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ABSTRACT 
Flash SSDs are a technology that has the potential of drastically 
changing the architecture of a DBMS. In this paper we examine the 
properties of a storage space built on SSDs with RAID and how 
these affect data intensive systems. While we observed the 
expected performance improvements of one to two orders of 
magnitude of SSD-only storage over HDD storage, RAID-SSD 
systems showed interesting effects and large performance 
degradation: (a) the SSD read-write asymmetry and the write 
behavior are amplified due to RAID; (b) scalability issues in a 
RAID-based storage system appear because of inadequate 
controllers; (c) fragmentation and distribution issues affect 
performance much more than expected. 

1. INTRODUCTION 
Flash Solid-State Disks (SSDs) are a disruptive technology, 
that has the potential of changing the established principles 
of DBMS architecture. Both Flash SSDs (under SSD we 
mean an enterprise-class, Flash NAND SLC SSD) and Hard 
Disk Drives (HDD) support the same block device interface 
standards, which makes simple replacement deceitfully 
easy. In comparison (Table 1), SSDs exhibit low latency 
(especially for small block sizes) and very high random 
throughput (IOPS–Input/Output Operations Per Second). 
All of these are 10 to 100 times better than the respective 
HDD values. Furthermore, the sequential throughput of an 
enterprise SSD is also high.  

These properties represent a very good match to what is 
needed by data-intensive systems such as databases [4]. 
Their IO requirements on the storage can be summarized as 
follows: (i) large and reliable; (ii) fast (high sequential 
bandwidth, high random throughput); (iii) able to handle 
parallelism (parallel requests from multiple processes); (iv) 
fault tolerant; (v) easy to administer. Data intensive systems 
will rarely work with single disks because of their small 
volume and low reliability. RAID technology (Redundant 
Array of Independent Disks) [1,2] is instrumental for 
creating large, reliable and fast storage, built out of many 
independent drives. While the properties of single Flash 
SSDs have been well studied [9,10,11], the research 
community has paid little attention to SSDs in RAID 
configurations. A simple performance comparison of a 
single SSD and a RAID 0 configuration over two SSDs is 
shown in Table 1. The general expectation is that the 
performance of RAID 0 will be twice as high as one SSD.  
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E. HDD 160 160 3.2 3.5  310 280 2.5 1.1 1 

E. SSD 250 170/120* 0.075 0.085  35000 3300 10 56 5.3 

RAID0, 
2xE.SSD 

422 631/83*  0.375 0.458 24371 2035 19 13 1.1 

Table 1: Comparison of enterprise HDDs, SSDs (according to 
the specifications) and a RAID 0 with two SSDs, 64KB stripe 

unit size. (*- write cache off; + - queue depth 1; #- queue depth 
32; RIO –Read IOPS; WIO – Write IOPS) 

However, the measured performance falls short of this 
expectation (even at the best performing RAID level). 
Clearly the RAID benefits come at a high cost in SSD 
performance. The random IO throughput (IOPS) is approx. 
30% lower than that of a single SSD. The sequential read 
throughput (MB/s) is better than that of a single SSD. The 
sequential write throughput seems good at first glance, but 
that is entirely due to the RAID controller’s write cache.  

In this paper we research the observed performance 
loss. We quantify the SSD RAID performance, identify 
bottlenecks and look for solution alternatives:  
• We compare different RAID configurations. 
• We study the  properties of these configurations: access 

time, sequential and random throughput, and analyze 
those for the typical access patterns (random read/write, 
sequential read/write). 

• We investigate the performance penalties incurred 
through the RAID technology and observe that the RAID 
controller cannot handle more than a few SSDs and 
scale; therefore it is the IO bottleneck; the well known 
rules-of-thumb get distorted. 

• We propose a set of solution alternatives based on a 
combination of hardware and software RAID: we 
demonstrate that the optimal solution is several RAID 
controllers each with a few SSDs and software RAID on 
top. Nonetheless, the ideal solution would be specialized 
RAID controllers built specifically for Flash SSDs. 

2. RAID 
RAID is a key and well-studied component of contemporary 
storage systems [1,2,12]. Depending on the redundancy and 
distribution mechanism there are multiple RAID levels [2] 
(0 through 6, and combinations). RAID 0 – non-redundant 



disk array employing striping; relevant for computing 
environments where the high performance and capacity are 
more important than reliability. RAID 1 employs mirroring 
as redundancy scheme; whereas RAID 10/01 divides discs 
into sub-arrays, employs striping across sub-arrays and 
mirroring within sub-arrays. Both RAID1 and RAID10/01 
are relevant for IO intensive OLTP applications. RAID 5 – 
block-interleaved distributed parity - is used for read-mostly 
applications  with large data volumes (e.g. Data 
Warehousing) or high data volume streaming applications 
(seq. write/read): random writes represent a significant 
bottleneck. Table 2 presents a simple analytical comparison 
in terms of IO patterns, according to the throughput/cost 
ratio and the number of individual requests. The cost is 
proportional to the number of disks. The throughput/cost 
ratio is a metric for the number of disks involved in the 
execution of a request from the respective request pattern. 
For example a small random write request on RAID10 
yields a synchronized write on the two mirrored disks in the 
respective sub-array. Hence throughput/cost=1/2. 

