
Building Large Storage Based On Flash Disks
Ilia Petrov, Guillermo G. Almeida, Alejandro P. Buchmann

Databases and Distributed Systems Group
Department of Computer Science
Technische Universität Darmstadt

{petrov | ggomez | buchmann}@dvs.tu-darmstadt.de

Ulrich Gräf,
Principal Sales Consultant

Oracle Germany

ulrich.graef@oracle.com

ABSTRACT
Flash SSDs are a technology that has the potential of drastically
changing the architecture of a DBMS. In this paper we examine the
properties of a storage space built on SSDs with RAID and how
these affect data intensive systems. While we observed the
expected performance improvements of one to two orders of
magnitude of SSD-only storage over HDD storage, RAID-SSD
systems showed interesting effects and large performance
degradation: (a) the SSD read-write asymmetry and the write
behavior are amplified due to RAID; (b) scalability issues in a
RAID-based storage system appear because of inadequate
controllers; (c) fragmentation and distribution issues affect
performance much more than expected.

1. INTRODUCTION
Flash Solid-State Disks (SSDs) are a disruptive technology,
that has the potential of changing the established principles
of DBMS architecture. Both Flash SSDs (under SSD we
mean an enterprise-class, Flash NAND SLC SSD) and Hard
Disk Drives (HDD) support the same block device interface
standards, which makes simple replacement deceitfully
easy. In comparison (Table 1), SSDs exhibit low latency
(especially for small block sizes) and very high random
throughput (IOPS–Input/Output Operations Per Second).
All of these are 10 to 100 times better than the respective
HDD values. Furthermore, the sequential throughput of an
enterprise SSD is also high.

These properties represent a very good match to what is
needed by data-intensive systems such as databases [4].
Their IO requirements on the storage can be summarized as
follows: (i) large and reliable; (ii) fast (high sequential
bandwidth, high random throughput); (iii) able to handle
parallelism (parallel requests from multiple processes); (iv)
fault tolerant; (v) easy to administer. Data intensive systems
will rarely work with single disks because of their small
volume and low reliability. RAID technology (Redundant
Array of Independent Disks) [1,2] is instrumental for
creating large, reliable and fast storage, built out of many
independent drives. While the properties of single Flash
SSDs have been well studied [9,10,11], the research
community has paid little attention to SSDs in RAID
configurations. A simple performance comparison of a
single SSD and a RAID 0 configuration over two SSDs is
shown in Table 1. The general expectation is that the
performance of RAID 0 will be twice as high as one SSD.

D
ev

ic
e

S
eq

. R
ea

d

 [

M
B

/s
] (

12
8K

)

S
eq

. W
rit

e

[M
B

/s
](1

28
K

)

R
an

d.
 R

ea
d

[m
s]

(4
K

B
) +

R
an

d.
 W

rit
e

[m
s]

(4
K

B
) +

R
ea

d
IO

P
S

(4

 K
B

) #

W
rit

e
IO

P
S

(4

 K
B

) #

P
ric

e
[€

/G
B

]

P
ric

e/
R

ea
d

IO
 R

IO
/€

]
P

ric
e/

W
rit

e
IO

 [W
IO

/€
]

E. HDD 160 160 3.2 3.5 310 280 2.5 1.1 1

E. SSD 250 170/120* 0.075 0.085 35000 3300 10 56 5.3

RAID0,
2xE.SSD

422 631/83* 0.375 0.458 24371 2035 19 13 1.1

Table 1: Comparison of enterprise HDDs, SSDs (according to
the specifications) and a RAID 0 with two SSDs, 64KB stripe

unit size. (*- write cache off; + - queue depth 1; #- queue depth
32; RIO –Read IOPS; WIO – Write IOPS)

However, the measured performance falls short of this
expectation (even at the best performing RAID level).
Clearly the RAID benefits come at a high cost in SSD
performance. The random IO throughput (IOPS) is approx.
30% lower than that of a single SSD. The sequential read
throughput (MB/s) is better than that of a single SSD. The
sequential write throughput seems good at first glance, but
that is entirely due to the RAID controller’s write cache.

In this paper we research the observed performance
loss. We quantify the SSD RAID performance, identify
bottlenecks and look for solution alternatives:
• We compare different RAID configurations.
• We study the properties of these configurations: access

time, sequential and random throughput, and analyze
those for the typical access patterns (random read/write,
sequential read/write).

• We investigate the performance penalties incurred
through the RAID technology and observe that the RAID
controller cannot handle more than a few SSDs and
scale; therefore it is the IO bottleneck; the well known
rules-of-thumb get distorted.

• We propose a set of solution alternatives based on a
combination of hardware and software RAID: we
demonstrate that the optimal solution is several RAID
controllers each with a few SSDs and software RAID on
top. Nonetheless, the ideal solution would be specialized
RAID controllers built specifically for Flash SSDs.

