
Directions and Challenges for Semdata

Orri Erling
OpenLink Software

10 Burlington Mall Road, Suite 265,
Burlington, MA 01803, U.S.A.

oerling@openlinksw.com

ABSTRACT
The data driven world is here. What will RDF’s place
therein be? In this paper, we explore the inevitable coming
together of RDF, analytic oriented databasing, web scale
computing and reasoning. To warehouse, analyze, publish
and subscribe to anything anywhere, draw conclusions and
distill knowledge. This is the challenge.

As a first part of a response, we show how we attain a
space consumption of just under 6 bytes per quad of RDF
data extracted from the archetypal TPC H benchmark data
set and how we get comparable query times with the data
stored in relational and RDF forms in Virtuoso. This is
achieved with a new column-wise compressed storage sub-
system to be at the core of later Virtuoso releases. This
represents a more than fourfold improvement over previous
RDF space efficiency. While RDF scalability in absolute
terms has been resolved with the advent of many cluster
capable RDF stores, the advances outlined here radically
reduce the cost of RDF when compared with its technolog-
ical alternatives.

We then look at ways of synchronizing RDF data sets
across wide area distances and at ways of keeping RDF ex-
tractions of local relational data up to date.

We conclude with a preview of research to be undertaken
in LOD2, a EU FP7 project starting in the fall of 2010.
Among other topics, this will address RDF exploitation of
many relational techniques pioneered at in MonetDB at
CWI, one of the project partners.

On the basis of all this, we are confident that RDF will
strengthen its role in the coming data economy.

1. INTRODUCTION
This paper is divided in four parts. We first discuss the

general challenges encountered by semantic data manage-
ment, specifically in relation to the database world. We then
show progress towards RDF to relational performance par-
ity in the context of a column-wise storage model recently
developed for OpenLink Virtuoso. We then discuss means of

To copy without fee all or part of this material is permitted only for private
and academic purposes, given that the title of the publication, the authors
and its date of publication appear. Copying or use for commercial purposes,
or to republish, to post on servers or to redistribute to lists, is forbidden
unless an explicit permission is acquired from the copyright owners; the
authors of the material.
Workshop on Semantic Data Management (SemData@VLDB) 2010,
September 17, 2010, Singapore.
Copyright 2010: www.semdata.org.

keeping RDF collections synchronized with other RDF col-
lections or relational sources from which they are extracted.
Finally, we outline some research directions that will be ex-
plored in LOD2, an EU FP 7 research project slated to start
in the fall of 2010. As of this writing the project is awaiting
final signature by the EC.

2. ON RDF AND DATABASE
The database and RDF communities have traditionally

been largely separate, with some database cross-overs into
RDF[16][2]. The present VLDB workshop marks a welcome
and much needed rapprochement.

The triple is not the exclusive property of the RDF world.
With other Entity Attribute Value / Class Relationship
(EAV/CR) models such as Microsoft Odata and Google
Gdata, the convergence and inter-operation of RDF and
these models is both necessary and inevitable. With Linked
Open Data enjoying continued adoption for structured in-
formation publishing and interchange, the data analysis
game is changing.

In addition to an organization analyzing its own data in
its own schema for operational insight, we find increasing
opportunities for enriching private data with open source
data. Not only is the volume growing but so is the diversity
of schema, driving a demand for richer and more explicit
semantics. The database and semantic worlds meet.

We have seen platform as a service, PaS, software as ser-
vice, SaS, and are now beginning to see data as service, DaS.
The dream career of every age is a rare skill that creates
value from something that is plentiful in the environment.
Today this skill is making sense of data.

To seize this opportunity, the RDF world needs to be-
come database-credible. This involves comparable efficiency
with alternative designs, with competitive edge brought by
richer semantics and querying together with vocabulary
reuse. This also involves mastering the data publishing and
consuming game. If extract-transform-load (ETL) was and
still is an enterprise-scale challenge, its DaS counterpart is
a web-scale system of publish-subscribe streams among het-
erogeneous systems operating under separate management.

In subsequent sections we present some intermediate re-
sults on how we address these matters in OpenLink Virtu-
oso.

Looking further at the meeting of semantics and data,
we might speak of a semantic mindset and of a data mind-
set; The data mindset is typified by Martin Kersten’s state-
ment to the effect that IFs inside loops kill performance,
or Michael Stonebraker’s 1998 statement that “no practical



application of recursive query theory ... have been found
to date.”[17]. The semantic mindset would consider non-
recursive structures as trivially uninteresting and would con-
sider cache efficiency as “beyond the scope of the paper”,
while it is in fact the case that caching is the one reason
why anything in computers works even as well as it does.

What is the basis of such apparent polarization when both
camps are talking about data? Maybe the fundamental as-
sumption of the database mindset is that we are dealing with
large homogeneous sets with a separate schema, whereas the
fundamental assumption of the semantic mindset is that we
are dealing with a unique individual. In does not matter
whether the individual is in a class or instance role, as it
can be in both at the same time.

When these worlds converge, the semanticist discovers
that the individuals in fact are alike enough for database
precepts to apply, whereas the databaser discovers that not
every element of the set is exactly alike. As an example of
the latter, we have found row-by-row run time data typing
of columns to be very useful.