RAID 0 RAID 1 RAID 5 RAID10  
T/C R T/C R T/C R T/C R 

Small rand. read  1 1 1 1 1 1 1 1 
Small rand. write 1 1 1/2 2 1/4 4 1/2 2 
Large seq. read  1 D 1 D 1 D 1 D 
Large seq. write  1 D 1/2 2D (D-1)/D D+1 1/2 2D 
Storage efficacy 1 1/2 (D-1)/D 1/2 
Table 2: Simplified  throughput/cost comparison of different 

RAID levels. (D-number of disks in RAID array; T/C- 
Throughput/Cost; R- number of internal requests) 

Based on the present body of research and the above 
analytical model the following conclusions can be drawn:  

1. From Table 2 and [2] follows that writes (especially 
small random writes) are not a strength of RAID 
systems. In combination with the SSD properties 
(Section 4) this opens room for improvement.  

1. As pointed out in [2] RAID5 is supposed to be 
four times worse than RAID0 for small writes.  

2. In RAID10/01 and RAID1 writes generate 
twice as many synchronized single disk write 
requests.  

2. In [2] it is also assumed that the performance of 
throughput-oriented  RAID systems scales linearly with 
the number of devices. For HDD based arrays this is 
perfectly valid because in practice the single disk 
performance is the bottleneck.  

3. In some RAID configurations single disk requests need 
to be coordinated to execute a RAID request. Its latency 
is susceptible to the maximum device latencies and 
correlates to the number of disks participating in a 
request. This is especially true for small writes (cf. 1.2).  

4. To ensure comparable results for different RAID 
configurations use arrays with comparable effective 
volumes under the same workload [2].  

3. TEST SETUP, WORKLOADS AND 
EXPERIMENTAL SEARCH SPACE 
The tests performed throughout this paper have been done 
on two machines. Machine A has Intel Core 2 Duo E8400 
3GHz CPU with 4 GB RAM. Machine B is a 16 core server 
(four quad-core 2.3 GHz processors) with 64GB RAM and 
three enterprise-level RAID controllers with 512MB cache, 
and eight 10K RPM SAS HDDs with 16MB cache. The 
RAID controllers are Adaptec Series 5 (5085) with the 
following characteristics: PCIe x8 interface, dual-core 1.2 
GHz RAID-on-a-chip, 512MB controller cache; support for 
8 directly connected SAS devices (up to 256 through SAS 
expander). For economic reasons we performed experiments 
only with one type of RAID controllers. An analysis of the 
currently available controllers would show that (except for 
caching) they are compatible. However to ensure broad 
applicability of our findings we are in the process of 
validating our findings with other enterprise RAID 
controllers. Both machines run Windows 2008 Server R2. In 
addition we use an array of Intel X25-E/64GB enterprise 
SSDs. The single disk experiments (Section 4) are 
performed on machine A, the RAID experiments (Section 5) 
on machine B. As benchmark we use IOMeter 2008.06.18 
[6], because it can be instrumented to generate wide range 
of workloads. The latency, sequential and random 
throughput results (for workload (b) – see below) have been 
validated with Oracle Orion [7], to ensure database validity.  
All tests are done on raw devices/volumes (unless 
mentioned otherwise) to eliminate the influence of the file 
system.  

Workloads. We instrumented IOMeter with three types 
of workloads:  
a. workload latency - single requests, one load generator 

(worker), queue depth 1. It is used to measure the 
latency on a single drive and RAID configurations;  

b. workload light - one worker, 32 queue depth. It is used 
to measure the performance of a single drive or a lightly 
loaded RAID system;  

c. workload heavy - ten workers with queue depth of 16. It 
is used to measure the maximum performance of a 
heavily loaded RAID system.  
We always use stripe unit size of 64KB and enabled 

read and write caches. The software RAID experiments 
have been performed using the built-in Windows software 
RAID.  