2. RAID
RAID is a key and well-studied component of contemporary
storage systems [1,2,12]. Depending on the redundancy and
distribution mechanism there are multiple RAID levels [2]
(0 through 6, and combinations). RAID 0 – non-redundant

disk array employing striping; relevant for computing
environments where the high performance and capacity are
more important than reliability. RAID 1 employs mirroring
as redundancy scheme; whereas RAID 10/01 divides discs
into sub-arrays, employs striping across sub-arrays and
mirroring within sub-arrays. Both RAID1 and RAID10/01
are relevant for IO intensive OLTP applications. RAID 5 –
block-interleaved distributed parity - is used for read-mostly
applications with large data volumes (e.g. Data
Warehousing) or high data volume streaming applications
(seq. write/read): random writes represent a significant
bottleneck. Table 2 presents a simple analytical comparison
in terms of IO patterns, according to the throughput/cost
ratio and the number of individual requests. The cost is
proportional to the number of disks. The throughput/cost
ratio is a metric for the number of disks involved in the
execution of a request from the respective request pattern.
For example a small random write request on RAID10
yields a synchronized write on the two mirrored disks in the
respective sub-array. Hence throughput/cost=1/2.

RAID 0 RAID 1 RAID 5 RAID10
T/C R T/C R T/C R T/C R

Small rand. read 1 1 1 1 1 1 1 1
Small rand. write 1 1 1/2 2 1/4 4 1/2 2
Large seq. read 1 D 1 D 1 D 1 D
Large seq. write 1 D 1/2 2D (D-1)/D D+1 1/2 2D
Storage efficacy 1 1/2 (D-1)/D 1/2
Table 2: Simplified throughput/cost comparison of different

RAID levels. (D-number of disks in RAID array; T/C-
Throughput/Cost; R- number of internal requests)

Based on the present body of research and the above
analytical model the following conclusions can be drawn:

1. From Table 2 and [2] follows that writes (especially
small random writes) are not a strength of RAID
systems. In combination with the SSD properties
(Section 4) this opens room for improvement.

1. As pointed out in [2] RAID5 is supposed to be
four times worse than RAID0 for small writes.

2. In RAID10/01 and RAID1 writes generate
twice as many synchronized single disk write
requests.

2. In [2] it is also assumed that the performance of
throughput-oriented RAID systems scales linearly with
the number of devices. For HDD based arrays this is
perfectly valid because in practice the single disk
performance is the bottleneck.

3. In some RAID configurations single disk requests need
to be coordinated to execute a RAID request. Its latency
is susceptible to the maximum device latencies and
correlates to the number of disks participating in a
request. This is especially true for small writes (cf. 1.2).

4. To ensure comparable results for different RAID
configurations use arrays with comparable effective
volumes under the same workload [2].

3. TEST SETUP, WORKLOADS AND
EXPERIMENTAL SEARCH SPACE
The tests performed throughout this paper have been done
on two machines. Machine A has Intel Core 2 Duo E8400
3GHz CPU with 4 GB RAM. Machine B is a 16 core server
(four quad-core 2.3 GHz processors) with 64GB RAM and
three enterprise-level RAID controllers with 512MB cache,
and eight 10K RPM SAS HDDs with 16MB cache. The
RAID controllers are Adaptec Series 5 (5085) with the
following characteristics: PCIe x8 interface, dual-core 1.2
GHz RAID-on-a-chip, 512MB controller cache; support for
8 directly connected SAS devices (up to 256 through SAS
expander). For economic reasons we performed experiments
only with one type of RAID controllers. An analysis of the
currently available controllers would show that (except for
caching) they are compatible. However to ensure broad
applicability of our findings we are in the process of
validating our findings with other enterprise RAID
controllers. Both machines run Windows 2008 Server R2. In
addition we use an array of Intel X25-E/64GB enterprise
SSDs. The single disk experiments (Section 4) are
performed on machine A, the RAID experiments (Section 5)
on machine B. As benchmark we use IOMeter 2008.06.18
[6], because it can be instrumented to generate wide range
of workloads. The latency, sequential and random
throughput results (for workload (b) – see below) have been
validated with Oracle Orion [7], to ensure database validity.
All tests are done on raw devices/volumes (unless
mentioned otherwise) to eliminate the influence of the file
system.

Workloads. We instrumented IOMeter with three types
of workloads:
a. workload latency - single requests, one load generator

(worker), queue depth 1. It is used to measure the
latency on a single drive and RAID configurations;

b. workload light - one worker, 32 queue depth. It is used
to measure the performance of a single drive or a lightly
loaded RAID system;

c. workload heavy - ten workers with queue depth of 16. It
is used to measure the maximum performance of a
heavily loaded RAID system.
We always use stripe unit size of 64KB and enabled

read and write caches. The software RAID experiments
have been performed using the built-in Windows software
RAID.

Experimental search space. We aim to study the
characteristics of SSD storage space built on RAID:
sequential and random throughput as well as latency. Hence
we cover the following experimental space using the
workloads and the setup described above. (i) We study the
single SSD throughput and latency characteristics with
latency and light workloads. Based on these we can explain

the behavior of SSD RAID systems. (ii) In a latency
experiment we perform a comparative study of the latencies
of different RAID configurations with the latency and light
workloads. (iii) In a set of throughput experiments we study
the sequential and random throughput of different RAID
configurations. One question is to determine the maximum
performance of a heavily loaded system using workload
heavy and investigate RAID controller saturation. We
examine also a lightly loaded system with workload light.
Another question is to examine the throughput of different
RAID level configurations for the same effective volume
(for comparability) or for the same number of drives. (iv) In
a scalability experiment we study the scalability of RAID
the controllers while varying number of attached SSDs
(verify conclusion (2) Section 2).
4. ENTERPRISE FLASH SSDs
The performance exhibited by Flash SSDs is significantly
better than that of HDDs (Table 1): low latency (Table 3.);
very high random throughput (Figure 1); acceptable
sequential performance (Figure 2); low power consumption.
Flash SSDs, however, are not merely a faster alternative to
HDDs; just replacing them does not yield optimal
performance. Their specifics are due to the intrinsic
characteristics of the NAND memory and their internal
organization [9]. Below we shortly summarize them.