But talking of the differences of semanticist and databaser
attitudes is needlessly insular. Both camps find themselves
in a much wider context.

The wider world of web scale witnesses the emergence
of alternative database designs that no longer originate in
the RDBMS community and of programming models such
as map-reduce. The senior guard of database may regard
these things as yesterdays news, “been there, done that,”
not entirely without justification. This is not however the
mood of the web generation, for which these things solve
actual issues.

The Berkeley Orders Of Magnitude (BOOM)[18][1] project
has a very promising outlook on scalability in general, bring-
ing together massive parallelism on cloud platforms and rule
languages for tackling web scale problems. Massive data
meets logic and distributed computing.

For implementors of parallel RDF databases, it is quickly
clear that a system of distributed rules a la BOOM is not
fundamentally different from distributed query execution.
The same universal principles are encountered from so many
different angles. This points the way to tighter integration
between reasoning, querying and storage. Today’s stand-
alone paradigm of map-reduce appears in this setting as a
special case that can be tackled inside a fundamentally more
expressive system.

We see some beginning of integration in Vertica with map-
reduce and map-reduce -like SQL extensions in Virtuoso and
Greenplum. More development in this direction, now also
encompassing declarative reasoning seems the way of the
future.

3. IT’S ALL ABOUT SIZE
Optimization of I/O cost has for a long time been an im-

portant topic in databases, initially in the context of reduc-
ing disk I/O and more recently in optimizing traffic between
CPU cache and RAM. The surest obstacle to performance
parity between RDF and relational models is a radical dif-
ference in space consumption. It is true that disk is virtually
free but it is even more true that the relative cost of disk
access compared to memory based operations only keeps
growing. This is the root of the problem and we believe
that any solution must start with addressing this. Scala-
bility of RDF storage is no longer a problem in absolute

terms, as there are a number of cluster capable stores (Vir-
tuoso[10], OWLIM[11], Bigdata[12], 4store[13] to mention
a few). However, when data volumes get into tens of bil-
lions of triples, the cost of equipment becomes significant if
one is to maintain a reasonable ratio or RAM and database
size. Further, at today’s prices, memory is the single most
expensive part of a server for running databases. If RDF
is to break out from its specialty niche and become an al-
ternative for data integration and business intelligence in a
broader sense, it needs to compare reasonably with alterna-
tives. RDF is a needlessly hard sell as the data warehouse
model if the equipment cost is 4 times that of the relational
equivalent. The cost is non-trivial if we are talking tens or
hundreds of terabytes.

In this section we show how TPC H data translated to
RDF offers storage and query efficiency comparable with
its relational form. The RDF purist might argue that this
is unfair and that true RDF applications will not have the
regular structure of TPC H. We argue in turn that much
data is in fact regular, as it originates with relational sources,
sensor networks or automatic information extraction. The
point of RDF is that schema can evolve record by record, the
point is not that each record will have a different schema.

3.1 RDF Indexing Row- and Column-Wise
Column-wise storage has for some time been the preferred

storage architecture for relational analytical workloads. It
is only intuitive to realize that RDF itself is a property-
centric representation. From this there is only a short step
to making the physical fact reflect this insight.

To this effect, we have built a column-wise storage engine
to complement Virtuoso’s existing row-wise representation.
This will be a key component of Virtuoso 7, to be released
at a future date. The column store can be applied equally
well to relational and RDF data.

We begin by indexing RDF quads as two covering indices,
first sorted on PSOG and the other sorted on POGS. We
refer to the parts of an RDF quad by their customary ab-
breviations of (P)redicate, (S)ubject, (O)bject and (G)raph.
These covering indices will efficiently answer queries where
either PS or PO are specified, optionally filtering on G also.
For queries where P is unknown, we do wish to avoid a full
index scan but we do not wish to store the whole quad yet
again. Hence we make sorted projections with distinct val-
ues of SP, OP and GS. These indices have much fewer entries
than a covering index with all 4 columns would have and are
therefore much more compact. For example, a query looking
for quads with only G specified first looks in GS for S, then
in SP for P, then in PSOG for the actual quad. There are ex-
tra join steps but considerable space is saved. Further, these
indices do not enter into evaluation of typical relational-like
queries, since in these the predicate is by definition speci-
fied. Therefore these indices will enter the working set only
when queries make use of expressivity specific to the RDF
model.

3.2 RDF Indexing in Virtuoso
In Virtuoso, the O column is typed at run time, hence

small scalar values, e.g. all numbers and dates, are inlined
in the index, thus supporting range lookups with the native
collation of the data type. Strings are given unique integer
ID’s. This is done in part for saving space, in part because
a unique ID for strings is needed anyhow when keeping a



Table 1: 1G TPC H Space Consumption

Row-Wise Column-Wise
Relational
Tables 127077 80469
Indices 10389 10335
Tables w/o l comment and ps comment 45224
RDF
PSOG index 282789 39670 + 168
POGS index 104684 39287 + 152
SP index 52314 20441 + 68
OP index 27767 7121 + 14
GS index 152 148 + 1
All 5 indexes 467706 107070
(bytes per quad) (25.96) (5.94)
All 5, if P specified 387473 79277
(bytes per quad) (21.50) (4.40)
IRI to string dictionary 43615 43615
String literal dictionary 8381 8381

The sizes are measured as counts of 8Kb pages,
column-wise RDF numbers are column size + top level

index.

full text index of these strings, which is the case in most
Virtuoso deployments.

