
SpiderStore: Exploiting Main Memory for Efficient
RDF Graph Representation and Fast Querying

Robert Binna, Wolfgang Gassler, Eva Zangerle, Dominic Pacher, Günther Specht
Databases and Information Systems, Institute of Computer Science

University of Innsbruck, Austria
{firstname.lastname}@uibk.ac.at

ABSTRACT
The constant growth of available RDF data requires fast
and efficient querying facilities of graph data. So far, such
data sets have been stored by using mapping techniques
from graph structures to relational models, secondary mem-
ory structures or even complex main memory based models.
We present the main memory database SpiderStore which
is capable of efficiently managing large RDF data sets and
providing powerful and fast SPARQL processing facilities.
The SpiderStore storage concept aims at storing the graph
structure in main memory without performing any complex
mappings. Therefore it exploits the natural web-structure of
RDF by using fast and random access to main memory. The
abandonment of additional mappings or meta-information
therefore leads to a significant performance gain compared
to other common RDF stores.

Categories and Subject Descriptors
H.3.2 [Information Storage and Retrieval]: Information
Storage; H.3.3 [Information Storage and Retrieval]: In-
formation Search and Retrieval; H.2 [Database Manage-
ment]: Query Processing

General Terms
Performance, Algorithms, Design, Experimentation

Keywords
RDF, Main Memory, Database, RDF Store, Triple Store,
SPARQL, Query Processing

1. INTRODUCTION
Due to the ever growing, vast amounts of RDF data, the

storage of this data is mostly realized on persistent media
– either in a native store or within a relational database
system. Storing huge amounts of RDF data in relational
databases has been facilitated by most of the popular RDF

To copy without fee all or part of this material is permitted only for private
and academic purposes, given that the title of the publication, the authors
and its date of publication appear. Copying or use for commercial purposes,
or to republish, to post on servers or to redistribute to lists, is forbidden
unless an explicit permission is acquired from the copyright owners; the
authors of the material.
Workshop on Semantic Data Management (SemData@VLDB) 2010,
September 17, 2010, Singapore.
Copyright 2010: www.semdata.org.

stores and Semantic Web frameworks as very big ontologies
did not fit into main memory so far.

However, the relational database model has not been in-
tended for the storage of large graph structures. Current so-
lutions for the storage of graphs in relational tables feature
a mapping between the graph structure and the relational
tables of the database system [2, 13, 20]. This mapping
significantly slows down both the storing and the querying
process, which causes a significant loss of performance. An-
other important factor is that the sequential access charac-
teristics of persistent memory requires multiple indices for
fast data access, which basically requires a duplication of
the stored data. Storing all information on persistent media
also features the disadvantage of very costly I/O operations.
This is especially limiting when performing join operations
which feature potentially large intermediate results which
have to be joined. Depending on the type of mapping and
the queries executed, these operations over a huge number
of triples on secondary media can be an expensive task in
terms of execution time or memory consumption.
Recent developments in the area of high-performance main
memory OLTP and OLAP processing databases have min-
imized the I/O bottleneck by moving the whole database
system into main memory which has become appropiate
in terms of space capacity even for large datasets. Sys-
tems facilitating such an architecture – like VoltDB [1] or
HyPer [12] – allow to process several 100,000 transactions
per second while providing full ACID properties. Though
they have moved to main memory, these approaches are still
based on the relational paradigm and therefore suffer from
an impedance mismatch when it comes to mapping graph
based data into a tabular layout. Hence these approaches
have to deal with costly join operations and potentially large
intermediate results when processing graph structures.
We present SpiderStore, a main memory based RDF database
which overcomes these limitations and exploits fast random
read and write operations of main memory and provides
time and space efficient SPARQL query processing facilities.

The remainder of this paper is structured as follows. Sec-
tion 2 outlines the memory layout of SpiderStore. Subse-
quently, Section 3 is concerned with the fast and efficient
processing of SPARQL queries on the proposed main mem-
ory database. Section 4 features the evaluation of the Spi-
derStore prototype and Section 5 discusses related work.
The paper is concluded by a summary and the description
of future work in Section 6.

