
DEMS: A Data Mining Based Technique to Handle
Missing Data in Mobile Sensor Network Applications

Le Gruenwald Md. Shiblee Sadik Rahul Shukla Hanqing Yang
School of Computer Science

University of Oklahoma
Norman, Oklahoma, USA

{ggruenwald, shiblee.sadik, rahul.shukla-1, hqyang3}@ou.edu

ABSTRACT
In Mobile Sensor Network (MSN) applications, sensors move to
increase the area of coverage and/or to compensate for the
failure of other sensors. In such applications, loss or corruption
of sensor data, known as the missing sensor data phenomenon,
occurs due to various reasons, such as power outage, network
interference, and sensor mobility. A desirable way to address
this issue is to develop a technique that can effectively and
efficiently estimate the values of the missing sensor data in order
to provide timely response to queries that need to access the
missing data. There exists work that aims at achieving such a
goal for applications in static sensor networks (SSNs), but little
research has been done for those in MSNs, which are more
complex than SSNs due to the mobility of mobile sensors. In
this paper, we propose a novel data mining based technique,
called Data Estimation for Mobile Sensors (DEMS), to handle
missing data in MSN applications. DEMS mines the spatial and
temporal relationships among mobile sensors with the help of
virtual static sensors. DEMS converts mobile sensor readings
into virtual static sensor readings and applies the discovered
relationships on virtual static sensor readings to estimate the
values of the missing sensor data. We also present the
experimental results using both real life and synthetic datasets to
demonstrate the efficacy of DEMS in terms of data estimation
accuracy.

Keywords
Sensors, Missing Data, Mobile Sensor Networks

1. INTRODUCTION
A wireless sensor network (WSN) can be defined as a set of
independent sensors which can solve cooperatively some
monitoring based applications [1]. Typical applications of WSN
include environmental monitoring [2], scientific investigation
[3], civil structure flaw detection, battle surveillance and
medical applications [4]. However, successful monitoring of any
physical phenomenon is directly dependent on the appropriate
deployment of the sensors [5], [6]. In a static sensor network
(SSN), the sensors’ positions remain stationary after the initial
deployment. In addition, the areas covered by the sensors are
dependent on the initial network configuration and remain
unchanged over time [7]. An inappropriate deployment of
sensors in a SSN may partition the monitoring area into regions
either covered by at least one sensor and/or devoid of any
sensors [7]. Therefore, while a covered region may be monitored
by unnecessary multiple sensors, the regions uncovered by
sensors may not be monitored at all leading to inaccurate results.
Also, certain restrictions, such as hostile environments and

disaster areas [8], make initial, manual deployment of sensors
impossible. Finally, certain applications like monitoring
atmosphere or ocean environment require constant mobility that
can be achieved only if the sensors themselves are mobile [7].
Consequently, in recent years, much interest has been shown
towards un-stationary sensors (e.g., Robomote [9]), that can re-
deploy themselves according to the needs of the application.
These sensors are termed as mobile sensors and their networks
as mobile sensor networks (MSNs).

WSN data, in form of online data streams, arrive at the base
station as real-time updated data [10]. These online data streams
are infinite, unbounded and have high continuous arrival rates
which do not permit complete scanning of the entire data [11].
Various factors, such as limited power and transmission
capabilities of sensors, hardware failures, power outages, and
network issues like disruption, package collision and external
noise, cause the transmitted data to fail to reach the base station
and/or be corrupted. The sensors that ‘generate’ these missing
data are called missing sensors. A major concern with any WSN
is the issue of missing sensor data. Several approaches, such as
ignoring missing data, using backup sensors, re-querying the
network, and utilizing data estimating techniques to estimate the
values of the missing data, have been proposed to address the
issue of missing sensor data [15]. Ignoring missing data is not
viable for sensitive applications; using backup sensors may lead
to data duplication and is expensive; and re-querying the
network is unrealistic in terms of time and resource efficiency.
The approach that uses data estimation has shown to be the most
promising solution; however, currently it is limited to SSNs only
[15], [16], [17], [18]. To the best of our knowledge, no work has
been proposed to estimate the values of the missing sensor data
in MSN applications.