Experimental search space. We aim to study the 
characteristics of SSD storage space built on RAID: 
sequential and random throughput as well as latency. Hence 
we cover the following experimental space using the 
workloads and the setup described above. (i) We study the  
single SSD throughput and latency characteristics with 
latency and light workloads. Based on these we can explain 



the behavior of SSD RAID systems. (ii) In a latency 
experiment we perform a comparative study of the latencies 
of different RAID configurations with the latency and light 
workloads. (iii) In a set of throughput experiments we study 
the sequential and random throughput of different RAID 
configurations. One question is to determine the maximum 
performance of a heavily loaded system using workload 
heavy and investigate RAID controller saturation. We 
examine also a lightly loaded system with workload light. 
Another question is to examine the throughput of  different 
RAID level configurations for the same effective volume 
(for comparability) or for the same number of drives. (iv) In 
a scalability experiment we study the scalability of RAID 
the controllers while varying number of attached SSDs 
(verify conclusion (2) Section 2). 
4. ENTERPRISE FLASH SSDs 
The performance exhibited by Flash SSDs is significantly 
better than that of HDDs (Table 1): low latency (Table 3.); 
very high random throughput (Figure 1); acceptable 
sequential performance (Figure 2); low power consumption. 
Flash SSDs, however, are not merely a faster alternative to 
HDDs; just replacing them does not yield optimal 
performance. Their specifics are due to the intrinsic 
characteristics of the NAND memory and their internal 
organization [9]. Below we shortly summarize them. 

 
Figure 1: Random throughput (IOPS) of a single SSD  

 
Figure 2: Sequential throughput (MB/s) of a single SSD 

(a) asymmetric read/write performance – the read 
performance is significantly better than the write 
performance – up to an order of magnitude (Figure 1, Figure 
2). This is a result of the internal organization of the NAND 
memory, which comprises two types of structures: pages 
and blocks. A page (typically 4/2 KB) is a read and write 

unit. Pages are grouped into blocks of 32/128 pages 
(128/512KB). NAND memories support three operations: 
read, write, erase. Reads and writes are performed on a 
page-level, while erases are performed on a block level. 
Before performing a write, the whole block containing the 
page must be erased, which is a time-consuming operation. 
The respective raw latencies are: read-55µs; write 500µs; 
erase 900µs. In addition, writes should be evenly spread 
across the whole volume (see longevity). Hence no write in-
place as on HDDs (see FTL). 

 Write Cache (WC)-ON Write Cache-OFF 
Sequential Read (SR)  53 µs  max 12.29 ms – 

Sequential Write (SW) 59 µs max 94.82 ms 455 µs 
Random Read (RR) 167 µs  max 12.41 ms – 

Random Write (RW) 113 µs max 100.68 ms 435 µs 
Table 3: Avg/Max latency of an enterprise SSD, block size 4K 

 (b) excellent random read throughput (IOPS) – 
especially for small block sizes. Small random reads are up 
to hundred times faster than on an HDD (Table 1). The good 
small block performance (4KB, 8KB) affects  the present 
assumptions of generally larger database page sizes. 

(c) acceptable random write throughput – small 
random writes are five to ten times slower than reads 
(Figure 1). Nonetheless, the random write throughput is an 
order of magnitude better than that of an HDD (Table 1). 
Due to the internal organization (write/erase cycle), random 
writes are an issue not only in terms of performance but also 
in terms of long-term effects due to fragmentation.  

(d) very good sequential read/write transfer. It is 
commonly assumed that HDDs are better for sequential 
operations. The newer generations of SSDs improve 
significantly (Table 1). Sequential operations are also 
asymmetric (Figure 2). However due to read ahead, write 
back and good caching the asymmetry is reduced (below 
25%).  

Mixed loads (read/write ratios and sequential/random 
ratios other than 100% or 0%, Figure 3) exhibit worse 
performance than pure ones due to: (i) the sequential pattern 
detection overhead for read ahead; and (ii) read/write 
asymmetry. These statements are best illustrated with a 
short example: consider the case of 33% read and 0% 
randomness (i.e. 33% of all requests are sequential reads, 
67% of all requests are sequential writes); the throughput 
amounts to 6605 IOPS. An attempt to derive this value from 
the respective pure loads (100% read, 0% random=25274 
and 0% read, 0% random=22559) would yield  0.33*25274 
+ 0.67*22559 = 23454 IOPS, which is far better than the 
measured 6605. 

(e) longevity – a memory cell can be rewritten a fixed 
number of times (between 100K and 1M); hence special 
wear-leveling algorithms are employed to increase the Mean 
Time Between Failures (MTBF) [9,10] to – 2x106 hours.  



 
Figure 3: Random throughput [IOPS], 8KB, different read/write and randomness ratios: (0%, 33%, 50%, 67% and 100%) read vs. 

write and (0%, 20%, 50% and 100%) random vs. sequential 

 
(f) Flash Translation Layer (FTL) is a sophisticated 

layer hiding the internals of the SSDs organization, making 
them behave like block devices and performing background 
processes to ensure normal operation. The FTL maintains a 
mapping between Logical Block Addresses (LBA) and 
Physical Block Addresses (PBA), which is organized as B-
Tree [13, 14] and stored on the NAND space. To ensure 
longevity the FTL performs wear-leveling moving the 
contents of an LBA to another PBA upon rewrite. Garbage 
collection is executed in the background consolidating the 
space and ensuring enough free erase blocks are available to 
avoid costly erase before writing. These processes are 
intricately designed to interfere as little as possible with the 
normal operation of the drive, but may sometimes lead to 
substantial delays (Table 3). The performance dependence 
on seek time of HDDs is a well studied phenomenon. The 
performance variance of SSDs due to internal specifics is 
significantly higher and deserves special attention. 