2. MEMORY LAYOUT
In the following section we sketch the lightweight storage

layout of SpiderStore, which is optimized for fast and effi-
cient SPARQL query processing on RDF graphs. In order
to utilize the nature of main memory architecture, the Spi-
derStore approach stores a graph natively as a set of nodes
and pointers (edges). Due to the fact that main memory
is more expensive than disk based memory and therefore
limited, a very lightweight layout – without any complex
mappings, index structures or additional meta-information
– is required. These conditions are satisfied by the following
memory layout which is based on two basic building blocks:

Nodes within an RDF graph are either subjects, objects
or predicates, where each subject is connected to an
object by an appropriate edge, such that the predicate
annotating the edge again is a node. Furthermore, the
identifier of each node is stored within the node itself.

Edges connect two nodes, one serving as subject and one as
object. Edges are implicitly realized by pointers from
the subject node to the object node.

To be able to browse through the graph structure in order
to answer queries efficiently, the memory layout is optimized
for graph traversal operations. This is implemented by stor-
ing all edges belonging to a certain node in a dense mem-
ory block. This implies that scanning all edges of a certain
node only requires a linear scan of a continuous memory
block. Within this block, all edges of the same predicate
are clustered and linked to the predicate node itself. Fur-
thermore, all predicates are stored as nodes as well. The
RDF graph data model consists of a directed graph where
all edges point from the subject to the object. However, our
approach features bidirectional edges. This is due to the fact
that the query processing performance can be increased sig-
nificantly by the possibility of browsing through the graph
in any direction. The benefit of such a structure – where
subjects, objects and predicates are nodes connected by a
pointer structure – is that the graph can be traversed effi-
ciently in any direction from any starting point within the
graph. An additional index which consists of all predicates
and lists of its sources (subjects) even facilitates to start the
traversal at a predicate. The access to nodes via their iden-
tifier is guaranteed within a time complexity of O(log(n))
by using an additional index. This index is used for the fast
and efficient conversion between strings (e.g. URIs) and
main memory nodes.
Figure 1 sketches the memory model for the storage of RDF
data. The illustrated example features the following nodes:
Node 1 (subject) is connected by Node 2 (predicate) to the
object Node 3. Node 3 itself is also a predicate of the connec-
tion between Node 4 and Node 1 where Node 4 is the subject
and Node 1 is the object. The following listing shows the
example data from Figure 1 represented in triple notation:

...

<Node 1> <Node 2> <Node 3>

<Node 4> <Node 3> <Node 1>

...

The estimated memory consumption (number of bytes m)
for a given RDF data set stored in the described memory

Node 1

outgoing

incoming

Node 2

.....

Node 3

.....

Node 4

.....

predica
te

object

subject

pre
dica

te

Figure 1: RDF Store Main Memory Layout

layout can be calculated by applying this formula:

m = (#nodes ∗ 5 + #edges ∗ 3) ∗ sizeof(pointer)

where #nodes is the overall number of nodes and #edges
is the number of edges (triples) within the RDF data set.
The subformula #edges ∗ 3 contains the space estimate for
the incoming, the outgoing edge (bidirectional) and the link
between the edge and the corresponding entry node. For
each node, space for a pointer to all its incoming and a
pointer to all its outgoing edges, together with their de-
gree and a pointer from the string-index (dictionary) has
to be allocated. The default pointer size on a 64bit ar-
chitecture is 8 byte. The formula does not consider the
strings (identifiers) itself which are stored in a dictionary-
like string index. Strings (URIs, literals) are stored only
once which results in an additional memory consumption ofPn

i=0 length in byte(unique stringi), where n denotes the
number of unique strings within the data set.