MSNs consist of sensors placed on mobile platforms like
Robomote [9]. In addition to the issues common to any data
stream application, MSN applications have certain additional
constraints. MSN applications are broadly divided into
relocation and continuous coverage based applications [7], [8].
The spatial relation between two sensors is distorted by the
mobility of mobile sensors; hence the spatial relationship
between two mobile sensors is difficult to obtain in MSNs.
Moreover, the history data of a mobile sensor that are generated
at different locations may not necessarily possess the spatial or
temporal relationships with the data in the current round of
sensor readings. Finally, mobile sensors have the capability of
moving themselves which costs lots of energy; so power outage
occurs more often on mobile sensors than on static sensors;
hence, instances of missing data are more pronounced in MSNs.

In this paper we propose a data mining based solution for
estimating the values of the missing sensor data in MSN
applications, called DEMS (Data Estimation for Mobile
Sensors). DEMS is a novel concept that addresses the issues
associated with mobile sensors by utilizing virtual static sensors.
DEMS establishes these virtual static sensors by dividing the
entire monitoring area into hexagons and associating each
hexagon’s center with a virtual static sensor. It converts each
mobile sensor reading into an equivalent virtual sensor reading.
When a mobile sensor reading is missing, DEMS uses the
spatial and temporal association rules among the virtual sensor
readings that it discovers based on the history virtual sensor
readings to compute the estimated value of the missing mobile
sensor reading.

The rest of the paper is organized as follows: Section 2 discusses
the related work; Section 3 describes DEMS; Section 4 presents
the performance evaluation comparing DEMS with the three
existing techniques: Average, Spirit [17], and TinyDB [13]; and
Section 5 provides the conclusions and future work.

2. RELATED WORK AND ISSUES
Approaches for estimating the values of the missing sensor data
(or approaches for estimating missing data for short), as of now,
have been limited to SSNs only. TinyDB [13] is a prominent
information extracting system for sensor networks. TinyDB does
data estimation for a missing sensor by averaging the readings of
other sensors for a particular round. However, it does not work
well if a non-linear relationship exists among sensors and the
sensors do not report similar readings. SPIRIT [17] uses auto-
regression for finding correlations using hidden variables inside
the history data of a sensor. It estimates missing data by
predicting changes in data patterns using hidden variables as a
summary of data correlation among all the history data.
However, it does not consider the sensor readings from other
sensors for the current round; therefore it is unable to find the
current relationships among the data which may affect its
accuracy. The Kalman filter [15] uses the dynamic linear model
to predict missing data based on the history data. However, the
dynamic nature of data distribution may introduce instances
when the same sensor reports a completely different value in the
current round compared to the previous rounds. This may cause
erroneous results.

FARM [14] uses association rules among sensor readings to
estimate missing data. It uses a novel data freshness framework
to address the temporal nature of data. Further, it implements a
data compaction scheme to store history data. Its estimated data
are fairly accurate compared to those of statistical methods.
However, its limitation is that it establishes association rules
among similar sensor readings only; thus, only equivalent
relationships are mined.

Mining Autonomously Spatio-Temporal Environmental Rules
(MASTER) [16] is a comprehensive spatio-temporal association
rules mining framework which provides both a competitive data
estimation method and an exploratory tool to investigate the
evolution of patterns of the sensor data in static sensor networks.
MASTER is well equipped to discover spatial and temporal
association rules among the sensors. This framework includes a
novel data structure called MASTER-tree which stores the
history data synopsis (the moments) for each sensor and
represents the association rules among the sensors. An example

of an association rule in MASTER is ��[10, 20], �	[40, 90] →

 ��[30, 40] where ��, �	 and �� are three sensors, �� and �	 are
called the antecedent sensors and �� is called the consequent
sensor of the rule. This rule implies when the sensor reading of
�� is between 10 and 20 and the sensor reading of �	 is between
40 and 90, the sensor reading of �� would be between 30 and 40.
Each node in the MASTER-tree represents a sensor except the
root node which represents an empty node; and each path/sub-
path starting from the root node represents an association rule.
Hence a MASTER-tree is capable of representing any kind of
relationships among the sensors which participate in the
MASTER-tree.