Command Queuing (CQ) is an IO optimization 
technique implemented for both enterprise HDDs (TCQ on 
SAS) and enterprise SSDs (NCQ [8], SATA2 SDDs). CQ is 
very beneficial for small random reads, where doubling the 
queue depth (up to eight commands) doubles the throughput 
while keeping the latency almost constant, below 0.28 ms 
(for 8KB block size). The reason for this is the better 
utilization of the internal SSD parallelism and request 
interleaving. There are significant benefits for SR or SW 
because they translate to read ahead or write-back.  

Last but not least the performance of state-of-the-art 
enterprise SSDs is dependent on (a) fragmentation (affecting 
the performance of SR and RW of up to 50%) and (b) on the 
total used space (in addition affecting SW to the same 
degree). Hence the performance especially the write 
performance degrades over time. Because of space 
limitations we do not elaborate further on those.  
5. SSD RAID CONFIGURATIONS 
As already pointed out (Table 1) the benefits of the RAID 
technology come at a high price. Here we study in detail the 

latency and random and sequential throughput for different 
RAID levels. We measured the random throughput of 
equally configured HDD and SSD arrays running the 
workload heavy (Table 4). Under certain conditions these 
numbers can go as high as 30x and 10x respectively.  

Throughput. In order to determine the maximum 
performance for different RAID levels we run workload 
heavy on a maximum configuration eight SSDs on a single 
controller configured for RAID levels 0, 5, 10. (Comparable 
experiments could  not be performed on RAID1 because the 
RAID software allowed only RAID1 over two devices). The 
results for the sequential (Table 6) and random throughputs 
(Table 5) represent average values of three experimental 
runs, with standard deviations from 7% to 25%. These 
values can be attributed to fragmentation effects (Section 4). 

 RAID0 over 4SSD RAID5 over 5SSD RAID10 over 4SSD 
 Read Write Read Write Read Write 
SSD 20 000 8 000 21 000 5 111 21 000 6 300 
HDD 1 200 1 100 1 700 1 600 1 150 1 050 
speedup 17x 7x 13x 3x 19x 6x 

Table 4: Comparison of heavily loaded HDD and SSD RAID 
systems. Random throughput [IOPS] for 8KB block size. 

 
 RAID0 IOPS RAID5 IOPS RAID10 IOPS 
Blocksize Read Write Read Write Read Write 

8KB 19294 7807 20913 5111 20317 6345 
16KB 16852 6216 15607 4215 17226 4612 
32KB 13135 4625 12270 2588 13614 3084 
64KB 9300 3651 9935 1991 10140 2074 
128KB 5591 1798 5115 1030 5292 887 
256KB 3119 701 2859 442 2739 436 

Table 5: Random Throughput [IOPS] vs. RAID level 
 

 RAID0 MB/s RAID5 MB/s RAID10 MB/s 
Blocksize Read Write Read Write Read Write 
8KB 199 229 166 236 175 223 
16KB 331 350 282 368 293 336 
32KB 504 498 436 513 456 462 
64KB 629 621 621 627 617 584 
128KB 669 646 672 683 665 662 
256KB 685 645 684 702 677 683 

Table 6: Sequential Throughput [MB/s] vs. RAID level 
 



Clearly workload heavy saturates the controller. Under 
such conditions the random throughput of all RAID levels is 
similar (Table 5). It is also evident that random read/write 
asymmetry exists in SSD RAID configurations with read-to-
write ratios similar to that of single SSDs. The random and 
sequential throughput is below the expected value (the sum 
of single SSD throughputs is higher) hence there is a 
bottleneck along the IO chain. This contradicts the 
assumption that the performance of throughput oriented 
systems scales linearly with the number of drives 
(assumption (2), Section 2). The sequential write 
performance is surprisingly a bit better, which is entirely 
due to RAID controller battery powered cache. We 
performed the very same experiment on arrays of fixed 
effective volume of approx. 240GB. This means 4SSD for 
RAID0, 5 for RAID5 and 8 for RAID10. We obtained very 
similar results, which indicates scalability problems. We 
investigate this claim in Section 6. 