3. QUERY ENGINE
In the SpiderStore system, the benefits of storing all graph

data within the main memory are exploited for the query
process within the stored data.
Secondary memory-based RDF stores prefer breadth-first
search because the huge amount of random memory accesses
would be disadvantageous. This approach naturally leads
to intermediate results. Due to the typically high volume of
RDF data sets, intermediate results tend to be very large [3],
which is a limiting factor for the performance of the search
algorithm as writing and reading of intermediate results is
very expensive in terms of time and space capacities. In
the context of a main memory store, the limited amount of
memory available is a crucial factor when handling interme-
diate results.
A memory efficient solution is accomplished by applying
depth-first search instead of breadth-first search. As argued
by Gardarin et al. [9], depth-first search is an efficient op-
eration for traversing paths as long as all data is kept in

memory, which is true for SpiderStore by design. Further-
more, they point out that by using depth-first search no
intermediate results are required to traverse existing paths.
Therefore, the complexity of a query is only restricted by
the amount of main memory used to store the overall result.
For queries which do not facilitate any postprocessing op-
erations like sorting or grouping, SpiderStore provides the
results in a stream-based way and therefore does not require
any additional memory.
The SpiderStore query engine splits SPARQL queries into
so-called “restriction triples”, which are similar to Basic
Graph Patterns [16]. The result set of a query is defined by
all variable assignments (paths) satisfying a given set of re-
strictions. Therefore, these restriction triples can be used to
traverse the subgraph that contains the result data in depth-
first order. Figure 2 illustrates an exemplary query which
selects all scientists who were born in a Swiss city and whose
doctoral advisor was born in a German city. Nodes which
are marked by a “?” represent variables and are bound by
the query engine during the graph walk. The solid lines in
the Figure represent the structure of the subgraph. The dot
dashed lines represent the order in which the triple patterns
are applied to the stored RDF graph by the query engine.
To determine the execution order of triples, selectivity heuris-
tics of basic graph patterns as described in [16] are exploited.
SpiderStore determines the execution order by implicitly
storing basic statistical data. This data contains informa-
tion about the number of property instances and the number
of incoming and outgoing edges grouped by the property of
each node. Hence this statistical data does not need to be
precomputed and can be used to determine the execution
order by ordering the restriction triples based on their selec-
tivity. Therefore, the restriction triples containing the most
selective nodes, edge or combination of these, are applied
first in order to keep the amount of nodes which have to be
processed as small as possible.
The processing order of the restrictions is crucial as the re-
strictions may share variables, which have to be unified and
therefore have to be processed in the correct order. The
fact that SpiderStore connects all nodes bidirectionally is
very beneficial for the computation as restriction triples can
be processed in left-to-right or right-to-left order. After this
execution order is defined, a set of seed nodes is determined,
which marks the starting point(s) of the search process. De-
pending on the selectivity, these seeds can either be a re-
stricted subject or object node (e.g. ”scientist“ in the ex-
ample query in Figure 2) or nodes which are connected to a
very selective predicate. During the next steps, the restric-
tions are applied in a depth-first order. For each matching
restriction, the next restriction in order is pushed onto an
execution stack. A result is found if all restrictions avail-
able are pushed onto this stack and are therefore satisfied
by the current path. Subsequently, the last restriction is
popped from the stack and the next edge or node at the
current position is processed. The iteration continues until
the stack is empty and no more nodes are available for pro-
cessing. The variables defined within a query are tracked by
using a shared variable assignment which is used during the
graph traversal to allow the unification of variables. Every
time a result is detected, the current state of these variable
assignments is returned as a result. The result is streamed
to the client or saved for further postprocessing (e.g. filter
conditions and grouping).

?p

?fn

<familyNameOf>

scientist

?city
?a

<type>

<bornInLocation>
<hasDoctoralAdvisor>

?city2

<bornInLocation>

Switzerland

<locatedIn>

Germany

?gn

<givenNameOf>

<locatedIn>

3 2

1

5

8

7

6
4

predicates
1 execution order

Start
(seed node)

Figure 2: Example Query

4. EVALUATION
All experiments were conducted on a server equipped with

two Intel Xeon L5520 Quad Core CPUs, 2.27 GHz, Linux
kernel 2.6.18, CentOS, 64-bit architecture and 48 GB main
memory.