MASTER limits the number of sensors in one MASTER-tree by
clustering the sensors into small groups and producing an
individual MASTER-tree for each cluster. The advantage of the
clustering step is twofold: 1) the clustering step arranges
spatially co-related sensors into a cluster, and 2) it limits the
number of sensors in a MASTER-tree which restricts the
exponentially large number of association rules into a more
manageable number. As each data round arrives, MASTER
finds the appropriate MASTER-tree for each sensor and updates
the MASTER-tree based on the arrived sensor readings. At any
particular time, if a sensor reading is missing, MASTER finds
the appropriate MASTER-tree for the missing sensor and
evaluates the support and confidence of the association rules
where the missing sensor appears as consequent. MASTER
finds the best association rule comparing the obtained support
and confidence with the user-defined minimum support and
minimum confidence. Finally, it uses the best association rule
and the current sensor readings of the antecedent sensors in the
best association rule to estimate the consequent sensor’s reading.
Interested readers are referred to [16] for further details.

MASTER was designed for SSNs. It has the following
deficiencies. The cluster formation step is solely based on the
spatial attributes of a sensor. In a MSN, the spatial data of a
sensor are changing; therefore the prior knowledge about sensor
locations is not enough for MSNs even though spatial clustering
works very well in SSNs. One possible solution for this problem
is re-clustering whenever a sensor changes its location, but re-
clustering is very computation-intensive and may cause loss of
the history data, and thus loss of history data synopsis (the
moments) stored in the MASTER-tree. Hence location-based
clustering for mobile sensors does not produce any meaningful
result. Moreover, in a MSN, a reading of a sensor is
accompanied by the location of the sensor. So, if a sensor is
missing, it is very likely that the reading and the location from
that sensor will be missing together. Hence the estimation
technique must estimate both dimensions for the missing
sensors, which means that location prediction has to be an
inherent part of the technique.

In a SSN, association rule mining can be used to discover the
relations among sensors. According to Tobler’s first law of
geography [22], geographically close sensors are more
correlated than the distant one. In a MSN, the distance between
the mobile sensors changes over time; therefore the correlation
changes over time too. The association rules among the sensors
represent the correlation among them. If the mobile sensors
change their locations, the correlations among them change;
hence the association rules previously obtained based on the
sensor data will no longer be valid for the new locations. This

has two-fold implications on MASTER: 1) any previously
explored rules may not be valid anymore; and 2) previously
formed clusters may not be valid at all. In the extreme case, the
history data from the same sensor may no longer be valid to
estimate the missing data of the same sensor in the current round
of data. This is because the old data are based on the previous
locations of the sensor, whereas the new data are based on the
new locations. So the methods (e.g., Kalman Filter [15]) which
use history data to estimate new data will also become invalid in
such a situation.

Motivated by the drawbacks of MASTER, in this paper we
propose a new technique, called DEMS, for MSN applications.
DEMS makes use of virtual static sensors that tackles the
problems of location-aware clustering of real mobile sensors. It
also tackles the problem of having no related history information
for the current round of data from real mobile sensors.
Moreover, DEMS addresses the issue of missing location of a
real mobile sensor and is capable of predicting the next location
for a missing real mobile sensor. The details of DEMS are
presented in the next section.

3. THE PROPOSED DEMS
This section describes our technique, DEMS. It starts with a
brief overview of DEMS followed by a detailed description of
our novel concept of virtual static sensor and its significance.
Finally it presents the MASTER-tree used for data mining and
the estimation module for DEMS.