 Random Throughput [IOPS] 
 1 SSD RAID0 4SSD RAID5 5SSD RAID10 8SSD 
BS Read  Write  Read Write Read Write Read Write  
4KB 35511 5953 24787 10193 20639 5291 24396 7468 
8KB 22738 4833 20987 6289 19255 3732 22273 4652 
16KB 12743 3665 20054 4135 16718 2482 16320 4144 
32KB 5646 1141 14376 3218 13423 1908 12868 3083 
64KB 2804 292 9042 2250 7966 1243 8939 1775 
128KB 1650 148 4850 1185 5018 591 5147 921 
256KB 721 85 2484 556 2584 303 2619 475 

Table 7: Random throughput workload light, volume=240GB 
 

 Sequential Throughput [MB/s] 
 1 SSD  RAID0 4SSD RAID5 5SSD RAID10 8SSD 
BS Read  Write  Read Write Read Write Read Write  
8KB 196 110 291 295 210 110 343 117 
16KB 239 159 482 311 427 175 445 173 
32KB 248 177 614 351 524 218 588 221 
64KB 248 184 681 372 640 265 685 249 
128KB 252 190 678 382 673 300 688 274 
256KB 252 190 672 397 671 323 690 295 
512KB 252 190 670 398 679 346 692 313 
1024KB 252 190 665 398 683 348 690 311 

Table 8: Sequential throughput, workload light, volume=240GB 

For a fair RAID comparison we re-measured the 
throughput, on fixed effective volume configurations 
(vol.=240GB) with workload light (Table 7, Table 8). For 
comparison we also show the single SSD data. Workload 
light loads the system only moderately, in terms of 
outstanding IO operations (only 4 per SSD) and in terms of 
parallelism (single worker/load generator instead of ten). 
The results show that (a) the general RAID comparison 
conclusions apply (cp. Table 2) but the SSD-intrinsic 
asymmetry is also to be considered. For instance RAID5 
offers the worst random write but a good random read 
performance; RAID 0 offers the best performance followed 
by RAID10. (b) severe scalability issues occur because 
single SSD outperforms a RAID5 configuration over 5 
SSDs. The throughput exhibits clear asymmetry. Even with 
light load the read throughput of all configurations is 
comparable, which indicates saturation (Section 6). 

Striping. Using the maximum performance workload heavy 
we went on to perform RAID0 experiments to determine a 
reasonable stripe unit size (Figure 4). The general principles 
of stripe size selection [1,2] hold: (a) lower stripe unit size 
yields higher transfer performance; (b) larger stripe size 
results in more requests executed in parallel.  

Two conclusions can be drawn based on Figure 4: (1) 
Clearly there is less performance improvement from 
increasing the stripe size beyond a certain limit (the curves 
on all graphs flatten); (2) Sequential writes of block sizes 
larger than the erase block size (128KB and 256KB)  
deteriorate with larger stripe sizes. Our explanation for this 
is that the stripe unit size (which is the amount of data read 
and written to and from a single SSD for this type of 
sequential operations) hits the boundary of an erase block. 
Hence, a single stripe-unit write results into several 
sequential writes on the same SSD which lowers the 
performance significantly. With smaller stripe unit sizes the 
writes will be spread across multiple devices. The same 
effect occurs in the random case; due to the randomness the 
load is equally balanced on all SSDs hence there is no 
performance penalty. Thus empirically stripe-unit sizes such 
as 64KB (lower than an erase block size) seem optimal for 
SSD RAIDs. 

Latency. Finally, we investigate the response times (Table 9 
and Table 10) for random and sequential read and write 
operations using workload latency on fixed volume 
configurations to ensure the comparability of results. As a 
baseline we provide the single SSD latencies for the same 
workload (and Table 2 for the number of requests). 
Generally, in RAID configurations we observe sub-
millisecond random latencies, which is a significant 
performance improvement over HDD configurations. 
 1 SSD RAID0 4SSD RAID5 5SSD RAID10 8SSD 

BS Write Read Write Read Write Read Write Read 
4KB 0.125 0.161 0.204 0.353 0.457 0.377 0.233 0.302 
8KB 0.424 0.250 0.220 0.429 0.427 0.442 0.239 0.369 
16KB 0.477 0.294 0.254 0.485 0.468 0.494 0.279 0.420 
32KB 0.491 0.374 0.353 0.560 0.645 0.565 0.384 0.502 
64KB 0.964 0.558 0.572 0.692 0.938 0.703 0.624 0.632 
128KB 1.998 0.797 0.956 0.848 1.754 0.872 1.050 0.788 
256KB 4.145 1.557 1.737 1.015 3.210 1.045 1.789 0.953 

Table 9: Average latency of random operations in[ms].  

Table 9 shows that small random writes are less 
expensive than small random reads (except for RAID5) due 
to the write-back functionality of the controller. This 
tendency is reverted for block sizes larger than a stripe-unit 
size (64KB) because of the coordinated operations on 
different drives. Since a read request is served by a single 
drive (block size less than a stripe-unit size), we can gauge 
the controller overhead by subtracting the read latency from 
that of a single drive. The read overhead is around 0.2 ms, 
which is substantial compared to single drive latencies. Due 
to the write-back functionality of both the controller and the 
drives it is difficult to draw precise conclusions about the 
write latency.  