4.1 Data Sets
For the evaluation we used two data sets: YAGO [17]

and DBpedia [4]. The YAGO ontology is a huge knowledge
repository based on Wikipedia and WordNet data. YAGO
consists of 39,193,669 triples (93 predicates, 33,951,502 unique
subjects and objects). Based on the this data set, we exe-
cuted the SPARQL queries, which already served as a bench-
mark for the RDF-3X approach [13] on the data sets. The
DBpedia project [4] is concerned with the extraction of triple
information contained within Wikipedia pages and infoboxes.
The data set contains a total of 94,839,012 triples (39664
predicates, 23,090,848 unique subjects and objects). For the
DBpedia data set, we used the project’s SPARQL example
queries, extended them and added further complex queries
in order to cover common query types (similar to the YAGO
query set). An exact formulation of the queries used for the
evaluation can be found in the appendix.

4.2 Evaluated Systems
For the evaluation of SpiderStore, we compared it against

the main memory RDF storage Sesame version 2.3.1 [7]
without an inferencer enabled. Additionally, we compared
it to the native secondary memory stores Jena TDB version
0.8.6 [20] and a standard installation of RDF-3X version
0.3.4 [13]. All systems were granted a maximum of 16 GB
main memory for their computations. However, we were

Query A1 A2 A3 B1 B2 B3 C1 C2 geom. mean

SpiderStore 0.0012 0.0765 0.0126 0.0518 0.0055 0.9984 0.3558 0.0196 0.0352

Sesame 0.0849 0.0387 0.1072 0.2252 0.1591 0.3765 dnf 0.0386 0.3200

RDF-3X 0.0184 0.0166 0.0360 0.0787 0.0381 0.0929 0.3377 0.0534 0.0522

Jena TDB 0.3090 0.9000 125.375 2.5100 2.9310 4.8552 dnf 8.9253 7.1286

#results 1 7 147 56 3,714 74 1,842 1

Table 1: Query Runtimes on the YAGO data set (in seconds).

only able to set up Sesame for our tests by granting it 30
GB of main memory. All systems feature single threaded
query engines and only use one out of 16 available cores
when executing queries. For the experiments of secondary
storage systems, the warm cache measurements were con-
ducted by executing the queries five times without dropping
the caches and taking the best result for the evaluation.

4.3 Evaluation Results
The query execution times for the YAGO data set can

be seen in Table 1, where ”dnf“ marks a query which was
aborted after a run time of 10 minutes without having ob-
tained a result. As for the YAGO data set, SpiderStore is
able to compute the query results significantly faster than
the other systems in 5 out of 8 queries. SpiderStore per-
forms better than all other systems with regards to the ge-
ometric mean of all query execution times. The secondary
memory system RDF-3X performs significantly better than
the main memory system Sesame. However, the lightweight
storage structure of SpiderStore performs better than RDF-
3X on warmed caches. Queries consisting of triple patterns
which contain many variables can result in a big amount
of paths which have to be validated. The order in which
the restriction triple of such a query are processed is cru-
cial. This fact is beneficial for RDF-3X as it features a very
mature query optimization engine, which is heavily based
on statistics, which are precomputed during the import pro-
cess. SpiderStore currently contains a very naive optimizer
and is therefore not able to exploit such facts, which results
in slower query execution compared to RDF-3X on query
A2, B3 and C1.
The query execution times for the experiments on the DB-
pedia data set are listed in Table 3. The experiments on the
DBpedia data set showed that SpiderStore clearly surpasses
all other systems in terms of execution time, even though
the query engine optimizer is very limited and not very ma-
ture. For example projections on certain variables are not
taken into account during the processing of queries. There-
fore, the system tries to satisfy all variables occurring within
the query, even if they are eventually not even asked for in
the query, which again leads to an computational overhead
during the execution of queries. Furthermore, queries fea-
turing “union” or “optional” statements are currently split
up into two queries, executed sequentially and the results
are joined in the end.
In addition to the query execution time measurements, the
import times for the compared systems was measured. We
define the import time as the time required for the systems
to load all data and build all the required indices. Table 2
lists the import times for the compared systems. SpiderStore

outperforms the other systems as due to the implicit statis-
tic information no additional statistics have to be computed.
However, we have to note that in terms of restart time disk
based systems, like RDF-3X and Jena TDB, naturally out-
perform main memory systems as all data structures are
kept on secondary memory and therefore do not have to
be built on every startup of the system, whereas for main
memory systems, the import has to be performed on every
startup.