3.1 The Overview of DEMS
In DEMS, we exploit the spatial and temporal relations between
sensor readings to estimate the missing sensor data. First we
divide the entire monitoring area into hexagons based on a user-
defined radius. Each hexagon corresponds to a virtual static
sensor (VSS) placed at the center of the hexagon and covering
the entire hexagon. A VSS is an artificial sensor, i.e. it does not
exist physically in real life applications, but it exists in our
technique as a synthetic sensor which mirrors a real static
sensor. Each VSS has a unique identifier. DEMS converts the
real mobile sensor readings into VSS readings based on the
mobile sensors’ current locations. Figure 1 shows A as the
monitoring area covered by a MSN that is divided into 14
hexagons with 14 VSSs, V1… V14, and 7 real mobile sensors,
M1... M7.

Figure 1. Monitoring area and hexagons

Using agglomerative clustering [23], DEMS clusters the VSSs
based on their locations into clusters and creates a MASTER-
tree for each cluster. The dotted lines that connect the centers of
the hexagons in Figure 1 show three clusters (V1, V2, V3, V8,
V10), (V6, V7, V12) and (V5, V9, V11, V13, V14). MASTER-tree
records the data for the VSSs. For each missing mobile sensor

reading, its estimated value is computed using the three major
steps: 1) mapping the missing real mobile sensor to its
corresponding VSS; 2) estimating the missing VSS reading
using the discovered spatial and temporal association rules
among the history VSS readings, and 3) converting the
estimated VSS reading into the corresponding real mobile sensor
reading.

In a MSN, a sensor reading reported is accompanied by the
sensor location where the reading was obtained. Whenever a
mobile sensor reading is missing (we call this a missing mobile
sensor for short), it is likely that both the location and the
reading will be missing together. To find the appropriate
location of a missing mobile sensor we always keep track of
mobile sensors’ locations. A mobile sensor’s location is mapped
to a hexagon and the consecutive locations of a mobile sensor
are mapped to a sequence of hexagons. We refer to a sequence
of hexagons as a mobile sensor’s trajectory. We mine the mobile
sensor trajectories and predict the missing location based on the
history trajectories. Morzy [20] proposed a pattern tree based
approach for mining trajectories and predicting future locations,
which we adopt for DEMS. DEMS maintains a single pattern
tree of trajectories for all the mobile sensors. As small devices
like sensors often use the same protocol for relocation [7], [9], it
is reasonable to assume that they have similar patterns of
movement; therefore DEMS maintains a single pattern tree of
trajectories for all the mobile sensors and uses a single pattern
tree instead of an individual pattern tree for each mobile sensor.
This trajectory pattern tree is used to predict a missing mobile
sensor’s location. The predicted location is used to map a mobile
sensor to a VSS. Since sensors repeat the mobility pattern for
relocation, history based trajectory mining is more promising
than random walk models.

3.2 The Virtual Static Sensor
In SSNs, every sensor monitors a fixed region and a sensor’s
reading reflects an event occurring within this region; but in
MSNs, owing to their mobile nature, the region being monitored
varies with time. However, as in SSNs, the sensor readings for
MSNs still reflect events occurring within a particular region.
Our concept of virtual static sensors is directly motivated by the
above fact. Every VSS, like sensors in SSNs, ‘monitors’ a fixed
region called its coverage area. An event occurring within a
VSS’s coverage area is reflected in its readings. However,
unlike sensors in SSNs, VSSs do not have real existence and do
not ‘report’ data to a base station. On the contrary, they are
‘created’ in our technique virtually to ease the spatio-temporal
data mining.

A VSS reports a reading if there exists at least one real mobile
sensor in the coverage area. A VSS is active if it reports in the
current round and is inactive otherwise. VSS readings are
readings of the real mobile sensor(s) which are present in the
VSS’s coverage area. In situations when multiple real mobile
sensors are in a VSS’s coverage area, the VSS reports the
average of all the real mobile sensors’ readings. There are two
reasons for considering the average reading: 1) multiple sensors
monitoring the same small coverage area most likely will report
similar readings; and 2) any event occurring in the common
coverage area will be reflected in the readings of all the sensors
monitoring that area. As a hexagon is the atomic coverage
region in DEMS, the radius of each hexagon is usually small
enough to assure the variance of real sensors’ readings from the

same hexagon to be minimal, and averaging all readings from
sensors from the same hexagon will be close to the real value of
the corresponding region. A VSS is called a missing VSS if one
real mobile sensor exists or expected to exist within the
coverage area of that particular VSS and the reading from the
real mobile sensor is missing.