Figure 1: Random throughput (IOPS) of a single SSD

Figure 2: Sequential throughput (MB/s) of a single SSD

(a) asymmetric read/write performance – the read
performance is significantly better than the write
performance – up to an order of magnitude (Figure 1, Figure
2). This is a result of the internal organization of the NAND
memory, which comprises two types of structures: pages
and blocks. A page (typically 4/2 KB) is a read and write

unit. Pages are grouped into blocks of 32/128 pages
(128/512KB). NAND memories support three operations:
read, write, erase. Reads and writes are performed on a
page-level, while erases are performed on a block level.
Before performing a write, the whole block containing the
page must be erased, which is a time-consuming operation.
The respective raw latencies are: read-55µs; write 500µs;
erase 900µs. In addition, writes should be evenly spread
across the whole volume (see longevity). Hence no write in-
place as on HDDs (see FTL).

 Write Cache (WC)-ON Write Cache-OFF
Sequential Read (SR) 53 µs max 12.29 ms –

Sequential Write (SW) 59 µs max 94.82 ms 455 µs
Random Read (RR) 167 µs max 12.41 ms –

Random Write (RW) 113 µs max 100.68 ms 435 µs
Table 3: Avg/Max latency of an enterprise SSD, block size 4K

 (b) excellent random read throughput (IOPS) –
especially for small block sizes. Small random reads are up
to hundred times faster than on an HDD (Table 1). The good
small block performance (4KB, 8KB) affects the present
assumptions of generally larger database page sizes.

(c) acceptable random write throughput – small
random writes are five to ten times slower than reads
(Figure 1). Nonetheless, the random write throughput is an
order of magnitude better than that of an HDD (Table 1).
Due to the internal organization (write/erase cycle), random
writes are an issue not only in terms of performance but also
in terms of long-term effects due to fragmentation.

(d) very good sequential read/write transfer. It is
commonly assumed that HDDs are better for sequential
operations. The newer generations of SSDs improve
significantly (Table 1). Sequential operations are also
asymmetric (Figure 2). However due to read ahead, write
back and good caching the asymmetry is reduced (below
25%).

Mixed loads (read/write ratios and sequential/random
ratios other than 100% or 0%, Figure 3) exhibit worse
performance than pure ones due to: (i) the sequential pattern
detection overhead for read ahead; and (ii) read/write
asymmetry. These statements are best illustrated with a
short example: consider the case of 33% read and 0%
randomness (i.e. 33% of all requests are sequential reads,
67% of all requests are sequential writes); the throughput
amounts to 6605 IOPS. An attempt to derive this value from
the respective pure loads (100% read, 0% random=25274
and 0% read, 0% random=22559) would yield 0.33*25274
+ 0.67*22559 = 23454 IOPS, which is far better than the
measured 6605.

(e) longevity – a memory cell can be rewritten a fixed
number of times (between 100K and 1M); hence special
wear-leveling algorithms are employed to increase the Mean
Time Between Failures (MTBF) [9,10] to – 2x106 hours.

Figure 3: Random throughput [IOPS], 8KB, different read/write and randomness ratios: (0%, 33%, 50%, 67% and 100%) read vs.

write and (0%, 20%, 50% and 100%) random vs. sequential

(f) Flash Translation Layer (FTL) is a sophisticated

layer hiding the internals of the SSDs organization, making
them behave like block devices and performing background
processes to ensure normal operation. The FTL maintains a
mapping between Logical Block Addresses (LBA) and
Physical Block Addresses (PBA), which is organized as B-
Tree [13, 14] and stored on the NAND space. To ensure
longevity the FTL performs wear-leveling moving the
contents of an LBA to another PBA upon rewrite. Garbage
collection is executed in the background consolidating the
space and ensuring enough free erase blocks are available to
avoid costly erase before writing. These processes are
intricately designed to interfere as little as possible with the
normal operation of the drive, but may sometimes lead to
substantial delays (Table 3). The performance dependence
on seek time of HDDs is a well studied phenomenon. The
performance variance of SSDs due to internal specifics is
significantly higher and deserves special attention.

Command Queuing (CQ) is an IO optimization
technique implemented for both enterprise HDDs (TCQ on
SAS) and enterprise SSDs (NCQ [8], SATA2 SDDs). CQ is
very beneficial for small random reads, where doubling the
queue depth (up to eight commands) doubles the throughput
while keeping the latency almost constant, below 0.28 ms
(for 8KB block size). The reason for this is the better
utilization of the internal SSD parallelism and request
interleaving. There are significant benefits for SR or SW
because they translate to read ahead or write-back.