System YAGO DBpedia

SpiderStore 7:50 29:41

Sesame 25:47 53:51

RDF-3X 16:15 48:21

Jena TDB 38:52 53:49

Table 2: Import Times (in minutes)

5. RELATED WORK
Basically there are two approaches for storing RDF data

in triple form: (i) storing triples in a traditional relational
database or (ii) using a native triple store. The first, very
popular approach maps all RDF triples onto tables of re-
lational databases. This can either be realized by using a
potentially very big triple table or by splitting the triples
according to their predicates and storing all triples featur-
ing the same predicate in a separate table (property tables).
The worst case scenario for property tables is obtaining one
table per predicate. However, the clustered property table
approach tries to solve this problem by clustering predicates
into tables based on their co-occurrence within the data set.
These different approaches have been evaluated and bench-
marked in [18].
There are several approaches for main memory RDF stores:
Brahms [11] is a main memory RDF store, which aims at
high-performance association discovery based on variable-
length queries on the RDF graph. GRIN [19] is concerned
with the creation of an RDF index optimized for long path
queries. In contrast, SpiderStore aims at efficiently answer-
ing all kinds of SPARQL queries and is not specialized on
any particular query type.
As for the popular Semantic Web Frameworks, Sesame [7]
provides relational storage, in-memory storage and a na-
tive storage engine. The Sesame in-memory storage engine
uses a list of quadruples called statements where each state-
ment consists of a subject-, predicate-, object- and a context

Query Q1 Q2 Q3 Q4 Q5 Q6 Q7 geom. mean

SpiderStore 0.0378 0.00005 0.0002 0.0287 0.1127 0.0018 0.0005 0.00272

Sesame 80.9006 0.0010 0.0009 0.2184 0.2341 0.0541 0.0099 0.0572

RDF-3X 0.1197 0.0338 0.0273 0.0288 0.6778 0.0351 0.0058 0.0460

Jena TDB dnf dnf 94.246 1.128 1.623 6.644 0.200 13.5192

#results 2 4 21 1,560 1,172 1 2

Table 3: Query Runtimes on the DBpedia data set (in seconds).

node. Each node maintains statement lists of the node’s oc-
currences as subject, predicate, object and context. Jena
[20] also provides both a relational store (SDB) and a na-
tive triple store (TDB). Virtuoso [8] can be facilitated on top
of a native triple store (Virtuoso Triple Store) or on top of
a relational database system (Virtuoso RDF Views). Abadi
et al. [2] and Sidirourgos et al. [15] exploited column-wise
storage of RDF data. YARS2 [10] facilitates native stor-
age and makes use of six (relational) indices for subject,
predicate, object and context. The RDF-3X system [13]
is also based on extensive indices which are heavily com-
pressed. RDF-3X features indices for all possible order-
ings and subsets of subject, object and predicate. It also
provides extensive heuristics about the stored data, which
are further exploited for the processing of queries. Further-
more, Neumann and Weikum proposed join order optimiza-
tions based on sideways information passing and selectivity
heuristics [14]. However, such extensive index structure are
neither feasible nor required when dealing with main mem-
ory. The BitMat project [3] provides a lightweight RDF
index for main-memory RDF stores which is based on a Bit-
Mat, a bitcube index responsible for a compressed storage
and querying of triples. All of these systems have already
been compared extensively in [6, 13]. As for the optimiza-
tion of RDF storage and querying, Stocker et al. [16, 5]
focus on the optimization of Basic Graph Patterns based on
selectivity heuristics.