  
(a) Stripe size vs. Random Read (b) Stripe size vs. Random Write 

  
(c) Stripe size vs Sequential Read (d) Stripe size vs Sequential Write 

 

Figure 4: Sequential and random throughput vs. stripe unit size 

While the average latencies are very low, the measured 
maximum latencies are surprisingly high and frequent. They 
range between 200ms and 450ms and are due to single SSD 
outliers (Table 3) and RAID request synchronization (Sec. 
2, 4). Sequential latencies (Table 10) are naturally lower 
than the random latencies due to read-ahead and write-back. 

 1 SSD RAID0 4SSDs RAID5 5SSDs RAID10 8SSDs 
BS Write Read Write Read Write Read Write Read 
8KB 0.072 0.064 0.153 0.237 0.154 0.275 0.107 0.178 
16KB 0.107 0.093 0.178 0.271 0.181 0.345 0.130 0.213 
32KB 0.173 0.152 0.229 0.336 0.240 0.472 0.180 0.284 
64KB 0.329 0.282 0.327 0.467 0.335 0.663 0.282 0.412 
128KB 0.653 0.529 0.474 0.535 0.497 0.742 0.431 0.485 
256KB 1.308 1.062 0.743 0.743 0.808 0.910 0.783 0.694 
512KB 2.632 2.115 1.382 1.168 1.587 1.443 1.567 1.169 
1024KB 5.314 4.249 2.742 2.032 3.170 2.367 3.201 2.058 

Table 10: Average latency of sequential operations in [ms].  
The overhead varies depending on the RAID level. For  RAID0 it 
is 0.18ms. Due to the write cache and write-back for block sizes 
smaller than the stripe-unit size the write latency is lower than the 
read latency. The maximum sequential latencies are between 

100ms and 200ms again due to single SSD outliers and RAID 
request synchronization. 

6. SCALABILITY 
The results discussed in Section 5 (and substantiated by 
others [5]) indicate that the RAID controller is (a) the 
performance bottleneck and that (b) it exhibits scalability 
issues. In this section we investigate these two claims.  

Clearly there is a bottleneck along the IO chain, which 
may either be the RAID controller or the PCIe bus. An 
experiment was designed to investigate this. Machine B has 
8-lane PCIe ports with theoretical throughput of 20Gb/s 
(PCIe is optimized for high data transfer rates). We 
determined the effective throughput on the PCIe bus using 
DTrace under OpenSolaris 2009, measuring the PCIe 
utilization for sequential (1MB) and random (0.5KB) reads 
with workload light over four SSDs (Table 11). The results 
show that: (a) the PCIe bus is utilized below 50% of its 
capacity; and (b) the SSDs can ideally provide more 
throughput. Thus the controller is the bottleneck.  
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BS MB/s IOPS PCIe x8 
utilization 

Theoretical throughput 
RAID0 (SingleSSD x 4) 

1024 KB 694 694 33% 252 MB/s x 4 = 1008 MB/s 
0.5 KB 33 67145 45% 59540 IOPS x 4= 238160 

Table 11: PCIe x8 utilization 

The next question is: with how many SSDs is the 
controller saturated? Using workload heavy we measure the 

random and sequential read/ write throughput of a RAID0 
configuration varying the number of SSDs. RAID0 is used 
because it offers the best performance and less restrictions 
on the number of SSDs.  

  
(a) random read throughput (b) random write throughput 

  
(c) sequential read throughput (d) sequential write throughput 

  
(e)Avg. Random Latency, 8KB (f) sequential write throughput-WC Off 

Figure 5: Sequential and random throughput vs. SSDs 

 



Figure 5(a) and (b) clearly show the saturation for 
random operations. With small blocksizes (8KB) two SSDs 
are enough to saturate the controller. There is a dependence 
on the block size, but generally with four to five SSDs the 
controller can be completely saturated.  

Figure 5 (c) and (d) show the sequential throughput 
versus the number of drives. Conclusions similar to the ones 
already drawn apply. The read throughput is dependent on 
the blocksize. Due to mechanisms such as read-ahead for 
small blocksizes two SSDs are enough. Four to five SSDs 
are enough to reach the maximum performance. It may 
seem that for sequential write operations the controller is 
saturated completely even with two SSDs, but that is 
entirely due to the write cache. To substantiate this claim we 
re-performed the experiment without write-cache (Figure 
5(f)). The write performance increases linearly with the 
number of SSDs. 

To get a complete picture of the scalability test it is 
important to investigate the latency of the different levels in 
the same manner (Figure 5(e)). While the read latency is 
only marginally dependent on the number of drives there is 
significant dependency on the write latency. From the 
throughput/cost perspective saturation is reached with 2 
SSDs per controller. Once saturated the throughput does not 
improve with more drives, but the latency improves 
significantly up to 4 or 5 drives per controller. 