Last but not least the performance of state-of-the-art
enterprise SSDs is dependent on (a) fragmentation (affecting
the performance of SR and RW of up to 50%) and (b) on the
total used space (in addition affecting SW to the same
degree). Hence the performance especially the write
performance degrades over time. Because of space
limitations we do not elaborate further on those.
5. SSD RAID CONFIGURATIONS
As already pointed out (Table 1) the benefits of the RAID
technology come at a high price. Here we study in detail the

latency and random and sequential throughput for different
RAID levels. We measured the random throughput of
equally configured HDD and SSD arrays running the
workload heavy (Table 4). Under certain conditions these
numbers can go as high as 30x and 10x respectively.

Throughput. In order to determine the maximum
performance for different RAID levels we run workload
heavy on a maximum configuration eight SSDs on a single
controller configured for RAID levels 0, 5, 10. (Comparable
experiments could not be performed on RAID1 because the
RAID software allowed only RAID1 over two devices). The
results for the sequential (Table 6) and random throughputs
(Table 5) represent average values of three experimental
runs, with standard deviations from 7% to 25%. These
values can be attributed to fragmentation effects (Section 4).

 RAID0 over 4SSD RAID5 over 5SSD RAID10 over 4SSD
 Read Write Read Write Read Write
SSD 20 000 8 000 21 000 5 111 21 000 6 300
HDD 1 200 1 100 1 700 1 600 1 150 1 050
speedup 17x 7x 13x 3x 19x 6x

Table 4: Comparison of heavily loaded HDD and SSD RAID
systems. Random throughput [IOPS] for 8KB block size.

 RAID0 IOPS RAID5 IOPS RAID10 IOPS
Blocksize Read Write Read Write Read Write

8KB 19294 7807 20913 5111 20317 6345
16KB 16852 6216 15607 4215 17226 4612
32KB 13135 4625 12270 2588 13614 3084
64KB 9300 3651 9935 1991 10140 2074
128KB 5591 1798 5115 1030 5292 887
256KB 3119 701 2859 442 2739 436

Table 5: Random Throughput [IOPS] vs. RAID level

 RAID0 MB/s RAID5 MB/s RAID10 MB/s
Blocksize Read Write Read Write Read Write
8KB 199 229 166 236 175 223
16KB 331 350 282 368 293 336
32KB 504 498 436 513 456 462
64KB 629 621 621 627 617 584
128KB 669 646 672 683 665 662
256KB 685 645 684 702 677 683

Table 6: Sequential Throughput [MB/s] vs. RAID level

Clearly workload heavy saturates the controller. Under
such conditions the random throughput of all RAID levels is
similar (Table 5). It is also evident that random read/write
asymmetry exists in SSD RAID configurations with read-to-
write ratios similar to that of single SSDs. The random and
sequential throughput is below the expected value (the sum
of single SSD throughputs is higher) hence there is a
bottleneck along the IO chain. This contradicts the
assumption that the performance of throughput oriented
systems scales linearly with the number of drives
(assumption (2), Section 2). The sequential write
performance is surprisingly a bit better, which is entirely
due to RAID controller battery powered cache. We
performed the very same experiment on arrays of fixed
effective volume of approx. 240GB. This means 4SSD for
RAID0, 5 for RAID5 and 8 for RAID10. We obtained very
similar results, which indicates scalability problems. We
investigate this claim in Section 6.

 Random Throughput [IOPS]
 1 SSD RAID0 4SSD RAID5 5SSD RAID10 8SSD
BS Read Write Read Write Read Write Read Write
4KB 35511 5953 24787 10193 20639 5291 24396 7468
8KB 22738 4833 20987 6289 19255 3732 22273 4652
16KB 12743 3665 20054 4135 16718 2482 16320 4144
32KB 5646 1141 14376 3218 13423 1908 12868 3083
64KB 2804 292 9042 2250 7966 1243 8939 1775
128KB 1650 148 4850 1185 5018 591 5147 921
256KB 721 85 2484 556 2584 303 2619 475

Table 7: Random throughput workload light, volume=240GB

 Sequential Throughput [MB/s]
 1 SSD RAID0 4SSD RAID5 5SSD RAID10 8SSD
BS Read Write Read Write Read Write Read Write
8KB 196 110 291 295 210 110 343 117
16KB 239 159 482 311 427 175 445 173
32KB 248 177 614 351 524 218 588 221
64KB 248 184 681 372 640 265 685 249
128KB 252 190 678 382 673 300 688 274
256KB 252 190 672 397 671 323 690 295
512KB 252 190 670 398 679 346 692 313
1024KB 252 190 665 398 683 348 690 311

Table 8: Sequential throughput, workload light, volume=240GB

For a fair RAID comparison we re-measured the
throughput, on fixed effective volume configurations
(vol.=240GB) with workload light (Table 7, Table 8). For
comparison we also show the single SSD data. Workload
light loads the system only moderately, in terms of
outstanding IO operations (only 4 per SSD) and in terms of
parallelism (single worker/load generator instead of ten).
The results show that (a) the general RAID comparison
conclusions apply (cp. Table 2) but the SSD-intrinsic
asymmetry is also to be considered. For instance RAID5
offers the worst random write but a good random read
performance; RAID 0 offers the best performance followed
by RAID10. (b) severe scalability issues occur because
single SSD outperforms a RAID5 configuration over 5
SSDs. The throughput exhibits clear asymmetry. Even with
light load the read throughput of all configurations is
comparable, which indicates saturation (Section 6).