This index scheme has been implemented with both row-
wise and column-wise stored multipart indices. A row-wise
index entry uses key compression where 2 bytes are stored
for an 8 byte value if there is another value of the same
column on the page that is less than 16 units away. Thus
most IRI ID’s are stored as 2 byte values since these are
often repetitive and fairly densely spaced. Further, if the
last key part is an integer or IRI ID, a bitmap can be used
for representing closely spaced values. The bitmap is either
a physical bitmap or an array of integer deltas. Thus one
index entry covers many entries which differ only in their
last key part. Use of bitmaps accounts for the fact that the
POGS index is smaller than the PSOG index.

The column-wise representation starts with a row-wise
sparse index with one entry per every few thousand rows.
The set of rows per entry of the top level index is called a seg-
ment. The columns in the segment are then stored contigu-
ously in any number of compression entries. These compres-
sion entries are stored on pages, with each column of a seg-
ment consisting of an integer number of compression entries.
Each compression entry specifies the compression. Com-
pression types include run length, run length with deltas,
integers with deltas, dictionaries, arrays of fixed length in-
tegers, arrays of variable length items. Compression entries
like integer arrays and “run length + delta” enforce a ho-
mogeneous data type on the content whereas other formats
like dictionary and variable length array allow for run time
types.

In this way, there is no need to declare data types or pre-
ferred compression formats since the data at hand always
determines what compression is applied. Also overheads as-
sociated with run-time typing are incurred only in the actu-
ally few cases where heterogeneous types occur next to each
other.

Compression works best when contiguous values come
from the same property, hence there is an extra benefit to
having P as the leading key part in the RDF indices.

Relational column stores like MonetDB store each column

of a table as a separate two-column table, called binary as-
sociation table (BAT). This table maps a synthetic row id to
the corresponding value of the column in question. Since the
row ids are most often ascending sequences of integers, the
ids themselves do not have to be stored. Our RDF scheme
essentially replicates this structure, except that in the place
of a single integer key with one dependent value we have a 4
part composite key. Three of these four key parts essentially
fall away in compression. The P is generally a run length
since it is the first ordering column and has a low cardi-
nality. The S is either a bitmap or a delta + run length
representation, depending on whether the property is single
valued or multi-valued. The O is compressed as it would be
in the relational column store. The G is again a run length
because G generally does not vary. If we had a high car-
dinality of G, the column might not compress away but it
still would not have to be read in memory unless the query
actually specified it, which most queries in our experience
do not.

Virtuoso as a relational column store does not favor stor-
age as binary association tables a la MonetDB but rather
uses sorted multi-column projections similar to CStore and
Vertica. Such a projection is exactly like a row-wise table
with the dependent part stored at the index leaf, except that
now each row corresponds to a segment of several thousand
column-wise compressed rows.

A central reason for using sorted multi-column projec-
tions instead of BAT’s was the need to have multipart keys
that can be partitioned on key column values, thus not on
synthetic row id’s. This is necessary in a cluster situation
with RDF: If we know the predicate and subject, we wish to
know based on these alone which partition stores the object,
without needing to pass via a synthetic row id.

4. TPC H EXAMPLE
To illustrate space consumption with different storage for-

mats, we take the TPC H[14] qualification database, scale
factor 1, consisting of approximately 1Gb.

The row-wise and column-wise relational representations
are loaded directly from the TPC H qualification data.
The index schemes are TPC H compliant, with indices on
l partkey, o custkey and c nationkey.

The RDF representation of the same data is generated by
mapping each table to a class and each column to a property.
Each row of each table gets a unique IRI consisting of the
table name and string representation of the primary key
value(s). Additionally, foreign keys like l partkey are given
an extra IRI-valued property has part which references the
part by IRI. Thus the triple count is somewhat higher than
the count of rows multiplied by columns, resulting in 147.5
million quads.

This mapping is then materialized as row-wise and as
column-wise stored RDF. The RDF index schemes are iden-
tical, differing only in storage model.

The IRI strings and string literals are stored in sepa-
rate dictionary tables. These are represented row-wise and
shared by both row- and column-wise cases. A column-
wise representation of these would approximately halve their
space usage through use of stream compression for strings
but we do not address this further here.

In Table 1 we see the space requirement for the four
storage models. The numbers are given as counts of 8Kb
database pages. This page counts reflect the amount of



RAM actually occupied when the data in question is fetched
in Virtuoso’s cache. We do not count unused disk pages since
these do not occupy RAM. Unused pages are at times left
for subsequent inserts.

We can compare the relational size without the indices
with the RDF size for PSOG, as these represent the same
information. On the RDF side you may add the string
literal dictionary’s size to the balance on the RDF side.
The relational size for the indices could be compared to the
RDF POGS figure. The POGS figure represents having a
single part index on every column of every table whereas
the relational index size is only for l partkey, o custkey,
ps suppkey and c nationkey.