7. SOLUTION ALTERNATIVES 
Given these conclusions, how can we efficiently attain the 
storage space needed by database systems? A very viable 
alternative to pure hardware RAIDs is a combination of 
hardware and software: (Option A) the devices are 
connected directly (no RAID controller) with software 
RAID on top; (Option B) eliminate the RAID functionality 
and use the controller as a simple device aggregator while 
running software RAID on top; (Option C) use simple 
RAID levels on multiple RAID controllers while running 
software RAID on top. The use of software RAID is 
coherent with the present hardware trends of multi-core 
architectures and faster interconnect: on most servers a 
processor core can be dedicated to run RAID software and 
do better than any RAID system-on-a-chip.  

 
Hardware  
RAID0 

Hardware RAID0 
with filesys. (FS) 

Software RAID0  
with FS 

Software RAID0 
on JBODs with FS 

Software RAID0 on 
S.Volumes with FS 

BS  Read  Write  Read  Write  Read  Write  Read  Write  Read  Write 
   Random Throughput 

4KB  24678  7532  25272  10335  12308  6197  27069  5975  27793  10317 
8KB  20489  3356  20435  4775  7895  2452  25276  2655  26208  3461 
16KB  16954  2848  17007  4616  6298  2387  21210  2992  19134  3395 

   Sequential Throughput 
128KB  452.3  334.5  469.4  339.6  417.4  359.9  429.3  183.2  523.6  344.5 
256KB  451.0  339.4  468.9  340.3  438.8  365.1  454.1  188.5  523.5  343.4 
512KB  454.2  340.7  469.3  340.2  446.5  371.4  488.1  191.2  523.4  344.2 
1024KB  456.0  341.4  467.2  339.8  449.7  377.3  505.3  191.1  523.7  344.7 

Table 12:Sequential  and random throughput RAID0 

We investigate Option A by performing software 
RAID0 tests over two SSDs on machine A.  We compare 
those with the Option B (Table 12), machine B. Since 

IOmeter and Orion do not recognize the software RAID 
volume as raw devices, file system experiments were 
performed. Option B has two variants: (a) JBOD mode (Just 
a Bunch of Drives) – devices are exposed as they are; (b) 
Simple Volume – devices are exposed as they are (without 
RAID functionality) but with caching and CQ. 

Clearly the best performer is software RAID0 on simple 
volumes. It combines the better command queue 
management and the cache of the controller with the 
software RAID on the faster CPU. This is because the CPU 
can handle better the concurrency required to coordinate the 
single volume operations, while the controllers handle 
caching and command queuing. Interestingly enough 
RAID0 on raw device is slower than RAID0 with file 
system (Table 12). The result can be explained with the file 
system cache and the better asynchronous IO support on file 
system level, which results in better command queuing. 

 
    1 Controller  2 Controllers  

   
Hardware 

RAID0, 4 SSDs 
Software RAID0, 
4SSDs, S.Vol. 

Software RAID0, 
2 SSDs/Ctlr,hw RAID0 

Software RAID0 
2 SSD/Ctlr S. Vol. 

Quantity  BS  Read  Write  Read  Write  Read  Write  Read  Write 
256KB  672  397  671  462  1033  762  1031  684 Seq. through‐

put [MB/s]  512KB  670  398  674  468  1039  760  1030  687 
                   

Sequential  256KB  0.743  0.743  0.688  0.711  0.772  0.512  0.531  0.461 
Latency [ms]  512KB  1.168  1.382  1.152  1.254  1.303  0.913  0.877  0.791 

                   
4KB  24787  10193  27675  11704  44537  19529  49054  22512 Rand.through‐

put [IOPS]  8KB  20987  6289  25417  10575  41091  13657  44129  13765 
                   

Random  4KB  0.353  0.204  0.277  0.120  0.282  0.114  0.277  0.109 
Latency [ms]  8KB  0.429  0.220  0.365  0.196  0.334  0.161  0.332  0.138 

Table 13: Two controller experiments 

With the best performing alternative selected, we 
investigate the performance of solution Option B and C over 
two controllers with two SSDs (Table 13). Clearly the 
second controller and software RAID have a profound effect 
on performance. The sequential throughput increases by 
40%. The random throughput doubles. The read and write 
latencies improve by 30% and 40% respectively. Please note 
that the sequential case loads the drives at their maximum. 
With 4 SSDs per controller the sequential and random 
throughputs double compared to the baseline case of 8 
SSDs and a single controller (Table 14). 