Striping. Using the maximum performance workload heavy
we went on to perform RAID0 experiments to determine a
reasonable stripe unit size (Figure 4). The general principles
of stripe size selection [1,2] hold: (a) lower stripe unit size
yields higher transfer performance; (b) larger stripe size
results in more requests executed in parallel.

Two conclusions can be drawn based on Figure 4: (1)
Clearly there is less performance improvement from
increasing the stripe size beyond a certain limit (the curves
on all graphs flatten); (2) Sequential writes of block sizes
larger than the erase block size (128KB and 256KB)
deteriorate with larger stripe sizes. Our explanation for this
is that the stripe unit size (which is the amount of data read
and written to and from a single SSD for this type of
sequential operations) hits the boundary of an erase block.
Hence, a single stripe-unit write results into several
sequential writes on the same SSD which lowers the
performance significantly. With smaller stripe unit sizes the
writes will be spread across multiple devices. The same
effect occurs in the random case; due to the randomness the
load is equally balanced on all SSDs hence there is no
performance penalty. Thus empirically stripe-unit sizes such
as 64KB (lower than an erase block size) seem optimal for
SSD RAIDs.

Latency. Finally, we investigate the response times (Table 9
and Table 10) for random and sequential read and write
operations using workload latency on fixed volume
configurations to ensure the comparability of results. As a
baseline we provide the single SSD latencies for the same
workload (and Table 2 for the number of requests).
Generally, in RAID configurations we observe sub-
millisecond random latencies, which is a significant
performance improvement over HDD configurations.
 1 SSD RAID0 4SSD RAID5 5SSD RAID10 8SSD

BS Write Read Write Read Write Read Write Read
4KB 0.125 0.161 0.204 0.353 0.457 0.377 0.233 0.302
8KB 0.424 0.250 0.220 0.429 0.427 0.442 0.239 0.369
16KB 0.477 0.294 0.254 0.485 0.468 0.494 0.279 0.420
32KB 0.491 0.374 0.353 0.560 0.645 0.565 0.384 0.502
64KB 0.964 0.558 0.572 0.692 0.938 0.703 0.624 0.632
128KB 1.998 0.797 0.956 0.848 1.754 0.872 1.050 0.788
256KB 4.145 1.557 1.737 1.015 3.210 1.045 1.789 0.953

Table 9: Average latency of random operations in[ms].

Table 9 shows that small random writes are less
expensive than small random reads (except for RAID5) due
to the write-back functionality of the controller. This
tendency is reverted for block sizes larger than a stripe-unit
size (64KB) because of the coordinated operations on
different drives. Since a read request is served by a single
drive (block size less than a stripe-unit size), we can gauge
the controller overhead by subtracting the read latency from
that of a single drive. The read overhead is around 0.2 ms,
which is substantial compared to single drive latencies. Due
to the write-back functionality of both the controller and the
drives it is difficult to draw precise conclusions about the
write latency.

(a) Stripe size vs. Random Read (b) Stripe size vs. Random Write

(c) Stripe size vs Sequential Read (d) Stripe size vs Sequential Write

Figure 4: Sequential and random throughput vs. stripe unit size

While the average latencies are very low, the measured
maximum latencies are surprisingly high and frequent. They
range between 200ms and 450ms and are due to single SSD
outliers (Table 3) and RAID request synchronization (Sec.
2, 4). Sequential latencies (Table 10) are naturally lower
than the random latencies due to read-ahead and write-back.

 1 SSD RAID0 4SSDs RAID5 5SSDs RAID10 8SSDs
BS Write Read Write Read Write Read Write Read
8KB 0.072 0.064 0.153 0.237 0.154 0.275 0.107 0.178
16KB 0.107 0.093 0.178 0.271 0.181 0.345 0.130 0.213
32KB 0.173 0.152 0.229 0.336 0.240 0.472 0.180 0.284
64KB 0.329 0.282 0.327 0.467 0.335 0.663 0.282 0.412
128KB 0.653 0.529 0.474 0.535 0.497 0.742 0.431 0.485
256KB 1.308 1.062 0.743 0.743 0.808 0.910 0.783 0.694
512KB 2.632 2.115 1.382 1.168 1.587 1.443 1.567 1.169
1024KB 5.314 4.249 2.742 2.032 3.170 2.367 3.201 2.058

Table 10: Average latency of sequential operations in [ms].
The overhead varies depending on the RAID level. For RAID0 it
is 0.18ms. Due to the write cache and write-back for block sizes
smaller than the stripe-unit size the write latency is lower than the
read latency. The maximum sequential latencies are between

100ms and 200ms again due to single SSD outliers and RAID
request synchronization.

6. SCALABILITY
The results discussed in Section 5 (and substantiated by
others [5]) indicate that the RAID controller is (a) the
performance bottleneck and that (b) it exhibits scalability
issues. In this section we investigate these two claims.