We see that the column-wise relational representation ap-
pears artificially large since the comment string columns
are stored without compression. A figure excluding these
columns is much better and reflects the working set of the
queries, since the excluded l comment and ps comment are
not referenced by any of the TPC H queries. Otherwise,
lineitem is well compressed, with low cardinality or ascend-
ing columns like l orderkey, l linenumber, l orderstatus,
l returnflag, l tax, l discount virtually falling away.

The row-wise RDF representation essentially takes every
column value and stores it with 8 to 12 bytes of overhead,
hence the very large size of the row-wise PSOG index. Most
P, S and G are compressed from 8 to 2 bytes but the over-
head is still great, plus there is a 2 byte overhead per each
index entry. This state of matters is improved with POGS,
since there we have an index entry only for each distinct
POG, hence reducing overheads. The usually many values
of S for each POG are an array of deltas or bits.

For column-wise RDF, we see P, S and G compress away
and row overheads disappear. Therefore the column-wise
PSOG plus string literal dictionary is in fact less than the
column-wise relational representation. This comes from
global removal of string duplicates.

There are two bytes per quad figures. These divide the
total page count times page size for all indices by the count
of quads. The first figure counts all indices, the second
leaves out the distinct PS, OP and GS projections. The
latter reflects the working set size when queries stay within
a relational-like envelope.

We are not particularly concerned with the large IRI dic-
tionary. This has no relational equivalent and is purely an
added RDF cost but for query evaluation this will almost
not be accessed, hence it does not spoil the working set.
Queries with regexps on IRI’s are a corner case without re-
lational equivalent and we are not concerned with this here.
A full text index on IRI strings or a tokenized representa-
tion as tried in MonetDB[19] is a valid solution. Further,
stream compression on the string column will drop the size
to about half.

5. EXECUTION ENGINE
A multiple tuple at a time execution model is typical for

column stores[2]. The rationale is that locality will be found
in accessing values of the same column on nearby rows in-
stead of coming from accessing nearby columns on random
rows. However, executing with multiple tuples at a time is
just as well applicable to row oriented storage models.

Virtuoso first implemented execution on large batches of
query variable bindings for the cluster situation, where this
is indispensable for overcoming network latency. We later

added execution also in single servers and within servers
participating in a cluster. The benefit of this is exploiting
locality between multiple accesses to nearby data, so that
the random access overhead need be incurred only if the
next datum to access is relatively far. There is an added
cost coming from sorting the data to be random accessed
before the random access but this is typically an in-cache
operation and the savings from eliminating random access
generally outweigh this cost.

The benefits of vectoring can be clearly seen with rows
but are still more marked with columns, since the chance
of having multiple accesses on relatively nearby data grows
as the density of storage grows. Also the join operation on
column-wise indices is specially written with the assumption
of vectored usage. For random access on a column-wise in-
dex, we have a set of sorted sets of key values. The segment
holding the first of these is located by binary search of a
sparse row-wise B tree index. This is identical to random
access of a row-wise index. After hitting the leaf, there is
a segment of contiguous row stored column-wise. These are
processed column by column, i.e. all matches of the 1st key
part define a set of row ranges. Matches of the 2nd key part
are then searched for within these ranges, until all specifi-
cations on key parts are exhausted. At this point, we have
a set of n ranges of row numbers within the segment. After
this there are no more matches of the search criteria within
this segment and we move to the next set of search crite-
ria, looking for the match on the same page of the row-wise
sparse index. If the next row to access is within 100,000
or so rows, chances are that the segment will be referenced
from the same page of the row-wise sparse index. If there is
no match within the page or sibling pages of the row-wise
index then we reset the search and start it from the top of
the row-wise B tree.

This model makes column-wise random access more effi-
cient than row-wise if the random access will hit more than
one or two rows per segment, which translates to 1 row in
every 1000 to 3000 rows.

We plan to make a detailed comparison of the TPC H
workload with relational and RDF data models at a later
stage. For now, we will simply show that the column com-
pression benefits do not come at a cost in access performance
and that Virtuoso can perform basic joins with RDF and re-
lational versions of the data in roughly comparable time.

The sample query is

select count(*), sum(l_extendedprice*(1-l_discount))

from part, lineitem

where p_size < 20

and l_partkey = p_partkey option (order, loop)

The SPARQL version is

select count (*) sum (?ep * (1 - ?dis))

where {

?part tpch:size ?size .

filter (?size < 20) .

?line tpch:has_part ?part .

?line tpch:lineextendedprice ?ep .

?line tpch:discount ?dis . }

The option (order, loop) clause means that join order
is as in the from clause and that joins are loop joins. Both
SPARQL and SQL plans scan the part size property and
get p partkey’s or part IRI ID’s for RDF. Then an index



Table 2: Execution Times of a Sample TPC H Query

Data Layout 10K vector 100K vector
Relational rows 5887 4771
Relational columns 5971 2944
RDF rows 7458 7260
RDF columns 6372 6557

The times are in milliseconds. The CPU is
Intel Xeon 5520.

on l partkey is used for getting l orderkey, l linenumber,
which are used with the primary key of lineitem for get-
ting l extendedprice and l discount. With RDF, the
has order property is used for linking the part IRI to the IRI
of the lineitem, for which the extended price and discount
properties are fetched from PSOG. The plans are identical
for row- and column-wise versions of the data. The query re-
trieves 2.2 million rows from lineitem, approximately 38%
of the table.

