
monitoring the same small coverage area most likely will report 
similar readings; and 2) any event occurring in the common 
coverage area will be reflected in the readings of all the sensors 
monitoring that area. As a hexagon is the atomic coverage 
region in DEMS, the radius of each hexagon is usually small 
enough to assure the variance of real sensors’ readings from the 



same hexagon to be minimal, and averaging all readings from 
sensors from the same hexagon will be close to the real value of 
the corresponding region. A VSS is called a missing VSS if one 
real mobile sensor exists or expected to exist within the 
coverage area of that particular VSS and the reading from the 
real mobile sensor is missing. 

The total monitoring region for any MSN or SSN is fixed either 
due to application specifications or hardware constraints. 
However, we further sub-divide the MSN’s monitoring region 
into fixed size hexagons with a VSS ‘covering’ each particular 
hexagon. We choose hexagonal coverage area as they do not 
suffer from overlapping or uncovered regions as in the case of 
circular coverage area. Thus, in our monitoring area, we do not 
encounter regions where a real mobile sensor can map to 
multiple VSS (for overlapping regions) or cannot map to any 
VSS (for uncovered regions). Two virtual static sensors are 
neighbors if their covered hexagons share at least one edge. Due 
to the static nature of VSSs, they have a static spatial relation 
among themselves and can be co-related too. Finally 
consecutive readings from a VSS are originated from the same 
location and can show temporal relationships among them. 

Procedure mapReal2Virtual(RealSensorData listRSData, VirtualSensorData 
listVSData) 

1 for each real sensor rs  
2    if(rs is not missing) 
3       location ← listRSData(rs).Location 
4       vs ← findVirtualSensor(location) 
5      listVSData(vs).addReading(listRSData(rs).Reading) 
6    else 
7       location ← predictLocation(rs)  
8       vs ← findVirtualSensor(location) 
9       listVSData(vs).status←missing 

10 end loop 
11 for each virtual static sensor vs 
12    if(listVSData(vs) has data) 
13       listVSData(vs).status←active 
14 listVSData(vs).reading←average(listVSData(vs).Readings) 
15    else 
16       if(listVSData(vs).status is not missing) 
17          listVSData(vs).status ←inactive 
18 end loop 

end procedure 

Figure 2. Mapping mobile sensor readings to virtual static 
sensor readings 

Hence VSS readings are directly stored in our MASTER-tree. 
So, in DEMS, the MASTER-tree represents the relationships 
among the VSSs. We assume that at any instance, all the mobile 
sensors report their readings to the base station, which is then 
mapped to the corresponding VSSs. Figure 2 shows the mapping 
algorithm in details. For each real mobile sensor, DEMS finds 
the appropriate VSS (lines 3 & 4) using a geometric mapping 
between location and hexagon. If the location of the real mobile 
sensor is missing, DEMS predicts the expected location for the 
real mobile sensor and maps it to the appropriate VSS for that 
predicted location. If the mobile sensor reading is missing, 
DEMS marks the corresponding VSS as missing. Finally, in the 
loop from lines 11 to 18, each VSS is marked appropriately as 
active, inactive or missing. At any particular time, only the 
active virtual static sensors are stored in their appropriate 
MASTER-trees. 

3.3 The MASTER-tree Projection Module 
A MASTER-tree is like a pattern tree, which is used to represent 
arbitrary relationships among all Boolean itemsets [19]. A 
pattern tree is equivalent to a spanning tree of a binary 
hypercube which represents all possible Boolean items 

relationships; but the computational complexity of a pattern tree 
is exponential. However, grouping items into a set of clusters 
and pruning the pattern tree or its equivalent hypercube lowers 
the computational complexity. A pattern tree unduly favors only 
the right most leaf node and extracts the relationships of this 
node with all other nodes. A MASTER-tree does not suffer from 
those issues of a pattern tree. It combines the various pattern 
trees regarding each node and prunes the common paths in the 
resulting tree and forms a new tree called a MASTER-tree [16]. 