Clearly there is a bottleneck along the IO chain, which
may either be the RAID controller or the PCIe bus. An
experiment was designed to investigate this. Machine B has
8-lane PCIe ports with theoretical throughput of 20Gb/s
(PCIe is optimized for high data transfer rates). We
determined the effective throughput on the PCIe bus using
DTrace under OpenSolaris 2009, measuring the PCIe
utilization for sequential (1MB) and random (0.5KB) reads
with workload light over four SSDs (Table 11). The results
show that: (a) the PCIe bus is utilized below 50% of its
capacity; and (b) the SSDs can ideally provide more
throughput. Thus the controller is the bottleneck.

0 

5000 

10000 

15000 

20000 

25000 

30000 

16K  64KB  1024KB 

R
an
d
om

 t
h
ro
u
gh
p
u
t 
[I
O
P
S]
 

Stripe Size 
8KB  16KB  32KB 
64KB  128KB  256KB 

0 
1000 
2000 
3000 
4000 
5000 
6000 
7000 
8000 
9000 
10000 

16K  64KB  1024KB 

R
an
d
om

 t
h
ro
u
gh
p
u
t 
[I
O
P
S]
 

Stripe Size 

8KB  16KB  32KB 
64KB  128KB  256KB 

100 
200 
300 
400 
500 
600 
700 
800 

16K  64KB  1024KB 

Se
q
u
en
tu
al
 t
h
ro
u
gh
p
u
t 
[M
B
/s
] 

Stripe Size 

8KB  16KB  32KB 
64KB  128KB  256KB 

BS MB/s IOPS PCIe x8
utilization

Theoretical throughput
RAID0 (SingleSSD x 4)

1024 KB 694 694 33% 252 MB/s x 4 = 1008 MB/s
0.5 KB 33 67145 45% 59540 IOPS x 4= 238160

Table 11: PCIe x8 utilization

The next question is: with how many SSDs is the
controller saturated? Using workload heavy we measure the

random and sequential read/ write throughput of a RAID0
configuration varying the number of SSDs. RAID0 is used
because it offers the best performance and less restrictions
on the number of SSDs.

(a) random read throughput (b) random write throughput

(c) sequential read throughput (d) sequential write throughput

(e)Avg. Random Latency, 8KB (f) sequential write throughput-WC Off

Figure 5: Sequential and random throughput vs. SSDs

Figure 5(a) and (b) clearly show the saturation for
random operations. With small blocksizes (8KB) two SSDs
are enough to saturate the controller. There is a dependence
on the block size, but generally with four to five SSDs the
controller can be completely saturated.

Figure 5 (c) and (d) show the sequential throughput
versus the number of drives. Conclusions similar to the ones
already drawn apply. The read throughput is dependent on
the blocksize. Due to mechanisms such as read-ahead for
small blocksizes two SSDs are enough. Four to five SSDs
are enough to reach the maximum performance. It may
seem that for sequential write operations the controller is
saturated completely even with two SSDs, but that is
entirely due to the write cache. To substantiate this claim we
re-performed the experiment without write-cache (Figure
5(f)). The write performance increases linearly with the
number of SSDs.

To get a complete picture of the scalability test it is
important to investigate the latency of the different levels in
the same manner (Figure 5(e)). While the read latency is
only marginally dependent on the number of drives there is
significant dependency on the write latency. From the
throughput/cost perspective saturation is reached with 2
SSDs per controller. Once saturated the throughput does not
improve with more drives, but the latency improves
significantly up to 4 or 5 drives per controller.

7. SOLUTION ALTERNATIVES
Given these conclusions, how can we efficiently attain the
storage space needed by database systems? A very viable
alternative to pure hardware RAIDs is a combination of
hardware and software: (Option A) the devices are
connected directly (no RAID controller) with software
RAID on top; (Option B) eliminate the RAID functionality
and use the controller as a simple device aggregator while
running software RAID on top; (Option C) use simple
RAID levels on multiple RAID controllers while running
software RAID on top. The use of software RAID is
coherent with the present hardware trends of multi-core
architectures and faster interconnect: on most servers a
processor core can be dedicated to run RAID software and
do better than any RAID system-on-a-chip.

 
Hardware  
RAID0 

Hardware RAID0 
with filesys. (FS) 

Software RAID0  
with FS 

Software RAID0 
on JBODs with FS 

Software RAID0 on 
S.Volumes with FS 

BS  Read  Write  Read  Write  Read  Write  Read  Write  Read  Write 
   Random Throughput 

4KB  24678  7532  25272  10335  12308  6197  27069  5975  27793  10317 
8KB  20489  3356  20435  4775  7895  2452  25276  2655  26208  3461 
16KB  16954  2848  17007  4616  6298  2387  21210  2992  19134  3395 

   Sequential Throughput 
128KB  452.3  334.5  469.4  339.6  417.4  359.9  429.3  183.2  523.6  344.5 
256KB  451.0  339.4  468.9  340.3  438.8  365.1  454.1  188.5  523.5  343.4 
512KB  454.2  340.7  469.3  340.2  446.5  371.4  488.1  191.2  523.4  344.2 
1024KB  456.0  341.4  467.2  339.8  449.7  377.3  505.3  191.1  523.7  344.7 

Table 12:Sequential and random throughput RAID0

We investigate Option A by performing software
RAID0 tests over two SSDs on machine A. We compare
those with the Option B (Table 12), machine B. Since

IOmeter and Orion do not recognize the software RAID
volume as raw devices, file system experiments were
performed. Option B has two variants: (a) JBOD mode (Just
a Bunch of Drives) – devices are exposed as they are; (b)
Simple Volume – devices are exposed as they are (without
RAID functionality) but with caching and CQ.