The queries are run on a single thread in warm cache with
a vector sizes of 10000 and 100000. This means that sets of
up to 10000 or 100000 variable bindings are passed between
query operators.

Increasing the vector size generally improves performance,
up to the point where sorting the key values to search for
costs more than the gain in accessing more rows per page.
Column-wise formats benefit more from vectoring since re-
trieving a single row has more steps whose cost must be
compensated for by getting more values per operation. The
column-wise RDF time slightly increases when increasing
the vector length, presumably due to CPU cache effects.
This subject will be analyzed in more detail at a later date.
To illustrate the importance of vectoring, we note that the
RDF row-wise time without any vectoring is 12529 msec.

Again, a systematic analysis of the actual TPC H queries
with relational and RDF models will be undertaken sepa-
rately. The present numbers only show that comparable
operations take comparable times. The column store imple-
mentation is relatively unoptimized, hence the numbers can-
not be used for extrapolating relative performance of rows
and columns in Virtuoso in general or for comparing Virtu-
oso with other column stores.

6. FURTHER OPTIMIZATIONS
The column store implementation measured here is typed

at run time, hence does not have data type specific versions
of join and other operations. These will be necessary for
realistic performance comparison with other similar designs.

We note that indexing every predicate from object to sub-
ject is not always useful. For example for low cardinality
properties like l orderstatus or c nationkey there is little
point in making an index since a scan of the values on the
PSOG key would be just as efficient.

Since the RDF model is very similar to a column-wise
representation with binary association tables, the techniques
for caching column to column joins developed in MonetDB
are readily applicable.

Further, since the SP and OP projections of RDF quads
only serve patterns where only a subject or object is known,
it may not be necessary to fill these for every object or sub-
ject. Rather, these could be filled on demand, in a manner
similar to cracking in [15].

It does not seem a priori necessary to project BAT-like
subject, object tables from the quad table, as is for example
discussed in [2]. The extra keys compress away and evaluat-
ing conditions on these takes negligible time since these are
usually run length encoded. In this way we get the advan-
tages of column storage for RDF without the need to adopt
an application specific schema.

7. ADVANCES IN RDF PRODUCTION AND
PUBLISHING

7.1 Hybrid Relational/RDF Schemes, Mixes
of Federation and ETL

In a database context, RDF is primarily a means of inte-
gration, especially as concerns integration from sources not
controlled by the integrator.

Thus most applications will map multiple local schemata
into a common integrated schema. The method of mapping
should be 1. flexible, 2. ex[expressive, 3. human-friendly
and 4. optimizer-friendly, all four at the same time.

We have found that self-evident C sprintf format strings
and simple ordered hierarchies of rules and exceptions let us
satisfy all four conditions in 95% of all cases. The remaining
5% of complicated cases require hand-written stored proce-
dures for conversion of individual values; this is less conve-
nient but still tolerable for both budget and SPARQL/SQL
optimizers.

The set of mapping rules for a group of tables is referred
to as an RDF View. The SPARQL processor can translate a
SPARQL request into SQL on the mentioned group of tables
if the query contains triple patterns such that the output of
an RDF View may match them.

During translation from SPARQL to SQL against a
schema described in an RDF view SPARQL triple pat-
terns become unions and groups of patterns become joins.
Hence the most important optimization is rewriting of joins
of unions into union of joins, with strong elimination of
impossible joins. The RDF mapping tool absolutely must
support this optimization in every possible way, otherwise it
will work only on carefully chosen demos. More specifically,
as soon as a predicate on the RDF side of the mapping may
be mapped to more than one table/column on the SQL side,
such elimination is a requirement.

The RDF mapping tool should pay attention to RDF-
specific security, such as graph-level security that is between
traditional table-level and row-level security of relational
sources. For each triple pattern of a source query it should
decide whether costly run-type permission checks should be
placed in the generated SQL or whether inexpensive SQL
table-level security is sufficient or whether the SPARQL op-
timizer should entirely block the access to some graphs at
the compile time.

There is great benefit in controlling both the RDF to SQL
translator and the target SQL dialect. Small extensions of
the SQL syntax and the SQL run-time can seriously reduce
both compilation and execution time. Examples are new
SQL data types for IRIs and RDF literals with datatype or
language or a BREAKUP operator that create many “short”
output rows from each individual row of a wide input (e.g.
all triples about an order made from one row of a join of
order and customer). Custom SQL extensions do not pre-
clude ultimately mapping to third party SQL dialects, but



there is advantage in having an extensible intermediate SQL
layer.

With good SPARQL and SQL optimizers, we can avoid
the materialization of RDF in almost all cases, the inference
is the biggest exception not yet eliminated. Fortunately,
good SPARQL optimization lets the application developer to
partially compensate the missing inference by adding more
rules to the RDF view. E.g., if an RDF View is about lec-
turers and students and some external application queries
for persons then the RDF View may make two extra map-
ping rules that will generate ?X rdf:type Person when ?X

rdf:type Lecturer or ?X rdf:type Student can be gener-
ated. For applications of average complexity, the SPARQL
optimizer handles thousands of rules per RDF View, so a
hundred of “inference replacement” rules does not make a
great difference.