 In a MASTER-tree, each tree node represents a VSS. The data 
distribution of a particular VSS node over a particular vector 
space is stored in each node. The complete vector space, in 
which the VSS readings occur, is discretized into a finite 
number of cells. Technically, for each cell, an arbitrarily 
accurate data distribution function or probability distribution 
function can be represented by an infinite number of moments in 
statistical theory. However, computationally, only a finite 
number of moments plus element counters are stored in the 
MASTER-tree nodes (typically the first four moments). An 
element counter is the number of VSS readings belonging to the 
cell associated with the corresponding MASTER-tree node. For 
each cell, a few moments are stored, and the cells across nodes 
are linked following the MASTER-tree paths. These cells and 
links form a grid structure (GS). As GS depends on a finite 
number of cells and a fixed number of nodes in a particular 
cluster, it does not grow exponentially with the increase in the 
number of rounds of sensor readings. Thus, the MASTER-tree 
projection module is to establish a MASTER-tree for each 
cluster and then to incrementally update the GS as a new round 
of sensor readings arrives. This maintains the up-to-date 
association rules among the VSSs in a cluster to serve data 
analysis purposes. Interested readers are refer to [16] for details 
about this module. 

3.4 The Data Estimation Module  
The data estimation module computes the estimated value for 
the missing mobile sensor. Initially, the location of the missing 
mobile sensor is predicted based on the user-defined minimum 
support and minimum confidence using Morzy’s approach [20]. 
If the algorithm fails to predict the next location, DEMS uses the 
last reported location of the missing mobile sensor as its current 
location. Location prediction is preceded by mapping the 
missing mobile sensor to the corresponding VSS, which is called 
missing VSS. The estimated missing mobile sensor reading is 
the estimated missing VSS reading computed from the 
MASTER-tree. 

The data estimation module accomplishes the task in an iterative 
way. First it obtains the prior distribution of the missing VSS 
(mVSS) from the MASTER-tree, i.e., the rule ø → mVSS (here 
ø means empty). If the rule satisfies the user-defined error 
margin and the minimum support and minimum confidence 
thresholds, the rule holds and the estimated value is produced by 
taking the average of the prior distribution of mVSS. However, 
if the error margin requirement is not satisfied, the related 
information from the other tree nodes (VSSs) is considered for 
re-estimation. Here, the data estimation module chooses one 
more new antecedent node to infer the mVSS’s reading. As 
every node represents a VSS, a node can be an antecedent node 
if the corresponding VSS is active. The initial relevant subspace 
for the antecedent node is simply the cell picked up based on its 
current reading. When the actual support does not satisfy the 



minimum support threshold, the relevant subspace is augmented 
iteratively until the actual support is no less than the minimum 
support. However, if the support requirement cannot be satisfied 
even if the relevant space reaches its upper limit, i.e., the 
complete subspace, the module removes this node and considers 
a new prior node. This process of adding a new antecedent node 
is repeated until the estimation procedure meets one of the 
following conditions: 1) a rule that satisfies the minimum 
support, minimum confidence and maximum error margin is 
found, or 2) no more nodes within the cluster is to be added to 
the antecedent nodes set. The procedure then returns the 
estimated value using the last expected value (the average) over 
the obtained consequent subspace. The estimated mVSS’s 
reading is directly used as the estimated reading for the missing 
mobile sensor.  

4. EXPERIMENTAL DESIGN AND 
RESULTS ANALYSIS  
In this section, we compare DEMS with two existing algorithms: 
SPIRIT [17] and TinyDB [13]. Although both TinyDB and 
SPIRIT are designed for static sensors, it can be argued that they 
can still be used for data estimation for mobile sensors 
disregarding sensor’s mobility. We also compare it with the 
Average which is a statistical baseline method where the 
missing reading is estimated by averaging all other known 
sensor readings of the current round. 

4.1 Experimental Datasets 
4.1.1 The DAPPLE project dataset 
The real life dataset is obtained from the DAPPLE project [21]. 
The data are about carbon monoxide (CO) readings collected 
over a period of two weeks around Marylebone Road in London. 
The mobile sensors monitoring the atmospheric CO level are 
attached to PDAs which store these readings. The data sampling 
rate of the sensors is once every second. The software on the 
PDAs generates log files containing the CO levels with the 
locations and the timestamps associated with the readings. Each 
reading was carried out with a single sensor kit every second for 
a duration of about 45 minutes over a two weeks period. 
Simultaneous use of multiple sensors (usually three) was limited 
to some days only. For our experimental purposes, we 
considered the instances when three sensors were 
simultaneously recording CO pollution levels for a considerable 
period of time. We chose Thursday, 20th May 2004, when three 
sensors were simultaneously recording for about 32 minutes, 
resulting in 600 rounds (after disregarding the missing rounds) 
of CO readings. 