Clearly the best performer is software RAID0 on simple
volumes. It combines the better command queue
management and the cache of the controller with the
software RAID on the faster CPU. This is because the CPU
can handle better the concurrency required to coordinate the
single volume operations, while the controllers handle
caching and command queuing. Interestingly enough
RAID0 on raw device is slower than RAID0 with file
system (Table 12). The result can be explained with the file
system cache and the better asynchronous IO support on file
system level, which results in better command queuing.

    1 Controller  2 Controllers  

   
Hardware 

RAID0, 4 SSDs 
Software RAID0, 
4SSDs, S.Vol. 

Software RAID0, 
2 SSDs/Ctlr,hw RAID0 

Software RAID0 
2 SSD/Ctlr S. Vol. 

Quantity  BS  Read  Write  Read  Write  Read  Write  Read  Write 
256KB  672  397  671  462  1033  762  1031  684 Seq. through‐

put [MB/s]  512KB  670  398  674  468  1039  760  1030  687 
                   

Sequential  256KB  0.743  0.743  0.688  0.711  0.772  0.512  0.531  0.461 
Latency [ms]  512KB  1.168  1.382  1.152  1.254  1.303  0.913  0.877  0.791 

                   
4KB  24787  10193  27675  11704  44537  19529  49054  22512 Rand.through‐

put [IOPS]  8KB  20987  6289  25417  10575  41091  13657  44129  13765 
                   

Random  4KB  0.353  0.204  0.277  0.120  0.282  0.114  0.277  0.109 
Latency [ms]  8KB  0.429  0.220  0.365  0.196  0.334  0.161  0.332  0.138 

Table 13: Two controller experiments

With the best performing alternative selected, we
investigate the performance of solution Option B and C over
two controllers with two SSDs (Table 13). Clearly the
second controller and software RAID have a profound effect
on performance. The sequential throughput increases by
40%. The random throughput doubles. The read and write
latencies improve by 30% and 40% respectively. Please note
that the sequential case loads the drives at their maximum.
With 4 SSDs per controller the sequential and random
throughputs double compared to the baseline case of 8
SSDs and a single controller (Table 14).

Since software RAID implementations utilize the main
CPU and part of the lower layers of the OS we examine the
system-time overhead (Table 15(a)). The data complements
the results presented in Table 13. We report the average
system-time per core and the CPU overhead of the software
RAID on Machine B (16 cores). All in all, we see a low
CPU overhead: at most 20% for random read and sequential
read and write. Interestingly, random writes offload the
CPU causing negative overhead (-0.57% per core). This is
the superimposed effect of two factors, both of which affect
the CPU utilization: IO wait time and software RAID CPU
overhead. The software RAID on simple volumes yields
lower response times, and lower IO wait times. Although
the CPU is moderately loaded with software RAID it is
offloaded with waiting time. For sequential operations the

CPU is more loaded for read and write, which is due to the
smaller cache per volume provided by the RAID controller.
    1 Controller, 8 SSDs  2 Controllers, 4SSD/Controller 

    Hardware RAID0  Software RAID0, Simple Volumes 

Quantity  BS  Read  Write  Read  Write 

256KB  672  397  1349  881 Seq. through‐
put [MB/s]  512KB  680  398  1350  891 

           

Sequential   256KB  0.751  0.752  0.606  0.664 

Latency [ms]  512KB  1.195  1.419  0.742  0.997 

           

4KB  24828  10198  51164  23661 Rand.through‐
put [IOPS]  8KB  23040  9032  46156  21372 

           

4KB  0.366  0.169  0.276  0.106 Random 
Latency [ms]  8KB  0.428  0.182  0.330  0.116 

Table 14: Two controller experiments, 8SSD total
  Random Operations – blocksize 4KB 

 
HW RAID0 
1 Ctrl, 4SSD 

SW RAID0,2Ctrl. 
2SSD/ctrl, s.vol 

HW. RAID5 
1 Ctrl, 8SSD 

SW RAID5,2Ctrl, 
4SSD/Ctrl.,S.Vol. 