One does not have to choose between full translation from
SPARQL to SQL and an extract transform load (ETL)
scheme where queries are run on physical RDF data peri-
odically ETL’d from a relational original. It is possible to
reference a combination of physical RDF data and relational
data mapped via RDF views in the same query.

It should be noted, however, that joining relational data of
independent sources or joining relational and RDF requires
extensive use of pairs of mutually inverse functions for con-
verting between IRI’s existing as native RDF and IRI’s syn-
thesized from relational key values. This is automated for
most of C-style sprintf format strings but adds some hand-
writing for complicated cases. Of course, the SPARQL and
SQL optimizers should know the list of inverse functions
and understand how to rewrite a SPARQL query so that
the target optimizer sees conditions that it can deal with.
For example, one should generate conditions on columns and
not conditions on expressions involving columns.

Local relational data can be mixed with RDF of different
origin, including local resources, external RDF resources
retrieved on demand and results of requests to remote
SPARQL end points. IRI dereferencing is now in intensive
use and the need for detailed service descriptions is growing
fast.

As a simple example, consider a query that mixes TPC-H
data with DBpedia and other LOD data. For each coun-
try that is now a member of EU, and for each sale to the
country in question the query divides the sum of the sale by
GDP values of the country in the year of sale, the sum of
these results represent the relative impact of the company
in the country relative to the “weight” of the country. The
SPARQL optimizer should know that country id and coun-
try name and country IRI in DBpedia are all unique and can
be transformed to each other by bijections, and produce a
good SQL that can be freely optimized. The SQL optimizer
will decide where to start from: find all EU countries first or
process all sales and check whether the sale is in EU country
or do something else.

7.2 Keeping RDF Extractions Up To Date
Any reasonably good reporting tool can produce an RDF

dump of a database by applying text templates for Turtle
or NTriples syntax to output of some simple SQL queries.

If a mapping exists for relational data then it can be made
better by SPARQL

construct { ?s ?p ?o } where { ?s ?p ?o }

and appropriate formatting procedure for output.
A similar SPARUL INSERT statement can store the ex-

tracted RDF in local RDF storage.
All these methods can convert the data once but offer no

way of keeping data in sync, short of repeating the whole
ETL process.

A fourth method has been added recently. For a given
collection of RDF Views, one can create an initial RDF ma-
terialization with SPARUL and at the same time create trig-
gers on the source tables for keeping the RDF up to date.
For this to work, there must be a copy of the relational
data in Virtuoso but this can be kept up-to-date with Vir-
tuoso’s heterogeneous incremental replication capability or
other federated SQL techniques. Future work will improve
the efficiency of the generated triggers but even now this
approach works well in many cases. This will never be the
method of choice for fast-changing OLTP sources, though.
Among other things, OLTP availability conflicts with the
need for human-friendly and interoperable IRIs that may
contain, e.g., a company name instead of unique internal
supplier id. Re-naming of a popular supplier will trig-
ger cascading changes in numerous triples about related or-
ders etc. — a nightmare typical for a heavily denormalized
database.

7.3 Replicating RDF - Log Shipping and Sync
With Ad Hoc Diffs

Almost all publicly available RDF data are distributed as
archives with periodic updates. As data sets grow, process-
ing of such archives becomes annoying for both publisher
and subscribers. Fortunately, other methods become avail-
able.

Reasonably efficient analogs of textual “universal diff”
and “patch” exist for RDF graphs. See for example [20].
The publisher can reduce traffic by publishing a “release”
and “patches” between the “head” and the “release” ver-
sions of the data. The used algorithm is not universal, it
works only for graphs without blank nodes or for graphs
where blank nodes are identifiable by their properties or
by the subjects they belong to. However these cases cover
most of “industrial” cases — from big dumps like dbpedia
(they’re free from blank nodes) to collections of FOAF data
(they do not contain blank nodes that are connected only
to other blank nodes).

The algorithm can pay attention to the declared ontology
of the data being compared when a diff is generated. This
can make the diff algorithm faster and the resulting patch
can be safely applied to a different version of the graph,
with accurate diagnostics of conflict. It becomes possible to
merge independent changes of a common original graph. It
becomes possible to handle subscribers’ amendments in an
automated way. The diff-and-patch approach cuts the traffic
costs but the lag of publishing is still significant, because
making diffs takes time, in linear proportion to the size of
the data in the base case.

To keep data fresh, transactional replication of RDF data
is now available. The publisher logs all changes in RDF
data in a replication log that is immediately available to
subscribers and stored while not delivered to all subscribers.
If the log grows faster than some subscriber can read and
process it, the subscriber may disconnect and retry the syn-
chronization later. This is the preferred means of replication
for maintaining read-only copies of data to which most up-



dates originate centrally.
RDB-to-RDF extraction triggers and RDF-to-RDF repli-

cation are two thirds of a bridge that might connect rela-
tional databases with different schemas. The missing part
is an RDF-to-RDB routine that matches RDF changes with
patterns specified by an RDF View, group inserted and
deleted triples by unique keys of appropriate tables, checks
recognized changes for consistency and completeness, makes
changes in relational tables and reports triples with rejected
changes and/or data not expressible in the destination
database schema. The required basic algorithms are known
for years, but the implementation will be useless while not
backed by solid infrastructure for writing and debugging
RDF Views.