The total monitoring region for any MSN or SSN is fixed either
due to application specifications or hardware constraints.
However, we further sub-divide the MSN’s monitoring region
into fixed size hexagons with a VSS ‘covering’ each particular
hexagon. We choose hexagonal coverage area as they do not
suffer from overlapping or uncovered regions as in the case of
circular coverage area. Thus, in our monitoring area, we do not
encounter regions where a real mobile sensor can map to
multiple VSS (for overlapping regions) or cannot map to any
VSS (for uncovered regions). Two virtual static sensors are
neighbors if their covered hexagons share at least one edge. Due
to the static nature of VSSs, they have a static spatial relation
among themselves and can be co-related too. Finally
consecutive readings from a VSS are originated from the same
location and can show temporal relationships among them.

Procedure mapReal2Virtual(RealSensorData listRSData, VirtualSensorData
listVSData)

1 for each real sensor rs
2 if(rs is not missing)
3 location ← listRSData(rs).Location
4 vs ← findVirtualSensor(location)
5 listVSData(vs).addReading(listRSData(rs).Reading)
6 else
7 location ← predictLocation(rs)
8 vs ← findVirtualSensor(location)
9 listVSData(vs).status←missing

10 end loop
11 for each virtual static sensor vs
12 if(listVSData(vs) has data)
13 listVSData(vs).status←active
14 listVSData(vs).reading←average(listVSData(vs).Readings)
15 else
16 if(listVSData(vs).status is not missing)
17 listVSData(vs).status ←inactive
18 end loop

end procedure

Figure 2. Mapping mobile sensor readings to virtual static
sensor readings

Hence VSS readings are directly stored in our MASTER-tree.
So, in DEMS, the MASTER-tree represents the relationships
among the VSSs. We assume that at any instance, all the mobile
sensors report their readings to the base station, which is then
mapped to the corresponding VSSs. Figure 2 shows the mapping
algorithm in details. For each real mobile sensor, DEMS finds
the appropriate VSS (lines 3 & 4) using a geometric mapping
between location and hexagon. If the location of the real mobile
sensor is missing, DEMS predicts the expected location for the
real mobile sensor and maps it to the appropriate VSS for that
predicted location. If the mobile sensor reading is missing,
DEMS marks the corresponding VSS as missing. Finally, in the
loop from lines 11 to 18, each VSS is marked appropriately as
active, inactive or missing. At any particular time, only the
active virtual static sensors are stored in their appropriate
MASTER-trees.

3.3 The MASTER-tree Projection Module
A MASTER-tree is like a pattern tree, which is used to represent
arbitrary relationships among all Boolean itemsets [19]. A
pattern tree is equivalent to a spanning tree of a binary
hypercube which represents all possible Boolean items

relationships; but the computational complexity of a pattern tree
is exponential. However, grouping items into a set of clusters
and pruning the pattern tree or its equivalent hypercube lowers
the computational complexity. A pattern tree unduly favors only
the right most leaf node and extracts the relationships of this
node with all other nodes. A MASTER-tree does not suffer from
those issues of a pattern tree. It combines the various pattern
trees regarding each node and prunes the common paths in the
resulting tree and forms a new tree called a MASTER-tree [16].

 In a MASTER-tree, each tree node represents a VSS. The data
distribution of a particular VSS node over a particular vector
space is stored in each node. The complete vector space, in
which the VSS readings occur, is discretized into a finite
number of cells. Technically, for each cell, an arbitrarily
accurate data distribution function or probability distribution
function can be represented by an infinite number of moments in
statistical theory. However, computationally, only a finite
number of moments plus element counters are stored in the
MASTER-tree nodes (typically the first four moments). An
element counter is the number of VSS readings belonging to the
cell associated with the corresponding MASTER-tree node. For
each cell, a few moments are stored, and the cells across nodes
are linked following the MASTER-tree paths. These cells and
links form a grid structure (GS). As GS depends on a finite
number of cells and a fixed number of nodes in a particular
cluster, it does not grow exponentially with the increase in the
number of rounds of sensor readings. Thus, the MASTER-tree
projection module is to establish a MASTER-tree for each
cluster and then to incrementally update the GS as a new round
of sensor readings arrives. This maintains the up-to-date
association rules among the VSSs in a cluster to serve data
analysis purposes. Interested readers are refer to [16] for details
about this module.