  Read  Write  Read  Write  Read  Write  Read  Write 
IOPS  24787 10193  49054  22512  20556  3666  50329  7695 
%Sys.Time  7.526  5.658  8.255  5.087  6.958  2.322  8.976  6.185 

   ‐                 0.73%           ‐            2.00%   CPU  
Overhead       ‐               ‐0.57%    ‐     3.86% 
  Sequential Operations – blocksize 512KB   
MB/s  670  398  1030  682  682  314  1364  495 
%Sys.Time  2.206  1.209  3.213  2.029  2.134 1.041  4.715  19.280 

‐    1.01%    ‐    2.58%   CPU  
Overhead    ‐     0.82%    ‐     18.24% 

       

BS 
Write 
MB/s 

AVG  
Latency 

% Sys.  
Time 

8KB  119  2.1  8.9 
16KB  183  2.7  9.7 
32KB  289  3.5  13.2 
64KB  396  5.1  18.3 
128KB  471  8.5  23.9 
256KB  496  16.1  24.8 
512KB  495  32.3  19.3 
1M  491  65.2  18.7 

(a) different RAID configurations (b) RAID5
Table 15: System time and CPU overhead per Core

The experiments with RAID 5, which is a CPU
intensive RAID level, show a different picture (Table 15).
As expected, the performance is twice as good with CPU
overhead 2% to 3% per core. The highest CPU overhead -
18% (per core) is measured with sequential write. It
increases with the blocksize (Table 15(b)) and is clearly due
to the computation of parity. Due to effects described in
Section 5 Figure 4(d), beyond a certain blocksize/stripe-
unit-size ratio the SSDs become the write bottleneck, the
write latency increases and hence the system time decreases.
8. CONCLUSIONS
The performance of SSD RAID configurations is strongly
affected by current RAID controllers that are not designed
for the characteristics of SSDs and rapidly become
performance and scalability bottlenecks. The SSD
read/write asymmetry is amplified due to traditional RAID
write behavior. We observe that SSD storage can offer both
good sequential and random throughput. Clearly concurrent
support for multiple blocksizes is needed in database
systems to make optimal use of it. The RAID technology
amplifies the SSD-intrinsic asymmetry. The throughput is
complemented by average latencies that are in the sub-
millisecond range. However frequent single SSD outliers
lead to high maximum response times. Erase block sizes
influence the choice of a stripe unit size. The most
promising results for host-based storage can be achieved
with software/hardware hybrids over several RAID
controllers with a few SSDs.
To recapitulate - the ideal solution would nonetheless be a
new breed of RAID controllers specially designed for SSDs

and their characteristics. The SAS/SATA2 interface is
becoming a bottleneck for the SSDs. At present we are also
observing a shift towards PCIe based interfaces, where
RAID controllers cannot act as “device aggregators”. We
therefore speculate that software RAID-approaches or
cooked storage where operating system controls every
device individually and cross-balances the load are also to
be considered.

9. ACKNOWLEDGEMENTS
The SSD storage system used for the tests is supported by a
grant from the association "Freunde der Technischen
Universität Darmstadt". This work has been partially
supported by the DFG project “Flashy-DB”.

10. REFERENCES
[1] Patterson, D. A., Gibson, G., and Katz, R. H. 1988. A case for

redundant arrays of inexpensive disks (RAID). In Proc. of the
1988 SIGMOD Conf. (Chicago, Illinois, USA, 1988).

[2] Chen, P. M., Lee, E. K., Gibson, G. A., Katz, R. H., and
Patterson, D. A. RAID: high-performance, reliable secondary
storage. ACM Comput. Surv. 26, 2 (Jun. 1994), 145-18.

[3] W. W. Hsu and A. J. Smith. Characteristics of I/O Traffic in
Personal Computer and Server Workloads. IBM Systems
Journal, 42(2):347–372, 2003.

[4] Lee, S.-W., B. Moon, C. Park, J.-M. Kim, S.-W.Kim. A Case
for Flash Memory SSD in Enterprise Database Applications.
In Proc. of the ACM SIGMOD, pp. 1075–1086, 2008.

[5] Intel Corp. Solid-State Drives in the Enterprise: A Proof of
Concept. White Paper. 2009.

[6] IOMeter project. www.iometer.org.

[7] Oracle Corp. ORION (Oracle I/O Calibration Tool)
http://oracle.com/technology/software/tech/orion/index.html

[8] Intel Corp and Seagate Technology. Windsor Serial ATA
Native Command Queuing. Joint Whitepaper. 2003

[9] Chen, F., Koufaty, D. A., and Zhang, X. Understanding
intrinsic characteristics and system implications of flash
memory based solid state drives. In Proc. of SIGMETRICS
'09 (Seattle, WA, USA, June 15 – 19), 2009

[10] Agrawal, N., Prabhakaran, V., Wobber, T., Davis, J. D.,
Manasse, M., Panigrahy, R. Design tradeoffs for SSD perfor-
mance. In USENIX08 Boston, Massachusetts, June 2008.

[11] Lee, S., Moon, B., and Park, C. 2009. Advances in flash
memory SSD technology for enterprise database applica-
tions. In Proc. SIGMOD, Rhode Island, USA, July 2009

[12] Brown, A., Patterson, D. Towards availability benchmarking:
a case study of software RAID systems. In Proc. USENIX
Annual Technical Conference, San Diego, CA, June 2000.

[13] Wu, C., Chang, L., Kuo, T. An efficient B-Tree layer for
flash memory storage systems. In Proc. of Int. Conf. on Real-
Time and Embeded Computing Systems and Apps. 2003.

[14] Chung, T., Park, D., Park, S., D. Lee, S. Lee, H. Song. System
software for flash memory: a survey.In Proc. of ICEUC’06,
2006.