8. THE LOD2 VISION
The LOD2 project is a European cooperation between in-

dustry and academia for taking the Linked Open Data vision
and culture to its next evolutionary level. The project has
significant EU funding under the 7th framework program
and is slated to run from fall 2010 to fall 2014. We do not
give here a full description of the project but rather focus
on its database related aspects. The project is coordinated
by DBpedia[21] pioneer University of Leipzig with participa-
tion from Free University of Berlin, DERI, Wolters Kluwer,
Exalead, Open Knowledge Foundation and others. Open-
Link Software (Virtuoso) and CWI (MonetDB) represent
the database side.

8.1 Benchmarks
In the experience of the authors, benchmarks and the

open competition arising around them are one of the central
drivers of technological advance. In this sense, individual
progress depends on progress by the community. On the
other hand, when developing and supporting a commercial
product, one hardly ever finds adequate time to experiment
with competing products, even though such experimenta-
tion has been found most informative.

LOD2 will undertake a systematic review of present RDF
stores and leading analytics oriented RDBMS’s. A new RDF
benchmark will be developed, addressing the shortcomings
of the present BSBM[22] and LUBM[23]. Also RDF adapta-
tions of relational benchmarks like TPC H[14] and SSB[24]
will be explored in the interest of having a baseline for con-
trasting RDF against relational, to the extent the applica-
tions overlap.

8.2 Parallelism and Reuse of Intermediates
As pointed out earlier, much of the CWI work on col-

umn store optimization (such as recycling[3] or reconstruc-
tion[15]) is adaptable to RDF, in part thanks to RDF’s prop-
erty centric nature. Mixing the traditionally separate phases
of query planning and execution, as in ROX[4], is highly rel-
evant to RDF, since relational database statistics, even if
these involve dynamic sampling, fail to exploit correlations
between data.

Even with the advances in compression discussed in the
present paper, large RDF deployments will have to run on
distributed memory clusters. Adapting the single server
versions of adaptive query execution as in ROX to paral-
lel databases, as well as maintaining distributed caches of
intermediate results will pose new scientific challenges to be
explored in LOD2. Most importantly, RDF is not only a

schema-last variant of the relational model but has a rich
reasoning dimension. For reasoning at large scale to be eco-
nomical, we can no longer take it as a given that all implicit
knowledge will be explicitly materialized by the reasoning
process. For efficiency, we would also rather not backward
chain the implied knowledge every time it is requested. Thus
a demand driven hybrid approach suggests itself. This can
build on the experience of cracking and recycling, except
that now the operations being cached and maintained across
updates are much more complex than indexing and joining.

8.3 Data Integration
Linked data as such is is plentiful but linkage remains

lacking: Data sets link to other data in the same set but
links between data sets are sparse even when the real-world
entities described by the data sets are the same. LOD2 will
therefore develop automatic and semi-automatic means of
tying the islands making up the Linked Open Data cloud
closer together. This builds on experience with things like
DL-Learner[25] and related work.

8.4 Discovery and Visualization
The field of computer science appears to have been

haunted almost from its inception by two persistent mi-
rages: 1. Producing applications from data definition and
2. enabling a non-technical user with limited knowledge of
the data at hand to formulate complex ad hoc queries and
generally to make sense of a data set.

In the present data driven world, specially with the ad-
vent of linked data and the unprecedented proliferation of
integrable sources, the second of these ever elusive aims is
becoming even more central. LOD2 will build on the expe-
rience of Ontowiki, Dbpedia and OpenStreetMaps visualiza-
tion experiences for catalyzing rapid development of deriva-
tive data products, i.e. mesh-ups. Naturally, the advances
in warehousing, querying, coreference resolution and schema
alignment will directly support this.

9. CONCLUSIONS AND CHALLENGES
We have shown how we can bring down RDF storage and

processing cost to near-relational levels. Further optimiza-
tion is a matter of engineering, of which there is much ex-
perience, the conceptual back of the problem is broken.

Together with this, we have shown how we can keep RDF
in sync across RDF sources and relational databases. This
is instrumental in making RDF a valid currency in the data
as service economy.

We have outlined further research directions for bringing
intelligence close to the data and for eliminating needless
repetition in a constantly more complex and expressive data
refinement pipeline.

Several challenges however remain: How to make the
data human understandable and discoverable? How to
drive down the cost of integration quality even while quan-
titative barriers to integration are being overcome? When
all points to tighter coupling of database, distributed com-
puting and reasoning, how to avoid a new generation of
closed behemoths? How to formulate an interface between
data and reasoning such that the indispensable locality and
integration is achieved while still retaining the benefits of
interchangeable parts?

In the previously mentioned Declarative Imperative keynote,
Joseph Hellerstein repeatedly raised the issue that speedup



in hardware would no longer feed progress in computing
performance. The hardware growth having turned towards
parallelism, software engineers would now need to carry
their share of the load. Breaking the performance barriers
around use of semantic technology will play its part in the
software community shouldering its share of the burden.