3.4 The Data Estimation Module
The data estimation module computes the estimated value for
the missing mobile sensor. Initially, the location of the missing
mobile sensor is predicted based on the user-defined minimum
support and minimum confidence using Morzy’s approach [20].
If the algorithm fails to predict the next location, DEMS uses the
last reported location of the missing mobile sensor as its current
location. Location prediction is preceded by mapping the
missing mobile sensor to the corresponding VSS, which is called
missing VSS. The estimated missing mobile sensor reading is
the estimated missing VSS reading computed from the
MASTER-tree.

The data estimation module accomplishes the task in an iterative
way. First it obtains the prior distribution of the missing VSS
(mVSS) from the MASTER-tree, i.e., the rule ø → mVSS (here
ø means empty). If the rule satisfies the user-defined error
margin and the minimum support and minimum confidence
thresholds, the rule holds and the estimated value is produced by
taking the average of the prior distribution of mVSS. However,
if the error margin requirement is not satisfied, the related
information from the other tree nodes (VSSs) is considered for
re-estimation. Here, the data estimation module chooses one
more new antecedent node to infer the mVSS’s reading. As
every node represents a VSS, a node can be an antecedent node
if the corresponding VSS is active. The initial relevant subspace
for the antecedent node is simply the cell picked up based on its
current reading. When the actual support does not satisfy the

minimum support threshold, the relevant subspace is augmented
iteratively until the actual support is no less than the minimum
support. However, if the support requirement cannot be satisfied
even if the relevant space reaches its upper limit, i.e., the
complete subspace, the module removes this node and considers
a new prior node. This process of adding a new antecedent node
is repeated until the estimation procedure meets one of the
following conditions: 1) a rule that satisfies the minimum
support, minimum confidence and maximum error margin is
found, or 2) no more nodes within the cluster is to be added to
the antecedent nodes set. The procedure then returns the
estimated value using the last expected value (the average) over
the obtained consequent subspace. The estimated mVSS’s
reading is directly used as the estimated reading for the missing
mobile sensor.

4. EXPERIMENTAL DESIGN AND
RESULTS ANALYSIS
In this section, we compare DEMS with two existing algorithms:
SPIRIT [17] and TinyDB [13]. Although both TinyDB and
SPIRIT are designed for static sensors, it can be argued that they
can still be used for data estimation for mobile sensors
disregarding sensor’s mobility. We also compare it with the
Average which is a statistical baseline method where the
missing reading is estimated by averaging all other known
sensor readings of the current round.

4.1 Experimental Datasets
4.1.1 The DAPPLE project dataset
The real life dataset is obtained from the DAPPLE project [21].
The data are about carbon monoxide (CO) readings collected
over a period of two weeks around Marylebone Road in London.
The mobile sensors monitoring the atmospheric CO level are
attached to PDAs which store these readings. The data sampling
rate of the sensors is once every second. The software on the
PDAs generates log files containing the CO levels with the
locations and the timestamps associated with the readings. Each
reading was carried out with a single sensor kit every second for
a duration of about 45 minutes over a two weeks period.
Simultaneous use of multiple sensors (usually three) was limited
to some days only. For our experimental purposes, we
considered the instances when three sensors were
simultaneously recording CO pollution levels for a considerable
period of time. We chose Thursday, 20th May 2004, when three
sensors were simultaneously recording for about 32 minutes,
resulting in 600 rounds (after disregarding the missing rounds)
of CO readings.