6. CONCLUSION AND FUTURE WORK
In this paper we presented a lightweight in-memory stor-

age layout for RDF graphs which was implemented in a
first prototype called SpiderStore. This layout provides fast
and efficient in-memory RDF querying and storage without
having to perform any complex mapping. Our experiments
showed that a simplistic storage layout, which is specifically
designed for graph data is able to outperform common stores
based on the relational model. The performance gain is
based on (1) the lightweight storage model which represents
edges as memory pointers and therefore allows direct node
jumps in the graph, (2) implicit statistics about the selec-
tivity which can be used to optimize the processing order
and (3) depth-first query processing which renders unneces-
sary intermediate results and expensive join chains. Future
work on SpiderStore will include the optimization of the
query execution order based on implicit statistical informa-
tion which currently relies on a naive algorithm. Further-
more we will improve the memory management and layout
regarding writing facilities.
newline

7. REFERENCES
[1] Voltdb. Technical report, March 2010.

http://www.voltdb.com/_pdf/VoltDBOverview.pdf.

[2] D. J. Abadi, A. Marcus, S. R. Madden, and
K. Hollenbach. Scalable semantic web data
management using vertical partitioning. In VLDB ’07:
Proceedings of the 33rd international conference on
Very large data bases, pages 411–422. VLDB
Endowment, 2007.

[3] M. Atre, V. Chaoji, M. J. Zaki, and J. A. Hendler.
Matrix ”bit” loaded: a scalable lightweight join query
processor for rdf data. In WWW ’10: Proceedings of
the 19th international conference on World wide web,
pages 41–50, New York, NY, USA, 2010. ACM.

[4] S. Auer, C. Bizer, G. Kobilarov, J. Lehmann,
R. Cyganiak, and Z. Ives. Dbpedia: A nucleus for a
web of open data. The Semantic Web, pages 722–735,
2007.

[5] A. Bernstein, C. Kiefer, and M. Stocker. OptARQ: A
SPARQL optimization approach based on triple
pattern selectivity estimation. Rapport technique,
Department of Informatics, University of Zurich, 2007.

[6] C. Bizer and A. Schultz. The berlin SPARQL
benchmark. International Journal On Semantic Web
and Information Systems, 5(1), 2009.

[7] J. Broekstra, A. Kampman, and F. Van Harmelen.
Sesame: A generic architecture for storing and
querying RDF and RDF schema. The Semantic
WebISWC 2002, pages 54–68, 2002.

[8] O. Erling and I. Mikhailov. RDF Support in the
Virtuoso DBMS. Networked Knowledge-Networked
Media, pages 7–24.

[9] G. Gardarin, J. Gruser, and Z. Tang. Cost-based
selection of path expression processing algorithms in
object-oriented databases. In Proceedings of the
international conference on very large data bases,
pages 390–401, 1996.

[10] A. Harth, J. Umbrich, A. Hogan, and S. Decker.
YARS2: A federated repository for querying graph
structured data from the web. The Semantic Web,
pages 211–224.

[11] M. Janik and K. Kochut. Brahms: A workbench RDF
store and high performance memory system for
semantic association discovery. The Semantic
Web–ISWC 2005, pages 431–445.

[12] A. Kemper and T. Neumann. Hyper: Hybrid OLTP &
OLAP high performance database system. Technical
Report TU-I1010, TU Munich, Institute of Computer
Science, Germany, May 2010.

[13] T. Neumann and G. Weikum. RDF-3X: a RISC-style
engine for RDF. Proceedings of the VLDB
Endowment, 1(1):647–659, 2008.

[14] T. Neumann and G. Weikum. Scalable join processing
on very large rdf graphs. In SIGMOD ’09: Proceedings
of the 35th SIGMOD international conference on
Management of data, pages 627–640, New York, NY,
USA, 2009. ACM.

[15] L. Sidirourgos, R. Goncalves, M. Kersten, N. Nes, and
S. Manegold. Column-store support for RDF data
management: not all swans are white. Proceedings of
the VLDB Endowment, 1(2):1553–1563, 2008.