10. REFERENCES
[1] Hellerstein, Joseph M. The Declarative Imperative:

Experiences and Conjectures in Distributed Logic.
PODS-2010, keynote. UCB/EECS-2010-90.
http://www.eecs.berkeley.edu/Pubs/TechRpts/
2010/EECS-2010-90.html

[2] Abadi, Daniel J. Query Execution in
Column-Oriented Database Systems. MIT PhD
Dissertation, February, 2008.
http://cs-www.cs.yale.edu/homes/
dna/papers/abadiphd.pdf

[3] Milena, G., Ivanova, Martin L., Kersten, Niels J., Nes
Romulo A.P. Goncalves. An Architecture for Recycling
Intermediates in a Column-store. SIGMOD-2009.
http://homepages.cwi.nl/m̃k/onderwijs/adt
/lectures/lecture5.pdf

[4] Kader, R.A., Boncz, P., Manegold, S., van Keulen, M.
ROX: Run-time Optimization of XQueries.
SIGMOD-2009.
http://www-db.informatik.uni-tuebingen.de/files/
research/pathfinder/publications/rox.pdf

[5] Vertica Systems. Vertica Database for Hadoop and
MapReduce.
http://www.vertica.com/MapReduce

[6] Cooper B.F., Ramakrishnan, R., Srivastava, U.,
Silberstein, A. et al. PNUTS: Yahoo!s Hosted Data
Serving Platform. Proc. of the VLDB Endowment,
2008-Aug., Vol.1, 1277–1288. ISSN:2150-8097.

[7] Project Voldemort — A distributed database.
http://project-voldemort.com/

[8] Ceri, S., Gottlob, G., Tanca, L. Logic Programming
and Databases. in: Surveys in Comuter Science.
Berlin: Springer 1990

[9] Neo4j.org. Neo4j open source nosql graph database.

[10] Erling, O., Mikhailov, I. Faceted Views over
Large-Scale Linked Data. Linked Data on the Web
(LDOW2009).
http://events.linkeddata.org/ldow2009/
papers/ldow2009 paper3.pdf

[11] Ontotext AD. OWLIM — OWL Semantic Repository.
http://www.ontotext.com/owlim/index.html

[12] SYSTAP, LLC. Bigdata.
http://www.systap.com/bigdata.htm

[13] Harris, S., Lamb, N., Shadbolt, N. 4store: The Design
and Implementation of a Clustered RDF Store.
SSWS2009.
4store.org/publications/harris-ssws09.pdf

[14] Transaction Processing Performance Council. TPC
Benchmark(TM) H (Decision Support) Standard
Specification Revision 2.11.0.
http://www.tpc.org/tpch/spec/tpch2.11.0.pdf

[15] Idreos, S., Kersten, M.L., Manegold, S. Self-organizing
tuple reconstruction in column-stores. SIGMOD 2009.
http://homepages.cwi.nl/̃idreos/IKM SIGMOD09.pdf

[16] Weiss, C., Karras, P., Bernstein A. Hexastore:
sextuple indexing for semantic web data management.
Proc. of the VLDB Endowment archive. Vol.1, 1
(August 2008). pp. 1008-1019. ISSN:2150-8097.
http://www.adsafemedia.com/pdf/
Sextuple Indexing for Semantic Web Data Mang.pdf

[17] Hellerstein J. M., Stonebraker M. (eds). Readings in
Database Systems, Third Edition. Morgan Kaufmann,
Mar. 1998.

[18] BOOM — Berkeley Orders of Magnitude –
Declarative Languages And Systems.
http://boom.cs.berkeley.edu/

[19] Sidirourgos, L., Goncalves, R., Kersten, M., Nes, N.,
Manegold, S. Column-Store Support for RDF Data
Management: not all swans are white. VLDB 2008.
http://citeseerx.ist.psu.edu/viewdoc/
download?doi=10.1.1.140.6138&rep=rep1&type=pdf

[20] Tummarello, G., Morbidoni, C., Bachmann-Gmr, R.,
Erling, O. RDFSync: Efficient Remote
Synchronization of RDF Models. ISWC / ASWC
2007. pp. 537-551.

[21] Auer, S., Lehmann, J. What have Innsbruck and
Leipzig in common? Extracting Semantics from Wiki
Content. In Franconi et al. (eds), Proceedings of
European Semantic Web Conference (ESWC 2007),
LNCS 4519, pp. 503517, Springer, 2007.

[22] Bizer, C., Schultz, A. Berlin SPARQL Benchmark
(BSBM).
www4.wiwiss.fu-berlin.de/
bizer/BerlinSPARQLBenchmark/

[23] Guo, Y., Pan, Z., Heflin, J. LUBM: A Benchmark for
OWL Knowledge Base Systems. Journal of Web
Semantics 3(2), 2005, pp. 158-182.

[24] O’Neil, P., O’Neil, B., Chen, X. Star Schema
Benchmark, Revision 3, June 5, 2009
www.cs.umb.edu/ poneil/StarSchemaB.PDF

[25] Lehmann, J. DL-Learner: Learning Concepts in
Description Logics. Journal of Machine Learning
Research (JMLR), 2009