Since software RAID implementations utilize the main 
CPU and part of the lower layers of the OS we examine the 
system-time overhead (Table 15(a)). The data complements 
the results presented in Table 13. We report the average 
system-time per core and the CPU overhead of the software 
RAID on Machine B (16 cores). All in all, we see a low 
CPU overhead: at most 20% for random read and sequential 
read and write. Interestingly, random writes offload the 
CPU causing negative overhead (-0.57% per core). This is 
the superimposed effect of two factors, both of which affect 
the CPU utilization: IO wait time and software RAID CPU 
overhead. The software RAID on simple volumes yields 
lower response times, and lower IO wait times. Although 
the CPU is moderately loaded with software RAID it is 
offloaded with waiting time. For sequential operations the 



CPU is more loaded for read and write, which is due to the 
smaller cache per volume provided by the RAID controller. 
    1 Controller, 8 SSDs  2 Controllers, 4SSD/Controller 

    Hardware RAID0  Software RAID0, Simple Volumes 

Quantity  BS  Read  Write  Read  Write 

256KB  672  397  1349  881 Seq. through‐
put [MB/s]  512KB  680  398  1350  891 

           

Sequential   256KB  0.751  0.752  0.606  0.664 

Latency [ms]  512KB  1.195  1.419  0.742  0.997 

           

4KB  24828  10198  51164  23661 Rand.through‐
put [IOPS]  8KB  23040  9032  46156  21372 

           

4KB  0.366  0.169  0.276  0.106 Random 
Latency [ms]  8KB  0.428  0.182  0.330  0.116 

Table 14: Two controller experiments, 8SSD total 
  Random Operations – blocksize 4KB 

 
HW RAID0 
1 Ctrl, 4SSD 

SW RAID0,2Ctrl. 
2SSD/ctrl, s.vol 

HW. RAID5 
1 Ctrl, 8SSD 

SW RAID5,2Ctrl, 
4SSD/Ctrl.,S.Vol. 

  Read  Write  Read  Write  Read  Write  Read  Write 
IOPS  24787 10193  49054  22512  20556  3666  50329  7695 
%Sys.Time  7.526  5.658  8.255  5.087  6.958  2.322  8.976  6.185 

   ‐                 0.73%           ‐            2.00%   CPU  
Overhead       ‐               ‐0.57%    ‐     3.86% 
  Sequential Operations – blocksize 512KB   
MB/s  670  398  1030  682  682  314  1364  495 
%Sys.Time  2.206  1.209  3.213  2.029  2.134 1.041  4.715  19.280 

‐    1.01%    ‐    2.58%   CPU  
Overhead    ‐     0.82%    ‐     18.24%  

       

BS 
Write 
MB/s 

AVG  
Latency 

% Sys.  
Time 

8KB  119  2.1  8.9 
16KB  183  2.7  9.7 
32KB  289  3.5  13.2 
64KB  396  5.1  18.3 
128KB  471  8.5  23.9 
256KB  496  16.1  24.8 
512KB  495  32.3  19.3 
1M  491  65.2  18.7  

(a) different RAID configurations (b) RAID5 
Table 15:  System time and CPU overhead per Core 

The experiments with RAID 5, which is a CPU 
intensive RAID level, show a different picture (Table 15). 
As expected, the performance is twice as good with CPU 
overhead 2% to 3% per core. The highest CPU overhead - 
18% (per core) is measured with sequential write. It 
increases with the blocksize (Table 15(b)) and is clearly due 
to the computation of parity. Due to effects described in 
Section 5 Figure 4(d), beyond a certain blocksize/stripe-
unit-size ratio the SSDs become the write bottleneck, the 
write latency increases and hence the system time decreases. 
8. CONCLUSIONS 
The performance of SSD RAID configurations is strongly 
affected by current RAID controllers that are not designed 
for the characteristics of SSDs and rapidly become 
performance and scalability bottlenecks. The SSD 
read/write asymmetry is amplified due to traditional RAID 
write behavior. We observe that SSD storage can offer both 
good sequential and random throughput. Clearly concurrent 
support for multiple blocksizes is needed in database 
systems to make optimal use of it. The RAID technology 
amplifies the SSD-intrinsic asymmetry. The throughput is 
complemented by average latencies that are in the sub-
millisecond range. However frequent single SSD outliers 
lead to high maximum response times. Erase block sizes 
influence the choice of a stripe unit size. The most 
promising results for host-based storage can be achieved 
with software/hardware hybrids over several RAID 
controllers with a few SSDs.  
To recapitulate - the ideal solution would nonetheless be a 
new breed of RAID controllers specially designed for SSDs 

and their characteristics. The SAS/SATA2 interface is 
becoming a bottleneck for the SSDs. At present we are also 
observing a shift towards PCIe based interfaces, where 
RAID controllers cannot act as “device aggregators”. We 
therefore speculate that software RAID-approaches or 
cooked storage where operating system controls every 
device individually and cross-balances the load are also to 
be considered. 
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