4.1.2 The Factory Floor Temperature Dataset 
Besides the above real life application dataset, we also 
synthesized a factory floor temperature dataset [12] which 
exhibits dynamically changing phenomena. In this experiment, 
machines are placed on a grid floor. Initially, all machines are 
off and the starting temperatures for all grid points are set to 
zero. The boundary grid point temperature is held at zero 
throughout the experiment. Then some machines will be turned 
on for a number of rounds; the temperatures on these machines 
will reach a high constant temperature and heat will disperse on 
the floor. At each time step, a grid point is updated using the 
heat transfer formula used in [12]. In this simulation, 100 mobile 
sensors were roaming around in random directions to monitor 
the factory floor and reported the temperature readings from 

different locations at different points in time. In our simulations, 
we sampled the mobile sensor readings once per hour. In total 
we gathered 5000 rounds of readings from 100 sensors. 

4.2 Performance Comparison Studies 
In this section we compare the performances of DEMS, 
Average, SPIRIT [17], and TinyDB [13] in terms of mean 
absolute error (MAE). MAE is calculated using the following 

formula: ��� =
∑ |�����|�

���

�
 where �� is the estimated value,  � is 

the original value for the i-th data point, and n is the total 
number of data points. MAE is thus the magnitude, not the 
percentage, of the error. We specifically study the impacts of the 
number of rounds of sensor readings on the estimation accuracy. 

4.2.1 Results for the DAPPLE Project Dataset 

 

Fig 3. Number of rounds vs. MAE for the DAPPLE project 
dataset 

Figure 3 shows the change of MAE with the change of number 
of rounds of sensor readings. The MAE value of 0 for DEMS 
implies that DEMS estimates the missing data with no error. A 
possible reason is that the DAPPLE project dataset has very few 
variations (the CO levels are within the range 0~6) and the 
sensors have very high spatial correlations. In most cases the 
readings in the same hexagon are the same. Hence, DEMS 
produces a zero error in terms of MAE. The MAEs for other 
approaches are comparatively high at the beginning and become 
stable at the end as the number of rounds increases. 

Table 1. Average MAEs for the DAPPLE project dataset 
Approach Average MAE 

DEMS 0 
Average 1.2717 
TinyDB 0.6331 
SPIRIT 0.9437 

Table 1 shows the average MAE for all the approaches. DEMS 
almost perfectly estimates the missing values while Average 
gives the highest error compared to SPIRIT and TinyDB.  

4.2.2 Results for the Factory Floor Temperature 
Dataset 

Table 2. Average MAEs for the factory floor temperature 
dataset 

Approach Average MAE 
DEMS 2.2538 

Average 14.7787 
TinyDB 6.9621 
SPIRIT 4.7472 

We performed a similar study for the factory floor temperature 
dataset. This dataset have more variations (temperatures are in 



the range 0~100C) compared to the DAPPLE project dataset. 
Figure 4 shows the change of MAE with respect to the change of 
number of rounds. The MAE for each approach remains almost 
constant when the number of rounds changes. As this dataset has 
more variations than the DAPPLE project dataset, even though 
DEMS still performs better than the other techniques, its 
performance is not as good as its performance with the DAPPLE 
project dataset.  

 

Fig 4. Number of rounds vs. MAE for factory floor 
temperature dataset 

Table 2 shows the average MAE for all the approaches. The 
average errors produced by Average, SPIRIT and TinyDB are 
about seven times, three times, and two times more than that 
produced by DEMS, respectively. DEMS is thus very effective 
in estimating missing sensor data. 

5. CONCLUSION AND FUTURE WORK 
In this paper, we proposed a new technique (DEMS) to estimate 
missing data in MSN applications. Experimental results show 
that the estimated values computed by DEMS are more accurate 
than those produced by the existing techniques: Average, 
SPIRIT [17], and TinyDB [13]. For future work, we will 
consider the case when multiple mobile sensors report data at 
different times. We envision scenarios where considerable 
delays may exist between each sensor’s readings. Finally as 
DEMS currently is designed for single hop MSNs only, we plan 
to expand the scope of DEMS to include multi-hop MSNs, 
mobile base station, and clustered MSNs. 
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