4.1.2 The Factory Floor Temperature Dataset
Besides the above real life application dataset, we also
synthesized a factory floor temperature dataset [12] which
exhibits dynamically changing phenomena. In this experiment,
machines are placed on a grid floor. Initially, all machines are
off and the starting temperatures for all grid points are set to
zero. The boundary grid point temperature is held at zero
throughout the experiment. Then some machines will be turned
on for a number of rounds; the temperatures on these machines
will reach a high constant temperature and heat will disperse on
the floor. At each time step, a grid point is updated using the
heat transfer formula used in [12]. In this simulation, 100 mobile
sensors were roaming around in random directions to monitor
the factory floor and reported the temperature readings from

different locations at different points in time. In our simulations,
we sampled the mobile sensor readings once per hour. In total
we gathered 5000 rounds of readings from 100 sensors.

4.2 Performance Comparison Studies
In this section we compare the performances of DEMS,
Average, SPIRIT [17], and TinyDB [13] in terms of mean
absolute error (MAE). MAE is calculated using the following

formula: ��� =
∑ |�����|�

���

�
 where �� is the estimated value, � is

the original value for the i-th data point, and n is the total
number of data points. MAE is thus the magnitude, not the
percentage, of the error. We specifically study the impacts of the
number of rounds of sensor readings on the estimation accuracy.

4.2.1 Results for the DAPPLE Project Dataset

Fig 3. Number of rounds vs. MAE for the DAPPLE project
dataset

Figure 3 shows the change of MAE with the change of number
of rounds of sensor readings. The MAE value of 0 for DEMS
implies that DEMS estimates the missing data with no error. A
possible reason is that the DAPPLE project dataset has very few
variations (the CO levels are within the range 0~6) and the
sensors have very high spatial correlations. In most cases the
readings in the same hexagon are the same. Hence, DEMS
produces a zero error in terms of MAE. The MAEs for other
approaches are comparatively high at the beginning and become
stable at the end as the number of rounds increases.

Table 1. Average MAEs for the DAPPLE project dataset
Approach Average MAE

DEMS 0
Average 1.2717
TinyDB 0.6331
SPIRIT 0.9437

Table 1 shows the average MAE for all the approaches. DEMS
almost perfectly estimates the missing values while Average
gives the highest error compared to SPIRIT and TinyDB.

4.2.2 Results for the Factory Floor Temperature
Dataset

Table 2. Average MAEs for the factory floor temperature
dataset

Approach Average MAE
DEMS 2.2538

Average 14.7787
TinyDB 6.9621
SPIRIT 4.7472

We performed a similar study for the factory floor temperature
dataset. This dataset have more variations (temperatures are in

the range 0~100C) compared to the DAPPLE project dataset.
Figure 4 shows the change of MAE with respect to the change of
number of rounds. The MAE for each approach remains almost
constant when the number of rounds changes. As this dataset has
more variations than the DAPPLE project dataset, even though
DEMS still performs better than the other techniques, its
performance is not as good as its performance with the DAPPLE
project dataset.

Fig 4. Number of rounds vs. MAE for factory floor
temperature dataset

Table 2 shows the average MAE for all the approaches. The
average errors produced by Average, SPIRIT and TinyDB are
about seven times, three times, and two times more than that
produced by DEMS, respectively. DEMS is thus very effective
in estimating missing sensor data.

5. CONCLUSION AND FUTURE WORK
In this paper, we proposed a new technique (DEMS) to estimate
missing data in MSN applications. Experimental results show
that the estimated values computed by DEMS are more accurate
than those produced by the existing techniques: Average,
SPIRIT [17], and TinyDB [13]. For future work, we will
consider the case when multiple mobile sensors report data at
different times. We envision scenarios where considerable
delays may exist between each sensor’s readings. Finally as
DEMS currently is designed for single hop MSNs only, we plan
to expand the scope of DEMS to include multi-hop MSNs,
mobile base station, and clustered MSNs.

6. ACKNOWLEDGMENTS
This work has been supported in part by the NASA under the
grant No. NNG05GA30G.

7. REFERENCES
[1] T. Haenselmann; An FDL'ed Textbook on Sensor

Networks, GNU Free Documentation License, 2005.