[16] M. Stocker, A. Seaborne, A. Bernstein, C. Kiefer, and
D. Reynolds. SPARQL basic graph pattern
optimization using selectivity estimation. In WWW
’08: Proceeding of the 17th international conference on
World Wide Web, pages 595–604, New York, NY,
USA, 2008. ACM.

[17] F. M. Suchanek, G. Kasneci, and G. Weikum. Yago:
A Core of Semantic Knowledge. In 16th international
World Wide Web conference (WWW 2007), New
York, NY, USA, 2007. ACM Press.

[18] Y. Theoharis, V. Christophides, and
G. Karvounarakis. Benchmarking database
representations of RDF/S stores. The Semantic
Web–ISWC 2005, pages 685–701, 2005.

[19] O. Udrea, A. Pugliese, and V. Subrahmanian. GRIN:
A graph based RDF index. In Proceedings of the
National Conference on Articial Intelligence,
volume 22, page 1465. Menlo Park, CA; Cambridge,
MA; London; AAAI Press; MIT Press; 1999, 2007.

[20] K. Wilkinson, C. Sayers, H. Kuno, D. Reynolds, et al.
Efficient RDF storage and retrieval in Jena2. In
Proceedings of SWDB, volume 3, pages 7–8. Citeseer,
2003.

APPENDIX
A. QUERIES

A.1 YAGO data set
A1: select ?gn ?fn where { ?gn 〈givenNameOf〉 ?p. ?fn
〈familyNameOf〉 ?p. ?p 〈type〉 scientist. ?p 〈bornInLocation〉
?city. ?p 〈hasDoctoralAdvisor〉 ?a. ?a 〈bornInLocation〉
?city2. ?city 〈locatedIn〉 Switzerland. ?city2 〈locatedIn〉
Germany. }
A2: select ?n where { ?a 〈isCalled〉 ?n. ?a 〈type〉 actor”. ?a
〈livesIn〉 ?city. ?a 〈actedIn〉 ?m1. ?a 〈directed〉 ?m2. ?city
〈locatedIn〉 ?s. ?s 〈locatedIn〉 United States. ?m1 〈type〉
movie. ?m1 〈producedInCountry〉 Germany. ?m2 〈type〉
movie. ?m2 〈producedInCountry〉 Canada. }
A3: select distinct ?n ?co where { ?p 〈isCalled〉 ?n. {?p
〈type〉 actor } union { ?p 〈type〉 athlete }. ?p 〈bornIn-
Location〉 ?c. ?c 〈locatedIn〉 ?s. ?s 〈locatedIn〉 ?co. ?p
〈type〉 ?t. filter(?t reaches politician via 〈sub-ClassOf〉) }
B1: select distinct ?n1 ?n2 where { ?a1 〈isCalled〉 ?n1. ?a1
〈livesIn〉 ?c1. ?a1 〈actedIn〉 ?movie. ?a2 〈isCalled〉 ?n2. ?a2
〈livesIn〉 ?c2. ?a2 〈actedIn〉 ?movie. ?c1 〈locatedIn〉 Eng-
land. ?c2 〈locatedIn〉 England. filter (?a1 != ?a2) }
B2: select ?n1 ?n2 where { ?p1 〈isCalled〉 ?n1. ?p1 〈bornIn-
Location〉 ?city. ?p1 〈isMarriedTo〉 ?p2. ?p2 〈isCalled〉 ?n2.
?p2 〈bornInLocation〉 ?city. }