[2] A. Mainwaring, D. Culler, J. Polastre , R. Szewczyk, J.
Anderson; Wireless sensor networks for habitat monitoring,
1st ACM international workshop on Wireless sensor
networks and applications, 2002.

[3] Metar. http;//metar.noaa.gov/, Last Accessed - January
2010.

[4] L. Schwiebert, S.Gupta, and J.Weinmann; Research
challenges in wireless networks of biomedical sensor,

MobiCom, 2001.
[5] T. Clouqueur, V. Phipatanasuphorn, P. Ramanathan and

K.K Saluja; Sensor Deployment Strategy for Target

Detection, 1st ACM International Workshop on Wireless
Sensor Networks and Applications, 2002.

[6] S. Meguerdichian, F. Koushanfar, M. Potkonjak and
M.B.Srivastava; Coverage Problems in Wireless Ad-Hoc
Sensor Networks, INFOCOM, 2001.

[7] B. Liu, Peter Brass, Olivier Dousse, Philippe Nain, and
Don Towsley; Mobility Improves Coverage of Sensor
Networks, MobiHoc, 2005.

[8] G. Wang, G. Cao, T. parta, and W. Zhang; Sensor
Relocation in Mobile Sensor Networks, INFOCOM, 2005.

[9] G.T. Sibley, M.H. Rahimi and G.S. Sukhatme; Robomote –
A tiny Mobile Robot Platform for Large-Scale Sensor
Networks, ICRA, 2002.

[10] N. Jiang , Le Gruenwald; Research issues in data stream
association rule mining, SIGMOD Record 2006.

[11] S. Guha, N. Koudas, K. Shim; Data Streams and
Histrograms, ACM Symposium on Theory of Computing,
2001.

[12] A. Silberstein, K. Munagala, and J. Yang; Energy-Efficient
Monitoring of Extreme Values in Sensor Networks, ACM
SIGMOD, 2006.

[13] S. Madden, M. Franklin, J. Hellerstein and W. Hong;
TinyDB: An Acquisitional Query Processing System for
Sensor Networks, Transactions on Database Systems, 2005.

[14] L. Gruenwald, H. Chook, M. Aboukhamis; Using Data
Mining to Estimate Missing Sensor Data, ICDMW, 2007.

[15] N. Vijayakumar and B. Plale; Missing Event Prediction in
Sensor Data Streams Using Kalman Filters, book chapter in
Knowledge Discovery from Sensor Data, Taylor and
Francis/CRC Press, 2009.

[16] H. Chok and L. Gruenwald; An online spatio-temporal
association rule mining framework for analyzing and
estimating sensor data. IDEAS, 2009.

[17] S. Papadimitriou, J. Sun, and C. Faloutsos; Streaming
Pattern Discovery in Multiple Time-series, VLDB, 2005.

[18] L. Gruenwald, H. Yang, S. Sadik, R. Shukla; Using Data
Mining to Handle Missing Data in Multi-Hop Sensor
Network Applications, MobiDE, 2010.

[19] C. Giannella, J. Han, J. Pei, X. Yan, and P. Yu.in H.
Kargupta, A. Joshi, K. Sivakumar, and Y. Yesha (eds.);
Mining Frequent Patterns in Data Streams at Multiple Time
Granularities. Next Generation Data Mining, AAAI/MIT,
2003.

[20] M. Morzy; Mining Frequent Trajectories of Moving
Objects for Location Prediction, Machine Learning and
Data Mining in Pattern Recognition, LNCS, 2007.

[21] UCL Carbon Monoxide Data Collection at Dapple Site,
http://www.cs.ucl.ac.uk/research/vr/Projects/envesci/DAPP
LE2004/UCLDAPPLE.html, Accessed May 2010.

[22] W.Tobler; A Computer Movie Simulating Urban Growth in
the Detroit Region, Economic Geography, 1970.

[23] W. Day and H. Edelsbrunner; Efficient Algorithms for
Agglomerative Hierarchical Clustering Methods, Journal of
Classification, 1984.