B3: select distinct ?n1 ?n2 where { ?n1 〈familyNameOf〉
?p1. ?n2 〈familyNameOf〉 ?p2. ?p1 〈type〉 scientist. ?p1
〈hasWonPrize〉 ?award. ?p1 〈bornInLocation〉 ?city. ?p2
〈type〉 scientist. ?p2 〈hasWonPrize〉 ?award. ?p2 〈bornIn-
Location〉 ?city. filter (?p1 != ?p2) }
C1: select distinct ?n1 ?n2 where {?n1 〈familyNameOf〉 ?p1.
?n2 〈familyNameOf〉 ?p2. ?p1 〈type〉 scientist. ?p1 ?i1 ?city.
?p2 〈type〉 scientist. ?p2 ?i2 ?city. ?city 〈type〉 〈site〉. filter
(?p1 != ?p2) }
C2: select distinct ?n where { ?p 〈isCalled〉 ?n. ?p ?i1 ?c1.
?p ?i2 ?c2. ?c1 〈type〉 〈village〉. ?c1 〈isCalled〉 London. ?c2
〈type〉 〈site〉. ?c2 〈isCalled〉 Paris. }

A.2 DBpedia Data Set
prefix rdf: 〈http://www.w3.org/1999/02/22-rdf-syntax-ns#〉
prefix foaf: 〈http://xmlns.com/foaf/0.1/〉
prefix dbpedia2: 〈http://dbpedia.org/property/〉
prefix skos: 〈http://www.w3.org/2004/02/skos/core#〉
prefix dbo: 〈http://dbpedia.org/ontology/〉

Q1: select ?name ?name2 ?place where { ?person dbo:birth-
Place ?place. ?person foaf:name ?name . ?place skos:subject
〈 http://dbpedia.org/resource/Category:European Capitals-
of Culture〉 . ?person2 dbo:birthPlace ?place . ?person2

foaf:name ?name2 . ?person skos:subject ?type1 . ?person2
skos:subject ?type2 . ?type1 skos:broader 〈http://dbpedia.-
org/resource/Category:Musicians〉 . ?type2 skos:broader 〈ht-
tp://dbpedia.org/resource/Category:Musicians〉 . filter(?na-
me != ?name2) }
Q2: select ?name1 ?name2 where {?person foaf:name ?na-
me1 . ?person2 foaf:name ?name2 . ?person dbpedia2p:infl-
uences ?person2 . ?person2 dbpedia2:awards 〈http://db-
pedia.org/resource/Time 100: The Most Important People-
of the Century〉 .}
Q3: select ?name where { ?vehicle skos:subject ?cat . ?ve-
hicle dbpedia2:transmission ”6-speed manual” . ?vehicle
dbpedia2:name ?name . ?vehicle dbo:manufacturer ?man
. ?man dbo:location ?location . ?location dbo:leaderName
〈http://dbpedia.org/resource/Alfred Lehmann〉 . ?cat skos:-
broader 〈http://dbpedia.org/resource/Category:Luxury ve-
hicles〉.}
Q4: select distinct ?person ?person2 where {?person ?z
〈http://dbpedia.org/resource/Category:IBM Fellows〉. ?per-
son ?prop ?value. ?person2 ?prop2 ?value2. ?person2 ?prop3
〈http://dbpedia.org/resource/Category:IBM Fellows〉. filter
(?person != ?person2)}
Q5: select distinct ?scientist ?doctor where { ?scientist rdf:type
〈http://dbpedia.org/ontology/Scientist〉. ?scientist 〈http://db-
pedia.org/ontology/doctoralStudent〉 ?doctor. ?doctor ?prop-
erty ?value. ?scientist ?prop2 ?value. }
Q6: select distinct ?player where {?s dbpedia2:name ?player.
?s rdf:type 〈http://dbpedia.org/ontology/SoccerPlayer〉. ?s
dbpedia2:position ”Goalkeeper”. ?s 〈http://dbpedia.org/-
property/clubs〉 ?club. ?club 〈http://dbpedia.org/ontology/-
capacity〉 ”32609” . ?s 〈http://dbpedia.org/ontology/birth-
Place〉 ?place. ?place dbpedia2:populationCensus ”49138831”.}
Q7: select ?name ?birth ?description ?person ?x where {?person
dbo:birthPlace 〈http://dbpedia.org/resource/Berlin〉. ?per-
son skos:subject 〈http://dbpedia.org/resource/Category:Ger-
man musicians〉. ?person dbo:birthDate ?birth. ?person
foaf:name ?name. }

